Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln(2)$, unless they simplify further like $\sqrt{9} = 3$ or $\cos(3\pi/4) = -\sqrt{2}/2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.
- 1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature:		
Print Name:		
Date:		

Tests	Conditions	Conclusion			
	Positive Term Tests				
Integral Test $a_k = a(k)$, a(x) is positive,	$\int_{1}^{\infty} a(x) dx \text{ converges}$	Converges			
continuous, decreasing	$\int_{1}^{\infty} a(x) dx \text{ diverges}$	Diverges			
Comparison Test	$0 \leq a_k \leq b_k$ and $\sum_{k=1}^{\infty} b_k$ converges	Converges			
	$0 \le b_k \le a_k$ and $\sum_{k=1}^{\infty} b_k$ diverges	Diverges			
Limit Comparison Text $\lim_{k \to 0} a_k = I$	$\sum_{k=1}^{\infty} b_k$ converges	Converges			
Test $\lim_{k \to \infty} \frac{a_k}{b_k} = L$, $0 < L < \infty$	$\sum_{k=1}^{\infty} b_k \text{ diverges}$	Diverges			
Ratio Test	$\rho < 1$	Converges			
$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \rho$	$\rho > 1$	Diverges			
$k \to \infty a_k \qquad \qquad$	$\rho = 1$	Inconclusive			
Root Test	$\rho < 1$	Converges			
$\lim_{k \to \infty} [a_k]^{1/k} = \rho$	$\rho > 1$	Diverges			
	$\rho = 1$	Inconclusive			
Series with some non-positive terms					
Alternating Series Test $a_k > 0$ and	$\lim_{k \to \infty} a_k = 0$	Converges			
$0 < a_{k+1} \le a_k$	$\lim_{k \to \infty} a_k \neq 0$	Use Divergence Test to show divergent			

Question	Points	Score
1	8	
2	12	
3	8	
4	8	
5	8	
6	8	
7	8	
8	16	
9	12	
10	12	
Total:	100	

- 2. Determine whether the following sequences converge or diverge. If it is convergent, find its limit.
 - a. (6 points) $\left\{\frac{3+5k^2}{k+k^2}\right\}$

Solution:

 $\lim_{k\to\infty}\frac{3+5k^2}{k+k^2} = 5$ thus the sequence converges (remember that for a sequence to converge, the limit just has to exist).

b. (6 points) $\left\{\frac{(2n-1)!}{(2n+1)!}\right\}$

Solution

 $\lim_{k \to \infty} \frac{(2n-1)!}{(2n+1)!} = \lim_{k \to \infty} \frac{(2n-1)!}{(2n+1)(2n)(2n-1)!} = \lim_{k \to \infty} \frac{1}{(2n+1)(2n)} = 0$ thus the sequence converges.

3. (8 points) Find the sum of the series $\sum_{k=1}^{\infty} \frac{3^k}{\pi^{k+1}}$.

Solution:

This is a geometric series $\sum_{k=0}^{\infty} \frac{3^k}{\pi^{k+1}} = \frac{1}{\pi} + \frac{3}{\pi^2} + \frac{3^2}{\pi^3} + \dots = \frac{1/\pi}{1 - 3/\pi} = \frac{1}{\pi - 3}$

The formula is $S = \frac{a}{1-r}$, a is the first term of the series and r is the multiplier.

4. (8 points) Determine if the series $\sum_{k=1}^{\infty} \frac{k^{2k}}{(1+2k^2)^k}$ converges or diverges. Explain your reasoning.

Solution:

 $\lim_{k \to \infty} \left[\frac{k^{2k}}{(1+2k^2)^k} \right]^{1/k} = \lim_{k \to infty} \frac{k^2}{1+2k^2} = \frac{1}{2} < 1$

Thus the series converges by the root test.

5. (8 points) Determine if the series $\sum_{k=1}^{\infty} \frac{\sin(4k)}{4^k}$ converges or diverges. Explain your reasoning.

Solution:

This is NOT an alternating series and all the terms are not positive so consider the series $\sum_{k=1}^{\infty} \left| \frac{\sin(4k)}{4^k} \right| = \sum_{k=1}^{\infty} \frac{|\sin(4k)|}{4^k}$ Now $0 \le |\sin(4k)| \le 1$ for all $k \ge 1$ which implies that $0 \le \frac{|\sin(4k)|}{4^k} \le \frac{1}{4^k}$ for all $k \ge 1$. We know that $\sum_{k=1}^{\infty} \frac{1}{4^k}$ is a geometric series with $r = \frac{1}{4}$ so |r| < 1 and it converges. Thus by the comparison test $\sum_{k=1}^{\infty} \frac{|\sin(4k)|}{4^k}$ converges which implies that $\sum_{k=1}^{\infty} \frac{\sin(4k)}{4^k}$ also converges.

6. (8 points) Determine if the series $\sum_{k=1}^{\infty} \frac{(k+1)^2}{k(k+2)}$ converges or diverges. Explain your reasoning.

Solution:

 $\lim_{k \to \infty} \frac{(k+1)^2}{k(k+2)} = 1 \neq 0$, therefore it diverges by the Divergence Test.

