Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln (2)$, unless they simplify further like $\sqrt{9}=3$ or $\cos (3 \pi / 4)=-\sqrt{2} / 2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.

1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature:
Print Name:
\qquad

Date: \qquad

Tests	Conditions	Conclusion
Positive Term Tests		
Integral Test $a_{k}=a(k)$, $a(x)$ is positive, continuous, decreasing	$\int_{1}^{\infty} a(x) d x$ converges	Converges
	$\int_{1}^{\infty} a(x) d x$ diverges	Diverges
Comparison Test	$\begin{aligned} & 0 \leq a_{k} \leq b_{k} \text { and } \sum_{k=1}^{\infty} b_{k} \text { con- } \\ & \text { verges } \end{aligned}$	Converges
	$0 \leq b_{k} \leq a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ diverges	Diverges
Limit Comparison Test $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=L$, $0<L<\infty$	$\sum_{k=1}^{\infty} b_{k} \text { converges }$	Converges
	$\sum_{k=1}^{\infty} b_{k} \text { diverges }$	Diverges
Ratio Test$\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\rho$	$\rho<1$	Converges
	$\rho>1$	Diverges
	$\rho=1$	Inconclusive
Root Test$\lim _{k \rightarrow \infty}\left[a_{k}\right]^{1 / k}=\rho$	$\rho<1$	Converges
	$\rho>1$	Diverges
	$\rho=1$	Inconclusive
Series with some non-positive terms		
Alternating Series Test $a_{k}>0$ and $0<a_{k+1} \leq a_{k}$	$\lim _{k \rightarrow \infty} a_{k}=0$	Converges
	$\lim _{k \rightarrow \infty} a_{k} \neq 0$	Use Divergence Test to show divergent

Question	Points	Score
1	8	
2	12	
3	8	
4	8	
5	8	
6	8	
7	8	
8	16	
9	12	
10	12	
Total:	100	

2. Determine whether the following sequences converge or diverge. If it is convergent, find its limit.
a. (6 points) $\left\{\frac{3+5 k^{2}}{k+k^{2}}\right\}$

Solution:

$\lim _{k \rightarrow \infty} \frac{3+5 k^{2}}{k+k^{2}}=5$ thus the sequence converges (remember that for a sequence to converge, the limit just has to exist).
b. (6 points) $\left\{\frac{(2 n-1)!}{(2 n+1)!}\right\}$

Solution:

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \frac{(2 n-1)!}{(2 n+1)!}=\lim _{k \rightarrow \infty} \frac{(2 n-1)!}{\text { sequence converges. }} \\
& \text { (2n+1)(2n)(2n-1)!}
\end{aligned}=\lim _{k \rightarrow \infty} \frac{1}{(2 n+1)(2 n)}=0 \text { thus the }
$$

3. (8 points) Find the sum of the series $\sum_{k=0}^{\infty} \frac{3^{k}}{\pi^{k+1}}$.

Solution:

This is a geometric series $\sum_{k=0}^{\infty} \frac{3^{k}}{\pi^{k+1}}=\frac{1}{\pi}+\frac{3}{\pi^{2}}+\frac{3^{2}}{\pi^{3}}+\cdots=\frac{1 / \pi}{1-3 / \pi}=\frac{1}{\pi-3}$
The formula is $S=\frac{a}{1-r}, a$ is the first term of the series and r is the multiplier.
4. (8 points) Determine if the series $\sum_{k=1}^{\infty} \frac{k^{2 k}}{\left(1+2 k^{2}\right)^{k}}$ converges or diverges. Explain your reasoning.

Solution:

$$
\lim _{k \rightarrow \infty}\left[\frac{k^{2 k}}{\left(1+2 k^{2}\right)^{k}}\right]^{1 / k}=\lim _{k \rightarrow \text { infty }} \frac{k^{2}}{1+2 k^{2}}=\frac{1}{2}<1
$$

Thus the series converges by the root test.
5. (8 points) Determine if the series $\sum_{k=1}^{\infty} \frac{\sin (4 k)}{4^{k}}$ converges or diverges. Explain your reasoning.

Solution:

This is NOT an alternating series and all the terms are not positive so consider the series $\sum_{k=1}^{\infty}\left|\frac{\sin (4 k)}{4^{k}}\right|=\sum_{k=1}^{\infty} \frac{|\sin (4 k)|}{4^{k}}$
Now $0 \leq|\sin (4 k)| \leq 1$ for all $k \geq 1$ which implies that $0 \leq \frac{|\sin (4 k)|}{4^{k}} \leq \frac{1}{4^{k}}$ for all $k \geq 1$. We know that $\sum_{k=1}^{\infty} \frac{1}{4^{k}}$ is a geometric series with $r=\frac{1}{4}$ so $|r|<1$ and it converges.
Thus by the comparison test $\sum_{k=1}^{\infty} \frac{|\sin (4 k)|}{4^{k}}$ converges which implies that $\sum_{k=1}^{\infty} \frac{\sin (4 k)}{4^{k}}$ also converges.
6. (8 points) Determine if the series $\sum_{k=1}^{\infty} \frac{(k+1)^{2}}{k(k+2)}$ converges or diverges. Explain your reasoning.

