1. Does the function $f(x)=|x|$ on $[-2,2]$ satisfy the conditions of the Mean Value Theorem? Why or why not?

Solution: No, because $f^{\prime}(x)$ does not exist at $x=0$, therefore it is not differentiable on $(-2,2)$.
2. Determine the vertical and horizontal asymptotes of $f(x)=\frac{2 x^{2}+6 x}{x^{2}-9}$

Solution: $f(x)=\frac{2 x(x+3)}{(x+3)(x-3)}$
$\lim _{x \rightarrow 3^{+}} \frac{2 x(x+3)}{(x-3)(x+3)}=\infty$ and $\lim _{x \rightarrow 3^{-}} \frac{2 x(x+3)}{(x-3)(x+3)}=-\infty$, thus we have a vertical asymptote at $x=3$
$\lim _{x \rightarrow \pm \infty} \frac{2 x^{2}+6 x}{x^{2}-9}=2$, thus we have a horizontal asymptote at $y=2$.
3. Evaluate $\lim _{x \rightarrow 0} \frac{e^{-5 x}-1+5 x}{x^{2}}$

Solution: $\lim _{x \rightarrow 0} \frac{e^{-5 x}-1+5 x}{x^{2}} \stackrel{L}{=} \lim _{x \rightarrow 0} \frac{-5 e^{-5 x}+5}{2 x} \stackrel{L}{=} \lim _{x \rightarrow 0} \frac{25 e^{-5 x}}{2}=\frac{25}{2}$
4. Evaluate $\lim _{x \rightarrow \pi / 2^{-}} \frac{3 \sec x}{2+\tan x}$

Solution: $\lim _{x \rightarrow \pi / 2^{-}} \frac{3 \sec x}{2+\tan x} \stackrel{L}{=} \lim _{x \rightarrow \pi / 2^{-}} \frac{3 \sec x \tan x}{\sec ^{2} x}=\lim _{x \rightarrow \pi / 2^{-}} 3 \sin x=3$
5. Evaluate $\lim _{x \rightarrow \pi / 2^{-}}(1-\sin x) \tan x$

Solution: $\lim _{x \rightarrow \pi / 2^{-}}(1-\sin x) \tan x=\lim _{x \rightarrow \pi / 2^{-}} \frac{(1-\sin x) \sin x}{\cos x} \stackrel{L}{=} \lim _{x \rightarrow \pi / 2^{-}} \frac{\cos x-2 \sin x \cos x}{-\sin x}=0$
6. Evaluate $\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{x^{2} \sec x}\right)$

$$
\begin{aligned}
& \qquad \lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{x^{2} \sec x}\right)=\lim _{x \rightarrow 0}\left(\frac{\sec x-1}{x^{2} \sec x}\right)={ }^{L} \lim _{x \rightarrow 0}\left(\frac{\sec x \tan x}{2 x \sec x+x^{2} \sec x \tan x}\right) \\
& \text { Solution: }
\end{aligned}
$$

$$
=\lim _{x \rightarrow 0}\left(\frac{\tan x}{2 x+x^{2} \tan x}\right)^{L}=\lim _{x \rightarrow 0}\left(\frac{\sec ^{2} x}{2+2 x \tan x+x^{2} \sec ^{2} x}\right)=\frac{1}{2}
$$

7. Evaluate $\lim _{x \rightarrow \infty}\left(1-\frac{4}{x}\right)^{x}$

Solution: $\lim _{x \rightarrow \infty}\left(1-\frac{4}{x}\right)^{x}=\exp \left[\lim _{x \rightarrow \infty} x \ln \left(1-\frac{4}{x}\right)\right]=e^{-4}$
8. Evaluate $\lim _{x \rightarrow 0^{+}}(1+x)^{4 / x}$

Solution: $\lim _{x \rightarrow 0^{+}}(1+x)^{4 / x}=\exp \left\{\lim _{x \rightarrow 0^{+}} \frac{4}{x} \ln (1+x)\right\}=e^{4}$
9. Find the local and absolute extreme values of the function $f(x)=x-\sqrt{x}$ on [0, 4].

Solution: $f^{\prime}(x)=1-\frac{1}{2 \sqrt{x}}=\frac{2 \sqrt{x}-1}{2 \sqrt{x}}$ so $f^{\prime}(x)=0$ when $x=\frac{1}{4}$, so $f(0)=0, f\left(\frac{1}{4}\right)=-\frac{1}{4}$ and $f(4)=2$.
Therefore absolute maximum occurs at $(4,2)$ and absolute minimum occurs at $\left(\frac{1}{4},-\frac{1}{4}\right)$.
10. Given $f^{\prime}(x)=(x-1)(x+2)(x+4)$, determine the critical points of $f(x)$ and use the second derivative test to determine whether they correspond to local maxima, local minima, or the test is inconclusive.

Solution: $f^{\prime}(x)=0$ at $x=1,-2,-4$. Now $f^{\prime \prime}(x)=(x-1)(x+2)+(x-1)(x+4)+(x+2)(x+4)$ and $f^{\prime \prime}(1)=15$, so at $x=1$ there is a local minimum, $f^{\prime \prime}(-2)=-6$, so at $x=-2$, there is a local maximum and $f^{\prime \prime}(-4)=10$, so at $x=-4$ there is a local minimum.
11. For each function, $f(x)=\left(x^{2}-1\right)^{3}$ and $f(x)=x \sqrt{3-x}$
a. Find the critical points.
b. Find intervals of increase and decrease.
c. Find local maximum and minimum values.
d. Find intervals of concavity and inflection points.

