
Practice Questions for Exam 3 Math 131 

 

1. Does the function  f x x  on  2,2  satisfy the conditions of the Mean Value Theorem?  Why or why not? 

Solution: No, because  'f x  does not exist at 0x  , therefore it is not differentiable on  2,2 . 

 

2. Determine the vertical and horizontal asymptotes of  
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, thus we have a vertical asymptote at 3x   
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, thus we have a horizontal asymptote at 2y  . 
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9. Find the local and absolute extreme values of the function  f x x x   on [0, 4]. 

 Solution:  
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Therefore absolute maximum occurs at  4,2  and absolute minimum occurs at 
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10. Given      ' 1 2 4f x x x x    , determine the critical points of  f x  and use the second derivative test to 

determine whether they correspond to local maxima, local minima, or the test is inconclusive. 

 

Solution:  ' 0f x   at 1, 2, 4x    .  Now           '' 1 2 1 4 2 4f x x x x x x x          and  " 1 15f  , so 

at 1x   there is a local minimum,  " 2 6f    , so at 2x  , there is a local maximum and  " 4 10f   , so at 

4x   there is a local minimum. 

 

11. For each function,     
3

2 1f x x   and   3f x x x   

a. Find the critical points. 

b. Find intervals of increase and decrease. 

c. Find local maximum and minimum values. 

d. Find intervals of concavity and inflection points. 

 

For each function,     
3

2 1f x x   and   3f x x x   

Solution: CP at      0, 1 ,  1,0 ,  and 1,0  , f is decreasing on    , 1 1,0    and increasing on    0,1 1,  , 

local min at  0, 1 , and f is concave up on    
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Solution: Note the domain is ( ,3] , CP  2,2 ,  3,0 , f is increasing on  ,2  and decreasing on  2,3 , local 

max at  2,2  and the function is concave down on  ,3  

 

12. Sketch the graph of a function that satisfies all the conditions given below. 

Solution: 

 
 

13. A metal storage tank with volume V is to be constructed in the shape of a right circular cylinder surmounted by a 

hemisphere.  What dimensions will require the least amount of metal? (The volume of a sphere is 
34
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Solution: Volume: 
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, surface area is the sum of the area of the bottom, side, and 

top.     2 21 5 2
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14. An inverted conical tank with height 10 feet and radius 4 feet is full of water.  Water drains from the tank at the rate 

of 5 ft3 /min, how fast is the water level dropping when the height is 6 feet. 

  

Solution:  
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15. A closed box with square base is to be built to house an ant colony.  The bottom of the box and all four sides are to be 

made of material costing 2$1/ ft and the top is to be constructed of glass costing 2$5/ ft  .  What are the dimensions of 

the box of greatest volume that can be constructed for $72?  Verify your answer yields a maximum. 

 

Solution: Cost  2 2 24 5 6 4 72C x xy x x xy      , so 
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use the second derivative test, " 9V x   so  " 2 18V    thus volume is maximized when 2, 6x y  . 

 

 

16. A viewer standing 30 feet from a platform watches a balloon rise from that platform (the platform is the same height 

as the viewer’s eyes) at a constant rate of 3 ft/s.  How fast is the angle between the viewer and the balloon changing 

at the instant 
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Solution:  
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For additional problems, check out the review problems for Chapter 3.  Note the questions above are simply a sample of 

questions possible for the exam; it is possible that other types of questions may appear on your exam. 

 


