- 1. Find an equation of a line who passes through the points (-4, 2) and (2, 7).
- 2. Solve the equation for x: x(x-1)=12
- 3. Solve the equation for $x: x^2 + 6x + 8 < 0$

4. Express the domain of the following function in interval notation: $f(x) = \sqrt{\frac{x-2}{x+2}}$

- 5. If $f(x) = x x^2$, find $\frac{f(2+h) f(2)}{h}$ and simplify.
- 6. Find $\cos(\arcsin x)$
- 7. Suppose $\cos \theta = -\frac{3}{5}$ for $\frac{\pi}{2} < \theta < \pi$, find a. $\tan \theta$
 - b. $\sin(2\theta)$

8. Give the vertical and horizontal asymptotes of $f(x) = \frac{x^2 - 9}{x^2 - x - 6}$.

9. Using the Basic Properties of Limits, evaluate the following limits:

a.
$$\lim_{x \to 3} \frac{x^2 + 4x - 21}{x - 3}$$

b.
$$\lim_{x \to 1^+} \sqrt{\frac{x^2 + 2x - 3}{x - 1}}$$

c.
$$\lim_{x \to -3} \frac{2 - \sqrt{x^2 - 5}}{x + 3}$$

d.
$$\lim_{x \to 5^-} \frac{|x - 5|}{x - 5}$$

e.
$$\lim_{x \to \infty} \frac{3x^2 - 2x + 1}{(x - 2)^2}$$

f.
$$\lim_{x \to 2} f(x)$$
, where $f(x) = \begin{cases} 3 - 2x & \text{if } x < 2\\ 2 & \text{if } x = 2\\ x^2 - 5 & \text{if } x > 2 \end{cases}$

10. Explain why $f(x) = x^3 + 2x + 5$ has a zero in the interval $-2 \le x \le 0$.

11. Let $f(x) = \begin{cases} ax+3 & \text{if } x > 5 \\ 8 & \text{if } x = 5 \text{, find } a \text{ and } b \text{ such that } f \text{ is continuous at } x = 5. \text{Use the definition of } \\ x^2 + bx + 1 & \text{if } x < 5 \end{cases}$

continuity in your answer.

12. Sketch a function that satisfies the following conditions: f(0) = 1 $\lim_{x \to \pm \infty} f(x) = 0$, $\lim_{x \to 2^-} f(x) = \infty$ $\lim_{x \to 2^+} f(x) = \infty$

- 13. Explain why or why not. Determine whether the following statements are true and give an explanation or counterexample.
 - a. The rational function $\frac{x-1}{x^2-1}$ has vertical asymptotes at x = -1 and x = 1.
 - b. The value of $\lim_{x \to a} f(x)$, if it exists is found by calculating f(a).
 - c. If $\lim_{x \to a} f(x)$ does not exist, then either $\lim_{x \to a} f(x) = +\infty$ or $\lim_{x \to a} f(x) = -\infty$.
 - d. If $\lim_{x \to a} f(x) = +\infty$ or $\lim_{x \to a} f(x) = -\infty$, $\lim_{x \to a} f(x)$ does not exist.
 - e. For linear functions, the slope of any secant line always equals the slope of any tangent line.

Limit Laws

Suppose that k is a constant and the limits $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ exist. Then

- 1. Constant Multiple: $\lim_{x \to c} kf(x) = k \lim_{x \to c} f(x)$
- 2. Sum/Difference Rule: $\lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$
- 3. Product rule: $\lim_{x \to c} [f(x) \cdot g(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$
- 4. Quotient rule: $\lim_{x \to c} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$
- 5. Composition Rule: $\lim_{x \to c} f(g(x)) = f(\lim_{x \to c} g(x))$, if f is continuous at $\lim_{x \to c} g(x)$
- 6. Cancellation Theorem for Limits -- If $\lim_{x \to c} g(x)$ exists and f is a function that is equal to g for all x sufficiently close to c except possibly at c itself, then $\lim_{x \to c} f(x) = \lim_{x \to c} g(x)$
- 7. The Squeeze Theorem for Limits If $l(x) \le f(x) \le u(x)$ for all x sufficiently close to c, but not necessarily at x = c, and if $\lim_{x \to c} l(x) = L = \lim_{x \to c} u(x)$, then $\lim_{x \to c} f(x) = L$
- 8. Limits Whose Denominators Approach Zero from the Right or the Left

a. If
$$\lim_{x \to c} \frac{f(x)}{g(x)}$$
 is of the form $\frac{1}{0^+}$, then $\lim_{x \to c} \frac{f(x)}{g(x)} = \infty$
b. If $\lim_{x \to c} \frac{f(x)}{g(x)}$ is of the form $\frac{1}{0^-}$, then $\lim_{x \to c} \frac{f(x)}{g(x)} = -\infty$

9. Limits Whose Denominators Become Infinite Approach Zero

a. If
$$\lim_{x \to \infty} \frac{f(x)}{g(x)}$$
 is of the form $\frac{1}{\infty}$, then $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$
b. If $\lim_{x \to \infty} \frac{f(x)}{g(x)}$ is of the form $\frac{1}{-\infty}$, then $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$
10. $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$

Similar results hold for limits at infinity and one-sided limits