Namesolution
 Calculus I
 February 5, 2018

Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 50 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln (2)$, unless they simplify further like $\sqrt{9}=3$ or $\cos (3 \pi / 4)=-\sqrt{2} / 2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.

Limit Laws

Suppose that k is a constant, and the limits $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ exist.

1. Constant Multiple: $\lim _{x \rightarrow c} k f(x)=k \lim _{x \rightarrow c} f(x)$
2. Sum/Difference Rule: $\lim _{x \rightarrow c}(f(x) \pm g(x))=\lim _{x \rightarrow c} f(x) \pm \lim _{x \rightarrow c} g(x)$
3. Product Rule: $\lim _{x \rightarrow c}(f(x) \cdot g(x))=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x)$
4. Quotient Rule: $\lim _{x \rightarrow c}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$ if $\lim _{x \rightarrow c} g(x) \neq 0$
5. Composition Rule: $\lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right)$, if f is continuous at $\lim _{x \rightarrow c} g(x)$
6. Cancellation Theorem for Limits: If $\lim _{x \rightarrow c} g(x)$ exists and f is a function that is equal to g for all x sufficiently close to c, except possibly at c itself, then $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)$.
7. Squeeze Theorem for Limits: If $l(x) \leq f(x) \leq u(x)$ for all x sufficiently close to c, but not necessarily at $x=c$, and if $\lim _{x \rightarrow c} l(x)=L=\lim _{x \rightarrow c} u(x)$, then $\lim _{x \rightarrow c} f(x)=L$.
8. Limits Whose Denominators Approach Zero from the Right or the Left:
(a) If $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ is of the form $\frac{1}{0^{+}}$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\infty$.
(b) If $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ is of the form $\frac{1}{0^{-}}$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=-\infty$.
9. Limits Whose Denominators Become Infinite Approach Zero:
(a) If $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$ is of the form $\frac{1}{\infty}$, then $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$.
(b) If $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$ is of the form $\frac{1}{-\infty}$, then $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$.
10. $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1, \quad \lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta}=0, \quad \lim _{x \rightarrow 0}(1+x)^{1 / x}=e$.

Similar results hold for limits at infinity and one-sided limits.

1. (6 points) Write an equation of a line through the point $(1,3)$ and perpendicular to the line through $(1,3)$ and $(-1,-3)$.

$$
m=\frac{-3-3}{y-1}=\frac{-6}{-2}=3 \quad \text { So slope } 1 \text { line is } m_{1}=-\frac{1}{3}
$$

$$
\begin{aligned}
& \text { Line } \\
& y-1=-\frac{1}{3}(x-1) \text { or } y=-\frac{1}{3} x+\frac{10}{3}
\end{aligned}
$$

2. (20 points) Use the function $f(x)$ below and limit laws (see cover page, show work using the rules where appropriate) to find the following limits, or explain why they do not exist.

$4 \rho t$
a. $\lim _{x \rightarrow 0} f(x)=2$
apt
b. $\lim _{x \rightarrow 2^{+}} f(x)=2$
$2 p t$
c. $\lim _{x \rightarrow 2^{-}} f(x)=-1$

4 pt d. $\lim _{x \rightarrow 2} f(x)=$ DNE be 5,2 . $\lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2+} f(x)$
4 pt e. $\lim _{x \rightarrow 5} \sqrt[3]{4 f(x)}=\sqrt[3]{4 \lim _{x \rightarrow 5} f(x)}=\sqrt[3]{8}=2$
4 pt f. $\lim _{x \rightarrow 2^{-}} \frac{2 f(x)+3}{f(x)-9}=\frac{2 \lim f(x)+\lim _{x} 3}{\lim _{x \rightarrow 2^{-}} f(x)-\lim _{x \rightarrow 2^{-}} 9}=\frac{2(-1)+3}{-1-9}=-\frac{1}{10}$
3. Evaluate the following limits, if they exist (show your work).
a. (6 points) $\lim _{x \rightarrow 3^{+}} \frac{x^{2}-7 x+12}{x^{2}-5 x+6}=\lim _{x \rightarrow 3^{+}} \frac{(x-3)(x-4)}{(x-3)(x-2)}=\frac{-1}{1}=-1$
b. (6 points) $\lim _{x \rightarrow 0} \frac{\frac{1}{1-x}-\frac{1}{4}}{x}=\lim _{x \rightarrow 0} \frac{1}{x}\left[\frac{4}{4(4-x)}-\frac{4-x}{4(4-x)}\right]$

