1. Find an equation of a line who passes through the points $(-4,2)$ and $(2,7)$.
2. Solve the equation for $x: x(x-1)=12$
3. Solve the equation for $x: x^{2}+6 x+8<0$
4. Express the domain of the following function in interval notation: $f(x)=\sqrt{\frac{x-2}{x+2}}$
5. If $f(x)=x-x^{2}$, find $\frac{f(2+h)-f(2)}{h}$ and simplify.
6. Find $\cos (\arcsin x)$
7. Suppose $\cos \theta=-\frac{3}{5}$ for $\frac{\pi}{2}<\theta<\pi$, find
a. $\tan \theta$
b. $\sin (2 \theta)$
8. Give the vertical and horizontal asymptotes of $f(x)=\frac{x^{2}-9}{x^{2}-x-6}$.
9. Using the Basic Properties of Limits, evaluate the following limits:
a. $\lim _{x \rightarrow 3} \frac{x^{2}+4 x-21}{x-3}$
b. $\lim _{x \rightarrow l^{+}} \sqrt{\frac{x^{2}+2 x-3}{x-1}}$
c. $\lim _{x \rightarrow-3} \frac{2-\sqrt{x^{2}-5}}{x+3}$
d. $\lim _{x \rightarrow 5^{-}} \frac{|x-5|}{x-5}$
e. $\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{(x-2)^{2}}$
f. $\lim _{x \rightarrow 2} f(x)$, where $f(x)=\left\{\begin{array}{cll}3-2 x & \text { if } & x<2 \\ 2 & \text { if } & x=2 \\ x^{2}-5 & \text { if } & x>2\end{array}\right.$
10. Explain why $f(x)=x^{3}+2 x+5$ has a zero in the interval $-2 \leq x \leq 0$.
11. Let $f(x)=\left\{\begin{array}{cl}a x+3 & \text { if } x>5 \\ 8 & \text { if } x=5 \text {, find } a \text { and } b \text { such that } f \text { is continuous at } x=5 \text {. Use the definition of } \\ x^{2}+b x+1 & \text { if } x<5\end{array}\right.$ continuity in your answer.
12. Sketch a function that satisfies the following conditions:

$$
f(0)=1 \quad \lim _{x \rightarrow \pm \infty} f(x)=0, \quad \lim _{x \rightarrow 2^{-}} f(x)=\infty \quad \lim _{x \rightarrow 2^{+}} f(x)=\infty
$$

13. Explain why or why not. Determine whether the following statements are true and give an explanation or counterexample.
a. The rational function $\frac{x-1}{x^{2}-1}$ has vertical asymptotes at $x=-1$ and $x=1$.
b. The value of $\lim _{x \rightarrow a} f(x)$, if it exists is found by calculating $f(a)$.
c. If $\lim _{x \rightarrow a} f(x)$ does not exist, then either $\lim _{x \rightarrow a} f(x)=+\infty$ or $\lim _{x \rightarrow a} f(x)=-\infty$.
d. If $\lim _{x \rightarrow a} f(x)=+\infty$ or $\lim _{x \rightarrow a} f(x)=-\infty, \lim _{x \rightarrow a} f(x)$ does not exist.
e. For linear functions, the slope of any secant line always equals the slope of any tangent line.

Limit Laws

Suppose that k is a constant and the limits $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ exist. Then

1. Constant Multiple: $\lim _{x \rightarrow c} k f(x)=k \lim _{x \rightarrow c} f(x)$
2. Sum/Difference Rule: $\lim _{x \rightarrow c}[f(x) \pm g(x)]=\lim _{x \rightarrow c} f(x) \pm \lim _{x \rightarrow c} g(x)$
3. Product rule: $\lim _{x \rightarrow c}[f(x) \cdot g(x)]=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x)$
4. Quotient rule: $\lim _{x \rightarrow c}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$
5. Composition Rule: $\lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right)$, if f is continuous at $\lim _{x \rightarrow c} g(x)$
6. Cancellation Theorem for Limits -- If $\lim _{x \rightarrow c} g(x)$ exists and f is a function that is equal to g for all x sufficiently close to c except possibly at c itself, then $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)$
7. The Squeeze Theorem for Limits If $l(x) \leq f(x) \leq u(x)$ for all x sufficiently close to c, but not necessarily at $x=c$, and if $\lim _{x \rightarrow c} l(x)=L=\lim _{x \rightarrow c} u(x)$, then $\lim _{x \rightarrow c} f(x)=L$
8. Limits Whose Denominators Approach Zero from the Right or the Left
a. If $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ is of the form $\frac{1}{0^{+}}$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\infty$
b. If $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ is of the form $\frac{1}{0^{-}}$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=-\infty$
9. Limits Whose Denominators Become Infinite Approach Zero
a. If $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$ is of the form $\frac{1}{\infty}$, then $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$
b. If $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$ is of the form $\frac{1}{-\infty}$, then $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$
10. $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}$

Similar results hold for limits at infinity and one-sided limits