For each function, $f(x)=\left(x^{2}-1\right)^{3}$ and $f(x)=x \sqrt{3-x}$
Solution: CP at $(0,-1),(1,0)$, and $(-1,0), f$ is decreasing on $(-\infty,-1) \cup(-1,0)$ and increasing on $(0,1) \cup(1, \infty)$, local min at $(0,-1)$, and f is concave up on $(-\infty,-1) \cup\left(-\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right) \cup(1, \infty)$ and concave down on
$\left(-1,-\frac{1}{\sqrt{5}}\right) \cup\left(\frac{1}{\sqrt{5}}, 1\right)$
Solution: Note the domain is $(-\infty, 3], \mathrm{CP}(2,2),(3,0), f$ is increasing on $(-\infty, 2)$ and decreasing on $(2,3)$, local \max at $(2,2)$ and the function is concave down on $(-\infty, 3)$
12. Sketch the graph of a function that satisfies all the conditions given below.

Solution:

13. A metal storage tank with volume V is to be constructed in the shape of a right circular cylinder surmounted by a hemisphere. What dimensions will require the least amount of metal? (The volume of a sphere is $\frac{4 \pi r^{3}}{3}$.)
Solution: Volume: $V=\pi r^{2} h+\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right) \Rightarrow h=\frac{V}{\pi r^{2}}-\frac{2 r}{3}$, surface area is the sum of the area of the bottom, side, and top. $S(r)=\pi r^{2}+2 \pi r h+\frac{1}{2}(4 \pi r)=\frac{5}{3} \pi r^{2}-\frac{2 V}{r}$, for $r>0$ and $S^{\prime}(r)=\frac{10 \pi r^{3}-6 V}{3 r^{2}}=0$ when $r=\sqrt[3]{\frac{3 V}{5 \pi}}$, and $S^{\prime \prime}(r)=\frac{10 \pi}{3}-\frac{4 V}{r^{3}}<0$ when $r=\sqrt[3]{\frac{3 V}{5 \pi}}$ thus the dimensions that minimize surface area are $r=\sqrt[3]{\frac{3 V}{5 \pi}}=h$
14. An inverted conical tank with height 10 feet and radius 4 feet is full of water. Water drains from the tank at the rate of $5 \mathrm{ft}^{3} / \mathrm{min}$, how fast is the water level dropping when the height is 6 feet.

$$
\begin{aligned}
& \text { Solution: } V=\frac{1}{3} \pi r^{2} h \text { so } \frac{d V}{d t}=\frac{2}{3} \pi r \frac{d r}{d t} h+\frac{1}{3} \pi r^{2} \frac{d h}{d t} \text {, also } \frac{r}{h}=\frac{4}{10} \Rightarrow r=\frac{2}{5} h \text { and } \frac{d r}{d t}=\frac{2}{5} \frac{d h}{d t} \\
& \text { So } \frac{d V}{d t}=\frac{2}{3} \pi r \frac{d r}{d t} h+\frac{1}{3} \pi r^{2} \frac{d h}{d t}=\frac{2}{3} \pi\left(\frac{2}{5} h\right)\left(\frac{2}{5} \frac{d h}{d t}\right) h+\frac{1}{3} \pi\left(\frac{2}{5} h\right)^{2} \frac{d h}{d t} \\
& -5=\frac{2}{3} \pi\left(\frac{2}{5}(6)\right)\left(\frac{2}{5} \frac{d h}{d t}\right) 6+\frac{1}{3} \pi\left(\frac{2}{5} 6\right)^{2} \frac{d h}{d t}=\frac{64 \pi}{25} \frac{d h}{d t}, \frac{d h}{d t}=-5\left(\frac{25}{64 \pi}\right)
\end{aligned}
$$

15. A closed box with square base is to be built to house an ant colony. The bottom of the box and all four sides are to be made of material costing $\$ 1 / \mathrm{ft}^{2}$ and the top is to be constructed of glass costing $\$ 5 / \mathrm{ft}^{2}$. What are the dimensions of the box of greatest volume that can be constructed for $\$ 72$? Verify your answer yields a maximum.

Solution: Cost $C=x^{2}+4 x y+5 x^{2}=6 x^{2}+4 x y=72$, so $y=\frac{72-6 x^{2}}{4 x}$ for $x>0$. Now $V=x^{2} y=x^{2}\left(\frac{72-6 x^{2}}{4 x}\right)=18 x-\frac{9}{2} x^{3}$ and $V^{\prime}=18-\frac{9}{2} x^{2}=0$ when $x=2$. To verify that $x=2$ maximizes volume, use the second derivative test, $V^{\prime \prime}=-9 x$ so $V^{\prime \prime}(2)=-18$ thus volume is maximized when $x=2, y=6$.
16. A viewer standing 30 feet from a platform watches a balloon rise from that platform (the platform is the same height as the viewer's eyes) at a constant rate of $3 \mathrm{ft} / \mathrm{s}$. How fast is the angle between the viewer and the balloon changing at the instant $\theta=\frac{\pi}{4}$.

Solution: $\tan \theta=\frac{y}{30} \Rightarrow \sec ^{2} \theta \frac{d \theta}{d t}=\frac{1}{30} \frac{d y}{d t}$, so $\frac{d \theta}{d t}=\frac{1}{30}(3) \frac{1}{\sec ^{2}(2)}=\frac{1}{20}$

For additional problems, check out the review problems for Chapter 3. Note the questions above are simply a sample of questions possible for the exam; it is possible that other types of questions may appear on your exam.

