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ABSTRACT 10 

 11 

Remotely sensed imagery of the Earth’s surface via satellite sensors provides information 12 

to estimate the spatial distribution of evapotranspiration (ET). The spatial resolution of 13 

ET predictions depends on the sensor type and varies from the 30 – 60 m Landsat scale to 14 

the 250 – 1000 m MODIS scale. Therefore, for an accurate characterization of the 15 

regional distribution of ET, scaling transfer between images of different resolutions is 16 

important. Scaling transfer includes both up-scaling (aggregation) and down-scaling 17 

(disaggregation). In this paper, we address the up-scaling problem.  18 

 19 

The Surface Energy Balance Algorithm for Land (SEBAL) was used to derive ET maps 20 

from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Moderate Resolution 21 

Imaging Spectroradiometer (MODIS) images. Landsat 7 bands have spatial resolutions of 22 
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30 to 60 m, while MODIS bands have resolutions of 250, 500 and 1000 m. Evaluations 23 

were conducted for both “output” and “input” up-scaling procedures, with aggregation 24 

accomplished by both simple averaging and nearest neighboring resampling techniques. 25 

Output up-scaling consisted of first applying SEBAL and then aggregating the output 26 

variable (daily ET). Input up-scaling consisted of aggregating 30 m Landsat pixels of the 27 

input variable (radiance) to obtain pixels at 60, 120, 250, 500 and 1000 m before SEBAL 28 

was applied. The objectives of this study were first to test the consistency of SEBAL 29 

algorithm for Landsat and MODIS satellite images and second to investigate the effect of 30 

the four different up-scaling processes on the spatial distribution of ET.  31 

 32 

We conclude that good agreement exists between SEBAL estimated ET maps directly 33 

derived from Landsat 7 and MODIS images. Among the four up-scaling methods 34 

compared, the output simple averaging method produced aggregated data and aggregated 35 

differences with the most statistically and spatially predictable behavior. The input 36 

nearest neighbor method was the least predictable but was still acceptable. Overall, the 37 

daily ET maps over the Middle Rio Grande Basin aggregated from Landsat images were 38 

in good agreement with ET maps directly derived from MODIS images.  39 

 40 

 41 

1.  INTRODUCTION 42 

 43 

Remote sensing data from satellite-based sensors have the potential to provide detailed 44 

information on land surface properties and parameters at local to regional scales. Perhaps 45 
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one of the most important land surface parameters that can be derived from remote 46 

sensing is actual ET. The spatio-temporal distribution of ET is needed for sustainable 47 

management of water resources as well as for a better understanding of water exchange 48 

processes between the land surface and the atmosphere. However, ground measurements 49 

of ET over a range of space and time scales are very difficult to obtain due to the time 50 

and cost involved. Remotely sensed imagery with numerous spatial and temporal 51 

resolutions is therefore an ideal solution for determination of the spatio-temporal 52 

distribution of ET. 53 

 54 

Today, large amounts of remotely sensed data with variable spatial, temporal, and 55 

spectral resolutions are available. A number of studies have attempted to estimate ET 56 

from different satellite sensors, including the Land remote sensing satellite Enhanced 57 

Thematic Mapper Plus (Landsat ETM+) (Bastiaanssen et al., 2005; Hendrickx and Hong, 58 

2005; Allen et al., 2007; Hong, 2008), the Advanced Spaceborne Thermal Emission and 59 

Reflection Radiometer (ASTER) (French et al., 2002), the Advanced Very High 60 

Resolution Radiometer (AVHRR) (Seguin et al., 1991), the Moderate Resolution 61 

Imaging Spectroradiometer (MODIS) (Nishida et al., 2003; Hong et al., 2005) and the 62 

Geostationary Orbiting Environmental Satellite (GOES) (Mecikalski et al., 1999). 63 

 64 

We employ the Surface Energy Balance Algorithm for Land (SEBAL) that is one of 65 

several remote sensing algorithms used to extract information from raw satellite data. It 66 

estimates various land surface parameters, including surface albedo, normalized 67 

difference vegetation index (NDVI), surface temperature, and energy balance parameters 68 
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from the remotely sensed radiance values obtained from satellite sensors. Since satellite 69 

sensors have different spatial, spectral and radiometric resolutions, the consistency of ET 70 

estimates from different satellites by SEBAL needs to be certified.  71 

 72 

The validation of products of remote sensing algorithms is dependent upon the spatial 73 

resolution (Liang, 2004). Fine resolution products (< 100 m) such as Landsat can be 74 

validated with ground measurements. However, validating coarse resolution products, 75 

such as MODIS (1000 m in thermal band), using ground measurements is very difficult 76 

because of the scale disparity between ground “point” measurements and the coarse 77 

spatial resolution imagery. Therefore, for validation of MODIS products, the products of 78 

high resolution remotely sensed imagery such as Landsat 7 (30 to 60 m resolution) need 79 

to be first validated with ground point measurements. MODIS products can then be 80 

compared against up-scaled (aggregated) Landsat product. A comparison of SEBAL ET 81 

estimates against independent ground based measurements typically yields accuracies of 82 

about  15% and  5% for, daily and seasonal evaporation estimates, respectively 83 

