Guidelines

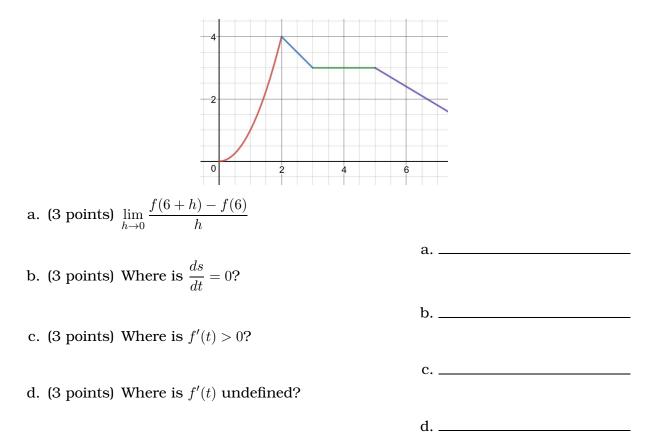
- Calculators are not allowed.
- Read the questions carefully. You have 50 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln(2)$, unless they simplify further like $\sqrt{9} = 3$ or $\cos(3\pi/4) = -\sqrt{2}/2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write See other Side and continue working on the back of the same page.
- 1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature:	
Print Name:	
Date:	_

Question	Points	Score
1	8	
2	26	
3	6	
4	6	
5	6	
6	8	
7	8	
8	12	
9	10	
10	10	
Total:	100	

- 2. Find $\frac{dy}{dx}$ for each of the following: (Do not simplify) a. (2 points) $y = x^3 - 3(x^2 + \pi^2)$
 - b. (2 points) $y = \ln 5$
 - c. (2 points) $y = e^{2x+3}$
 - d. (2 points) $y = \sqrt{x^2 + 3x}$
 - e. (2 points) $y = \tan(\pi x)$
 - f. (2 points) $y = \sin(7x)$
 - g. (2 points) $y = 2^{x^2}$
 - h. (2 points) $y = \frac{1}{7x^2 + 3x}$
 - i. (2 points) $y = \log_2(4x)$
 - j. (2 points) $y = \arcsin \sqrt{x}$
 - k. (2 points) $y = \cos^3(1 3x)$
 - 1. (2 points) $y = \arctan(9x)$
 - m. (2 points) $y = \ln(x^{5/2} 3)$
- 3. (6 points) Find dy/dx for $y = x^2 \sin^2(2x^2)$

a. _____ b. _____ C. _____ d._____ e._____ f._____ g._____ h. _____ i._____ j._____ k. _____ 1. _____ m. _____


4. (6 points) Find dy/dx for $y = \frac{13x}{(2\sqrt{x}+2)^2}$

5. (6 points) Find dy/dx for $y = 3x + \frac{9}{x}$ using the definition of derivative.

6. (8 points) Find dy/dx for $x^3 + 4xy - 3y^{4/3} = 2x$.

7. (8 points) Find dy/dx for $y = (1 + 3x^2)^{6x}$.

8. Given the position function, s = f(t), where $0 \le t \le 10$, seen below, answer the following questions:

9. (10 points) Find an equation of the line tangent to the curve $y = \tan x$ at $x = -\pi/4$.

10. (10 points) The length ℓ of a rectangle is decreasing at a rate of 2 cm/sec while the width w is increasing at a rate of 2 cm/sec. When $\ell = 12$ cm and w = 5 cm, find the rate of change of the length of the diagonals of the rectangle.