$$
=\lim _{x \rightarrow 0} \frac{1}{x}\left[\frac{1 x}{4(4-x)}\right]=\frac{1}{16}
$$

c. (6 points) $\lim _{x \rightarrow 1} \frac{\sqrt{2 x+7}-3}{x-1} \cdot \frac{\sqrt{2 x+7}+3}{\sqrt{2 x+7}+3}=\lim \frac{2 x-2(x-1)}{(x-1)[\sqrt{2 x+7}+3]}$

$$
=\lim _{x \rightarrow 1} \frac{2}{\sqrt{2 x+7}+3}=\frac{2}{6}=\frac{1}{3}
$$

d. (6 points) $\lim _{x \rightarrow 2} f(x)$, where $f(x)=\left\{\begin{array}{cc}x & \text { if } x<2 \\ 4 & \text { if } x=2 \\ 6-2 x & \text { if } x>2\end{array}\right.$

$$
\lim _{x \rightarrow 2^{-}} x=2, \lim _{x \rightarrow 2^{+}}(6-2 x)=2 \Rightarrow \lim _{x \rightarrow 2} f(x)=2
$$

e. (6 points) $\lim _{x \rightarrow 4^{-}} \frac{|x-4|}{x^{2}-3 x-4}=\lim _{x \rightarrow 4^{-}} \frac{-(x-4)}{(x-4)(x+1)}=\frac{-1}{5}$
f. (6 points) $\lim _{x \rightarrow \infty} \frac{2 x^{3}-2 x^{2}+x}{\sqrt{9 x^{6}+4 x^{3}+x+3}} \approx \lim _{x \rightarrow \infty} \frac{2 x^{3}}{3 x^{3}}=\frac{2}{3}$
g. (6 points) $\lim _{x \rightarrow-2} f(x)$, where $f(x)=\left\{\begin{array}{cc}x^{2} & \text { if } x \geq-2 \\ 7-x & \text { if } x<-2\end{array}\right.$

$$
\lim _{x \rightarrow-2^{-}}(7-x)=9 \neq \lim _{x \rightarrow-2^{+}}\left(x^{2}\right)=4 \quad \therefore \lim _{x \rightarrow 2} f(x) \text { ONE }
$$

4. (6 points) If $P(x)=2 x^{3}-5 x^{2}-10 x+5$, use the Intermediate Value Theorem to show that $P(x)$ has a root somewhere in the interval $[-1,2]$.
$P(x)$ is a polynomial \therefore continuous on $[-1,2]$
$P(-1)=8, P(2)=-19 \rightarrow P(2)<0<P(-1)$
\therefore there is a $c \in(-1,2)$ where $P(C)=0$ by IVT
5. (8 points) Let

$$
f(x)=\left\{\begin{array}{cc}
x^{2}-b & \text { if } x<1 \\
2 & \text { if } x=1 \\
a x+4 & \text { if } x>1
\end{array}\right.
$$

Find values of a and b such that f is continuous at $x=2$, Use the definition of continuity in your answer.

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)
$$

$$
f(1)=2 \quad \lim _{x \rightarrow 1^{-}}\left(x^{2}-b\right)=1-b \quad \lim _{x \rightarrow 1^{+}}(a x+4)=a+4
$$

$$
\text { So } \begin{array}{cc}
1-b=2 & \& a+4=2 \\
b=-1 & a=-2
\end{array}
$$

6. (10 points) Sketch a graph of a function f that satisfies all the following conditions.

$$
\begin{array}{ll}
\lim _{x \rightarrow 1^{+}} f(x)=\infty & \lim _{x \rightarrow 1^{-}} f(x)=-\infty \quad f(0)=0 \\
\lim _{x \rightarrow-1^{-}} f(x)=\infty & \lim _{x \rightarrow-1^{+}} f(x)=-\infty \\
\lim _{x \rightarrow \infty} f(x)=1 & \lim _{x \rightarrow-\infty} f(x)=0
\end{array}
$$

7. (8 points) To be done when exam is graded and returned. On a separate sheet of paper, correct ALL missed problems if your score is less than 85 points. Then take the corrections and exam to the OSL, a tutor will check your work. They will also explain questions you are having difficulty correcting.

Question	Points	Score
1	6	
2	20	
3	42	
4	6	
5	8	
6	10	
7	8	
Total:	100	