7. (8 points) Determine if the series $\sum_{k=2}^{\infty} \frac{1}{k \ln k}$ converges or diverges. Explain your reasoning.

Solution:

 $f(x) = \frac{1}{x \ln x}$ is a positive and continuous function for $x \ge 2$ because it is a combination of positive and continuous functions. Also $f'(x) = -\frac{\ln x + 1}{(x \ln x)^2} < 0$ for all $x \ge 2$, f is decreasing.

 $\int_{2}^{n} \infty \frac{1}{x \ln x} dx = \lim_{B \to \infty} \ln |\ln x| \Big|_{2}^{B} = \lim_{B \to \infty} (\ln |\ln B| - \ln |\ln 2|) = \infty, \text{ thus the integral diverges.}$

So by the Integral Test, the series also diverges.

8. a. (8 points) Show the series $\sum_{k=1}^{\infty} \frac{(-1)^k k}{k^2 + 100}$ converges. Explain your reasoning.

Solution:

$$a_k = \frac{k}{k^2 + 100}$$
 and $\lim_{k \to \infty} \frac{k}{k^2 + 100} = 0$
Also $f'(x) = \frac{1(x^2 + 100) - x(2x)}{(x^2 + 100)^2} = \frac{100 - x^2}{(x^2 + 100)^2} \le 0$ for $k \ge 10$ so the sequence of terms in non-increasing.

So by the Alternating Series Test, the series converges.

b. (8 points) Determine if the series $\sum_{k=1}^{\infty} \frac{(-1)^k k}{k^2 + 100}$ is absolutely convergent or conditionally convergent. Explain your reasoning.

Solution:

 $\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} \frac{k}{k^2 + 100} \text{ this series looks like } \sum_{k=1}^{\infty} \frac{k}{k^2} = \sum_{k=1}^{\infty} \frac{1}{k} \text{ which is a divergent p-series, } p = 1.$ Now $\lim_{k \to \infty} \frac{k}{k^2 + 100} \cdot \frac{k}{1} = 1 = L$ so $0 < L < \infty$, thus by the Limit Comparison Test the series $\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} \frac{k}{k^2 + 100}$ diverges as well which implies that $\sum_{k=1}^{\infty} \frac{(-1)^k k}{k^2 + 100}$ is conditionally convergent. [Remember is the series $\sum_{k=1}^{\infty} b_k$ converges, but the series $\sum_{k=1}^{\infty} |b_k|$ diverges the series is conditionally convergent.] 9. (12 points) Find the Taylor Series for $f(x) = \frac{1}{2x+2}$ at a = 1.

Solution:

1 :	7	$f^{(k)}(x)$	So $f^{(k)}(x) = (-1)^k k! 2^k (2x+2)^{-(k+1)}$
1	k	$J^{(n)}(x)$	$f^{(k)}(1) = (-1)^{k} k \log(\alpha + \alpha)^{-(k+1)} = (-1)^{k} k! 2^{k}$
			$f^{(k)}(1) = (-1)^k k! 2^k (2+2)^{-(k+1)} = \frac{(-1)^k k! 2^k}{4^{k+1}}$
		$-(2x+2)^{-2}\cdot 2$	And the Taylor Series is
	2	$(1)(2)(2x+2)^{-3} \cdot 2 \cdot 2$	$\sum_{k=1}^{\infty} (-1)^{k} k! 2^{k} = 1$ $\sum_{k=1}^{\infty} (-1)^{k} 2^{k} k! 2^{k} = 1$
	3	$-(1)(2)(3)(2x+2)^{-4} \cdot 2^2 \cdot 2$	$f(x) = \sum_{k=0}^{\infty} \frac{(-1)^k k! 2^k}{4^{k+1}} \cdot \frac{1}{k!} (x-1)^k = \sum_{k=0}^{\infty} \frac{(-1)^k 2^k}{4^{k+1}} (x-1)^k $
4	4	$(1)(2)(3)(4)(2x+2)^{-5} \cdot 2^3 \cdot 2$	k=0 $k=0$ $k=0$
	'		$(1)^n$

10. (12 points) Determine the radius and interval of convergence for the series $\sum_{k=1}^{\infty} \frac{x^k}{k}$

$$\sum_{k=1} \overline{k \, 3^k}$$

Solution:

$$\lim_{k \to \infty} \left| \frac{x^{k+1}}{(k+1)3^{k+1}} \cdot \frac{k3^k}{x^k} \right| = \frac{|x|}{3} \lim_{k \to \infty} \frac{k}{k+1} = \frac{|x|}{3} < 1$$

So the series converges if -3 < x < 3

Check the endpoints:

if $x = 3 \sum \frac{3^k}{k \cdot 3^k} = \sum \frac{1}{k}$ which is a divergent p-series since p = 1.

if $x = -3\sum_{k \in 3^k} \frac{(-3)^k}{k \cdot 3^k} = \sum_{k \in 3^k} \frac{(-1)^k}{k}$ which is the alternating harmonic series that

So the interval of convergence $-3 \le x < 3$ and the radius is 3.