Guidelines

Exam 3

Math 132-02

• Calculators are not allowed.

- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln(2)$, unless they simplify further like $\sqrt{9} = 3$ or $\cos(3\pi/4) = -\sqrt{2}/2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.
- 1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature:		
Print Name:	 	
Date:		

Tests	Conditions	Conclusion		
Positive Term Tests				
Integral Test $a_k = a(k)$, a(x) is positive, continuous, decreasing	$\int_{1}^{\infty} a(x) dx \text{ converges}$	Converges		
	$\int_{1}^{\infty} a(x) dx \text{ diverges}$	Diverges		
Comparison Test	$0 \leq a_k \leq b_k$ and $\sum_{k=1}^{\infty} b_k$ converges	Converges		
	$0 \le b_k \le a_k$ and $\sum_{k=1}^{\infty} b_k$ diverges	Diverges		
Limit Comparison Test $\lim_{k\to\infty} \frac{a_k}{b_k} = L$, $0 < L < \infty$	$\sum_{k=1}^{\infty} b_k$ converges	Converges		
	$\sum_{k=1}^{\infty} b_k \text{ diverges}$	Diverges		
Ratio Test	$\rho < 1$	Converges		
$\lim \frac{a_{k+1}}{a_{k+1}} = a$	$\rho > 1$	Diverges		
$k \rightarrow \infty a_k \rho$	$\rho = 1$	Inconclusive		
Root Test	$\rho < 1$	Converges		
$\lim [a_k]^{1/k} = \rho$	$\rho > 1$	Diverges		
$k \rightarrow \infty$	$\rho = 1$	Inconclusive		
Series with some non-positive terms				
Alternating Series Test $a_k > 0$ and $0 < a_{k+1} \le a_k$	$\lim_{k \to \infty} a_k = 0$	Converges		
	$\lim_{k \to \infty} a_k \neq 0$	Use Divergence Test to show divergent		

Question	Points	Score
1	8	
2	12	
3	8	
4	8	
5	8	
6	8	
7	8	
8	16	
9	12	
10	12	
Total:	100	

2. Determine whether the following sequences converge or diverge. If it is convergent, find its limit.

a. (6 points)
$$\left\{\frac{3+5k^2}{k+k^2}\right\}$$

b. (6 points)
$$\left\{ \frac{(2n-1)!}{(2n+1)!} \right\}$$

3. (8 points) Find the sum of the series $\sum_{k=0}^{\infty} \frac{3^k}{\pi^{k+1}}$.

4. (8 points) Determine if the series $\sum_{k=1}^{\infty} \frac{k^{2k}}{(1+2k^2)^k}$ converges or diverges. Explain your reasoning.

5. (8 points) Determine if the series $\sum_{k=1}^{\infty} \frac{\sin(4k)}{4^k}$ converges or diverges. Explain your reasoning.

6. (8 points) Determine if the series $\sum_{k=1}^{\infty} \frac{(k+1)^2}{k(k+2)}$ converges or diverges. Explain your reasoning.

7. (8 points) Determine if the series $\sum_{k=2}^{\infty} \frac{1}{k \ln k}$ converges or diverges. Explain your reasoning.

8. a. (8 points) Show the series $\sum_{k=1}^{\infty} \frac{(-1)^k k}{k^2 + 100}$ converges. Explain your reasoning.

b. (8 points) Determine if the series $\sum_{k=1}^{\infty} \frac{(-1)^k k}{k^2 + 100}$ is absolutely convergent or conditionally convergent. Explain your reasoning.

9. (12 points) Find the Taylor Series for $f(x) = \frac{1}{2x+2}$ at a = 1.

10. (12 points) Determine the radius and interval of convergence for the series $\sum_{k=1}^\infty \frac{x^k}{k\,3^k}$