Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 50 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln (2)$, unless they simplify further like $\sqrt{9}=3$ or $\cos (3 \pi / 4)=-\sqrt{2} / 2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write âĂIJsee other sideâĂİ and continue working on the back of the same page.
- Hint: $\cos ^{2} x=\frac{1}{2}(1+\cos (2 x))$ and $\sin ^{2} x=\frac{1}{2}(1-\cos (2 x))$

1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature:
Print Name:
\qquad
Date: \qquad

Question	Points	Score
1	8	
2	60	
3	8	
4	12	
5	12	
Total:	100	

2. Evaluate each of the following:
a. (4 points) $\int\left(3 \sqrt[3]{x}-\frac{2}{x^{2}}\right) d x$
b. (4 points) $\int\left(e^{-x}+\frac{1}{4 x}\right) d x$
c. (4 points) $\int\left(\sec ^{2}(3 x)+\sec (\pi x) \tan (\pi x)\right) d x$
d. (4 points) $\int \frac{x+2 \sqrt{x}}{\sqrt{x}} d x$
e. (4 points) $\int \frac{1}{\sqrt{1-4 x^{2}}} d x$
f. (6 points) $\int_{0}^{1} x^{2}(\sqrt{x}+1) d x$
g. (6 points) $\int 2 x \sqrt{2+3 x^{2}} d x$
h. (6 points) $\int x^{7} \sin \left(x^{8}\right) d x$
i. (6 points) $\int \frac{1}{5+2 x} d x$
j. (8 points) $\int_{0}^{2} \frac{x^{2}}{\sqrt{4+4 x^{3}}} d x$
k. (8 points) $\int_{0}^{\pi / 4} \frac{\sin x}{\cos ^{3} x} d x$
3. (8 points) Find $\frac{d}{d x} \int_{x^{2}}^{0} \sin \left(t^{2}\right) d t$
4. Suppose $\int_{-4}^{4} f(x) d x=6$, and $\int_{0}^{4} g(x) d x=10$. Furthermore, suppose that f is an even function and g is an odd function. Evaluate the following integrals
a. (4 points) Find $\int_{0}^{4} f(x) d x$.
b. (4 points) Find $\int_{-4}^{4} 7 g(x) d x$
c. (4 points) $\int_{0}^{2} 2 x g\left(x^{2}\right) d x$
5. Given $f(x)=2 x-x^{2}$ on $[0,3]$
a. (6 points) Find the net area of the region bounded by f and x-axis on the given interval.
b. (6 points) Find the area of the region bounded by f and x-axis on the given interval.
