Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 50 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln (2)$, unless they simplify further like $\sqrt{9}=3$ or $\cos (3 \pi / 4)=-\sqrt{2} / 2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write âĂIJsee other sideâĂİ and continue working on the back of the same page.

1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature: \qquad
Print Name: \qquad
Date: \qquad

Question	Points	Score
1	8	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total:	98	

2. (10 points) Evaluate $\lim _{x \rightarrow \pi / 2} \frac{2 x-\pi}{\cos (2 \pi-x)}$.
3. (10 points) Evaluate $\lim _{x \rightarrow 0} \frac{5-5 \cos x}{e^{x}-x-1}$.
4. (10 points) Evaluate $\lim _{x \rightarrow 0^{+}}\left(1+\frac{2}{x}\right)^{3 x}$.
5. (10 points) Verify the function, $f(x)=x^{3}-3 x+2$ on $[-2,2]$ satisfies the hypotheses of the Mean Value Theorem. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.
6. (10 points) Given $f(x)=x^{4}-2 x^{2}+3$, find intervals of increase and decrease for the function. Label each critical point as local maximum, local minimum or neither.
7. (10 points) Suppose $f^{\prime}(x)=\frac{2 x}{x^{2}+9}$ for a function with domain $(-\infty, \infty)$. Determine intervals where the function is concave up and concave down. Also identify any points of inflection.
8. (10 points) Find the absolute maximum and minimum for $f(x)=x+\frac{1}{x}$ on $\left[\frac{2}{10}, 4\right]$.
9. (10 points) Sketch a graph of a continuous function on \mathbb{R} that satisfies the following conditions:
a. $f^{\prime}(0)=f^{\prime}(4)=0, f^{\prime}(-1)$ and $f^{\prime}(2)$ are undefined.
b. $f^{\prime}(x)=1$ for $x<-1$; $f^{\prime}(x)>0$ for $0<x<2$; $f^{\prime}(x)<0$ for $-1<x<0$, or $2<x<4$ or $x>4$
c. $f^{\prime \prime}(x)<0$ for $x>4$; $f^{\prime \prime}(x)>0$ for $-1<x<2$ and $2<x<4$
10. (10 points) A rain gutter is made from sheets of metal 9 inches wide. The gutters have a 3 inch base and two 3 inch sides, folded at an angle, see figure below. What angle maximizes the cross-sectional area of the gutter?

Cross-sectional area

