Practice Questions for Exam 3 Math 131

1. Does the function f(x)=|x| on [-2,2] satisfy the conditions of the Mean Value Theorem? Why or why not?
Solution: No, because f'(x) does not exist at x =0, therefore it is not differentiable on (-2,2).
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=x—~/X on [0, 4].

Find the local and absolute extreme values of the function f (x

_%:ZZLJ; ) 0 £(0)=0, f(%}—% and f(4)=2.

Therefore absolute maximum occurs at (4, 2) and absolute minimum occurs at G—%) .
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Solution: f'(x)=1 o f'(x)=0whenx=
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Given f'(x)=(x—1)(x+2)(x+4), determine the critical points of f(x) and use the second derivative test to
determine whether they correspond to local maxima, local minima, or the test is inconclusive.

Solution: f'(x)=0 at x=1,-2,—4. Now f"(x)=(x—1)(x+2)+(x—1)(x+4)+(x+2)(x+4) and f"(1)=15,s0
at x=1 there is a local minimum, f"(-2)=-6,soat x=-2, there is a local maximum and f"(—-4)=10, so at
X =-4 there is a local minimum.

For each function, f (x):(x2 —1)3 and f(x)=xy3-x

a. Find the critical points.

b. Find intervals of increase and decrease.

C. Find local maximum and minimum values.

d Find intervals of concavity and inflection points.

For each function, f (x):(x2 —1)3 and f(x)=xy3-x
Solution: CP at (0,-1), (10), and (-10), f is decreasing on (—o,—1)u(—10) and increasing on (0,1) (1),
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local min at (0,—1), and f is concave up on (—oo,—l)U(
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Solution: Note the domain is (—0,3], CP (2,2), (3,0), f isincreasing on (—o,2) and decreasing on (2,3), local

)U(l,OO) and concave down on

max at (2,2) and the function is concave down on (—,3)

Sketch the graph of a function that satisfies all the conditions given below.
Solution:

A metal storage tank with volume V is to be constructed in the shape of a right circular cylinder surmounted by a

. . . . . A
hemisphere. What dimensions will require the least amount of metal? (The volume of a sphere is il )

\Y

Solution: Volume: V = zr?h +%(%ﬂr3) =h= 7—% , surface area is the sum of the area of the bottom, side, and
T
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top. S(r)=7rr2+2ﬂrh+%(4ﬂr)=gﬂrz—¥, forr >0 and S'(r):lo”;—evzo whenr = S/Sﬂ , and
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S"(r) =10T7r—4l"—\3{ <0 when r= 3/? thus the dimensions that minimize surface area are r = 3/ﬂ =h
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14, An inverted conical tank with height 10 feet and radius 4 feet is full of water. Water drains from the tank at the rate
of 5 ft3 /min, how fast is the water level dropping when the height is 6 feet.
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15. A closed box with square base is to be built to house an ant colony. The bottom of the box and all four sides are to be

made of material costing $1/ft? and the top is to be constructed of glass costing $5/ft> . What are the dimensions of
the box of greatest volume that can be constructed for $72? Verify your answer yields a maximum.

_ 2
72-6x for x>0. Now

Solution: Cost C =X +4xy +5x> =6x* +4xy =72,50 Yy =
2 o[ 72—6X° 9, . 9, . .
V=xXy=x"|—— :18x—§x and V =18—§x =0 when x=2. To verify that x=2 maximizes volume,

use the second derivative test, V"=-9x so V (2) =-18 thus volume is maximized when x=2,y=6.

16. A viewer standing 30 feet from a platform watches a balloon rise from that platform (the platform is the same height
as the viewer’s eyes) at a constant rate of 3 ft/s. How fast is the angle between the viewer and the balloon changing

) T
at the instant & = Z .

Solution: tan@= - = sec?p3f - L I dO i(3)#— L
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For additional problems, check out the review problems for Chapter 3. Note the questions above are simply a sample of
questions possible for the exam; it is possible that other types of questions may appear on your exam.



