Name
 Calculus II

Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln (2)$, unless they simplify further like $\sqrt{9}=3$ or $\cos (3 \pi / 4)=-\sqrt{2} / 2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.

1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature:
Print Name:
Date: \qquad

Tests	Conditions	Conclusion
Positive Term Tests		
Integral Test $a_{k}=a(k)$, $a(x)$ is positive, continuous, decreasing	$\int_{1}^{\infty} a(x) d x$ converges	Converges
	$\int_{1}^{\infty} a(x) d x$ diverges	Diverges
Comparison Test	$0 \leq a_{k} \leq b_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ converges	Converges
	$0 \leq b_{k} \leq a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ diverges	Diverges
Limit Comparison Test $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=L$, $0<L<\infty$	$\sum_{k=1}^{\infty} b_{k} \text { converges }$	Converges
	$\sum_{k=1}^{\infty} b_{k} \text { diverges }$	Diverges
Ratio Test$\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\rho$	$\rho<1$	Converges
	$\rho>1$	Diverges
	$\rho=1$	Inconclusive
Root Test$\lim _{k \rightarrow \infty}\left[a_{k}\right]^{1 / k}=\rho$	$\rho<1$	Converges
	$\rho>1$	Diverges
	$\rho=1$	Inconclusive
Series with some non-positive terms		
Alternating Series Test $a_{k}>0$ and $0<a_{k+1} \leq a_{k}$	$\lim _{k \rightarrow \infty} a_{k}=0$	Converges
	$\lim _{k \rightarrow \infty} a_{k} \neq 0$	Use Divergence Test to show divergent

Question	Points	Score
1	8	
2	6	
3	6	
4	6	
5	6	
6	8	
7	6	
8	10	
9	8	
10	8	
11	8	
12	8	
13	12	
Total:	100	

2. (6 points) Determine whether the sequence $\left\{\frac{k^{2}+7}{\sqrt{9 k^{4}+1}}\right\}$ is convergent or divergent.
3. (6 points) Determine if the series $\sum_{k=1}^{\infty} k^{-4 / 5}$ is convergent or divergent. Explain your reasoning.
4. (6 points) Determine if the series $\sum_{k=1}^{\infty} \frac{k^{3}}{k^{3}+1}$ is convergent or divergent. Explain your reasoning.
5. (6 points) Determine if the series $\frac{1}{16}+\frac{3}{64}+\frac{9}{256}+\frac{27}{1024}+\cdots$ is convergent or divergent. Explain your reasoning.
6. (8 points) Use the integral test to determine if the series $\sum_{k=2}^{\infty} \frac{1}{k \sqrt[3]{\ln k}}$ is convergent or divergent (be sure to show that three conditions apply).
7. (6 points) Find the sum of the series $\sum_{k=3}^{\infty} \frac{2}{3^{k}}$.
8. (10 points) Determine if the series $\sum_{k=1}^{\infty}\left(\frac{1}{k+1}-\frac{1}{k+3}\right)$ is convergent or divergent. If it converges, what is the sum?
9. (8 points) Determine if the series $\sum_{k=1}^{\infty} \frac{\cos k}{k^{3}}$ converges or diverges. Explain your reasoning.
10. (8 points) Determine if the series $\sum_{k=1}^{\infty} \frac{2 k+1}{4^{k}}$ converges or diverges. Explain your reasoning.
11. (8 points) Determine if the series $\sum_{k=1}^{\infty}\left(\frac{2 k^{2}}{3 k^{2}+1}\right)^{k}$ converges or diverges. Explain your reasoning.
12. (8 points) Determine if the series $\sum_{k=1}^{\infty} \frac{k^{2}}{k^{4}+k^{2}+2}$ converges or diverges. Explain your reasoning.
13. Given the series $\sum_{k=1}^{\infty} \frac{(-1)^{k} k^{2}}{k^{3}+32}$,
a. (6 points) Show that the series converges. Show all your work, explain your answer.
b. (6 points) Determine whether the series converges absolutely or conditionally.