(Bastiaanssen et al., 2005). In the southwestern USA, daily SEBAL ET estimates agreed 84 

with ground observation with an accuracy of 10% (Hendrickx and Hong, 2005; Hong, 85 

2008). Similar results have been reported by Morse et al. (2000) and Allen et al. (2007). 86 

 87 

Many studies regarding the effect of up-scaling data sets have been reported (Mark and 88 

Aronson, 1984; Nellis and Briggs, 1989; Turner et al., 1989; Lam and Quattrochi, 1992; 89 

Stoms, 1992; Brown et al., 1993; Vieux, 1993; De Cola, 1994; Wolock and Price, 1994; 90 

Zhang and Montgomery, 1994; Bian et al., 1999). During an aggregation process, the 91 
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raster spatial data are reduced to a smaller number of data pixels covering the same 92 

spatial extent. It is generally recognized that data aggregation modifies the statistical and 93 

spatial characteristics of the data (Bian et al., 1999). Since the total number of pixels is 94 

reduced, the variance and frequency distribution of the sampled data may deviate from 95 

the original data set and tends to reduce spatial autocorrelation at coarser resolutions 96 

(Bian, 1997). Some studies have pointed out that data accuracy is enhanced significantly 97 

by reduction of spatial resolution (Townshend et al., 1992; Dai and Khorram, 1998; Van 98 

Rompaey et al., 1999; Carmel, 2004). Several studies have also argued that aggregation 99 

to a coarser resolution reveals certain spatial patterns which are not shown until the data 100 

are presented at a coarser scale (Zhang and Montgomery, 1994; Seyfried and Wilcox, 101 

1995). On the other hand, the decrease in spatial resolution possibly results in a loss of 102 

information that may be valuable for particular applications (Carmel et al., 2001). 103 

 104 

The methodology for aggregating simple rectangular grid data is well developed (Bian, 105 

1997; Bian et al., 1999; Mengelkamp et al., 2006). In this study, the simple averaging and 106 

nearest neighbor resampling methods were selected for the data aggregation scheme, 107 

since these methods have been the most popular and convenient to use (Atkinson, 1985; 108 

Liang, 2004). The simple averaging method calculates the average value over an area of 109 

interest to produce a new coarser resolution data set. Nearest neighbor sampling produces 110 

a subset of the original data; the extremes and subtleties of the data values are therefore 111 

preserved. 112 

 113 
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For the up-scaling scheme, numerous studies have used the assumption that surface 114 

fluxes can be expressed as direct area averages of the surface fluxes (Shuttleworth, 1991; 115 

Lhomme, 1992; Li and Avissar, 1994). Liang (2000) simply averaged the remotely 116 

sensed reflectance values from 30 m to 1 km and explored the aggregation effect. He 117 

concluded that the spectral reflectance was basically linear from 30 m resolution to 1000 118 

m resolution. More recently, Mengelkamp et al (2006) mentioned that area averaged 119 

small scale ET calculated from local measurements was in good agreement with the area 120 

represented regional values. Nevertheless, few papers have examined the effect of 121 

different up-scaling schemes on the relative accuracy of the aggregated data despite its 122 

practical importance. A spatial resolution gap exists between the data requirements of 123 

regional-scale models and the output data from remote sensing energy balance algorithms 124 

such as SEBAL. For example, general global circulation models or regional weather 125 

prediction models need input data with a spatial resolution of hundreds of kilometers 126 

which is much larger than the spatial resolution of most satellite sensors (Liang, 2004). 127 

Therefore, an up-scaling (data aggregation) procedure is needed to fill the scale gap 128 

between satellite measurements and input requirements for large scale models. Increasing 129 

spatial resolution by data aggregation has shown the potential to generate observed or 130 

modeled surface flux estimates over a range of different spatial resolutions (Gupta et al., 131 

1986; Lhomme, 1992; Ebleringer and Field, 1993). 132 

 133 

In this study, high quality scenes of two different dates of Landsat 7 Enhanced Thematic 134 

Mapper Plus (ETM+) and Moderate Resolution Imaging Spectroradiometer (MODIS) 135 

imagery were selected and SEBAL was applied to estimate daily ET. Landsat scale pixels 136 
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(30 m) were aggregated to larger scale (60, 120, 250, 500 and 1000 m). The objectives of 137 

this study were first to test the consistency of the SEBAL algorithm for Landsat 7 and 138 