Solution:

$\lim _{k \rightarrow \infty} \frac{(k+1)^{2}}{k(k+2)}=1 \neq 0$, therefore it diverges by the Divergence Test.
7. (8 points) Determine if the series $\sum_{k=2}^{\infty} \frac{1}{k \ln k}$ converges or diverges. Explain your reasoning.

Solution:

$f(x)=\frac{1}{x \ln x}$ is a positive and continuous function for $x \geq 2$ because it is a combination of positive and continuous functions. Also $f^{\prime}(x)=-\frac{\ln x+1}{(x \ln x)^{2}}<0$ for all $x \geq 2, f$ is decreasing.
$\int_{2}^{n} \infty \frac{1}{x \ln x} d x=\left.\lim _{B \rightarrow \infty} \ln |\ln x|\right|_{2} ^{B}=\lim _{B \rightarrow \infty}(\ln |\ln B|-\ln |\ln 2|)=\infty$, thus the integral diverges.
So by the Integral Test, the series also diverges.
8. a. (8 points) Show the series $\sum_{k=1}^{\infty} \frac{(-1)^{k} k}{k^{2}+100}$ converges. Explain your reasoning.

Solution:

$a_{k}=\frac{k}{k^{2}+100}$ and $\lim _{k \rightarrow \infty} \frac{k}{k^{2}+100}=0$
Also $f^{\prime}(x)=\frac{1\left(x^{2}+100\right)-x(2 x)}{\left(x^{2}+100\right)^{2}}=\frac{100-x^{2}}{\left(x^{2}+100\right)^{2}} \leq 0$ for $k \geq 10$ so the sequence of terms in non-increasing.

So by the Alternating Series Test, the series converges.
b. (8 points) Determine if the series $\sum_{k=1}^{\infty} \frac{(-1)^{k} k}{k^{2}+100}$ is absolutely convergent or conditionally convergent. Explain your reasoning.

Solution:

$\sum\left|a_{k}\right|=\sum_{k=1}^{\infty} \frac{k}{k^{2}+100}$ this series looks like $\sum_{k=1}^{\infty} \frac{k}{k^{2}}=\sum_{k=1}^{\infty} \frac{1}{k}$ which is a divergent p -series, $p=1$.
Now $\lim _{k \rightarrow \infty} \frac{k}{k^{2}+100} \cdot \frac{k}{1}=1=L$ so $0<L<\infty$, thus by the Limit Comparison Test the series $\sum\left|a_{k}\right|=\sum_{k=1}^{\infty} \frac{k}{k^{2}+100}$ diverges as well which implies that $\sum_{k=1}^{\infty} \frac{(-1)^{k} k}{k^{2}+100}$ is conditionally convergent. [Remember is the series $\sum b_{k}$ converges, but the series $\sum\left|b_{k}\right|$ diverges the series is conditionally convergent.]
9. (12 points) Find the Taylor Series for $f(x)=\frac{1}{2 x+2}$ at $a=1$.

Solution:

k	$f^{(k)}(x)$	So $f^{(k)}(x)=(-1)^{k} k!2^{k}(2 x+2)^{-(k+1)}$
0	$(2 x+2)^{-1}$	$f^{(k)}(1)=(-1)^{k} k!2^{k}(2+2)^{-(k+1)}=\frac{(-1)^{k} k!2^{k}}{4^{k+1}}$
1	$-(2 x+2)^{-2} \cdot 2$	And the Taylor Series is
2	$(1)(2)(2 x+2)^{-3} \cdot 2 \cdot 2$	
3	$-(1)(2)(3)(2 x+2)^{-4} \cdot 2^{2} \cdot 2$	$f(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} k!2^{k}}{4^{k+1}} \cdot \frac{1}{k!}(x-1)^{k}=\sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{k}}{4^{k+1}}(x-$
4	$(1)(2)(3)(4)(2 x+2)^{-5} \cdot 2^{3} \cdot 2$	$1)^{k}$

10. (12 points) Determine the radius and interval of convergence for the series $\sum_{k=1}^{\infty} \frac{x^{k}}{k 3^{k}}$

Solution:

$\lim _{k \rightarrow \infty}\left|\frac{x^{k+1}}{(k+1) 3^{k+1}} \cdot \frac{k 3^{k}}{x^{k}}\right|=\frac{|x|}{3} \lim _{k \rightarrow \infty} \frac{k}{k+1}=\frac{|x|}{3}<1$
So the series converges if $-3<x<3$
Check the endpoints:
if $x=3 \sum \frac{3^{k}}{k \cdot 3^{k}}=\sum \frac{1}{k}$ which is a divergent p -series since $p=1$.
if $x=-3 \sum \frac{(-3)^{k}}{k \cdot 3^{k}}=\sum \frac{(-1)^{k}}{k}$ which is the alternating harmonic series that converges.
So the interval of convergence $-3 \leq x<3$ and the radius is 3 .