MODIS images, and second to investigate the effects of four different up-scaling 139 

processes on the spatial distribution of ET, especially how the relative accuracy of ET 140 

changes with different up-scaling processes. 141 

 142 

 143 

2.  METHOD AND MATERIALS 144 

 145 

2.1. STUDY AREA AND SATELLITE IMAGERY 146 

Landsat 7 and Terra MODIS images (Figure 1) on two different dates during the growing 147 

season (September 14, 2000 and June 16, 2002) were used to examine the effect of 148 

aggregation processes. On these two dates, high quality Landsat 7 and MODIS images 149 

were available. The June 16 images are representative for conditions of full vegetative 150 

cover at the height of the growing season, while the September 14 images represent 151 

somewhat drier conditions towards the end of the growing season. Four satellite images 152 

used in this study were georeferenced to match the spatial coordinates as closely as 153 

possible. This was done by identifying the several accurate Ground Control Points (e.g. 154 

road intersections and agricultural field boundaries) on the images and aligning them to 155 

fit on between images. The image used in this study is the subset of the Middle Rio 156 

Grande Basin that covers an area of 18 by 90 km. The Middle Rio Grande setting is 157 

mainly composed of agricultural fields, riparian forests and surrounding desert areas 158 

(Figure 1).  159 
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 160 

2.2. SURFACE ENERGY BALANCE ALGORITHM FOR LAND (SEBAL)  161 

SEBAL is a physically based analytical image processing method that evaluates the 162 

components of the energy balance and determines the ET rate as the residual. SEBAL is 163 

based on the computation of energy balance parameters from multi spectral satellite data 164 

(Bastiaanssen et al., 1998; Morse et al., 2000; Allen et al., 2007). To implement SEBAL, 165 

images are needed with information on reflectance in the visible, near-infrared and mid-166 

infrared bands, as well as emission in the thermal infrared band. To account for the 167 

influence of topographical variations on the energy balance components, a digital 168 

elevation model (DEM) with the same spatial resolution as the satellite imagery is also 169 

required. The slope and aspect were calculated from DEM using models provided in 170 

ERDAS IMAGINE software (ERDAS, 2002). 171 

 172 

The energy balance equation is 173 

 174 

                                     λETHGRn       (1) 175 

 176 

where Rn is the net incoming radiation flux density (Wm-2), G is the ground heat flux 177 

density (Wm-2), H is the sensible heat flux density (Wm-2), ET is the latent heat flux 178 

density (Wm-2), and parameter  is the latent heat of vaporization of water (Jkg-1). 179 

 180 

The net radiation (Rn) was computed for each pixel from the radiation balance using 181 

surface albedo obtained from short-wave radiation and using emissivity estimated from 182 
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the long-wave radiation (Allen et al., 1998; Bastiaanssen et al., 1998; Morse et al., 2000). 183 

Soil heat flux (G) was estimated from net radiation together with other parameters such 184 

as normalized difference vegetation index (NDVI), surface temperature and surface 185 

albedo (Clothier et al., 1986; Choudhury et al., 1987; Daughtry et al., 1990; Bastiaanssen, 186 

2000). Sensible heat flux (H) was calculated from wind speed, estimated surface 187 

roughness for momentum transport, and air temperature differences between two heights 188 

(0.1 and 2 m) using an iterative process based on the Monin-Obukhov similarity theory 189 

(Brutsaert, 1982; Morse et al., 2000; Tasumi, 2003). 190 

 191 

The spatial resolutions of the Landsat 7 bands are 30 and 60 m, compared with 250, 500 192 

and 1000m for the MODIS bands (Table 1). Besides the difference in the spatial 193 

resolution between Landsat 7 and MODIS, a difference in radiance measurements 194 

between the two sensors is expected as a result of slightly different band widths for each 195 

sensor. Table 1 also shows the spectral bands of Landsat 7 and MODIS in the visible, 196 

near infrared and thermal infrared wavelength regions used for SEBAL application. 197 

MODIS bands 1, 2, 3, 4, 6 and 7 are compatible with Landsat 7 bands 3, 4, 1, 2, 5 and 7, 198 

respectively. The band widths of MODIS in the visible and near infrared, with the 199 

exception of Band 3, are narrower than those of Landsat. This results in different 200 

responses from the surface, which in turn may alter the computed surface albedo and 201 

vegetation index. 202 

 203 

2.2.1. Brightness temperature  204 
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The major difference in the ET derivation from Landsat and MODIS images was in the 205 

surface temperature calculations. SEBAL used one thermal band for surface temperature 206 

estimation for Landsat 7 data while two thermal bands were used with MODIS data.  207 

 208 

The temperature detected by a thermal sensor is called the brightness temperature. 209 

Radiance data from Landsat 7 and MODIS thermal infrared bands were first converted to 210 

brightness temperatures with an inversion of Planck’s equation: 211 
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Tb is the brightness temperature in Kelvin [K], c is the speed of light (2.998 x 108) [ms-1], 213 

h is the Planck's Constant (6.626 x 10-34) [Js], k is the Boltzmann constant (1.3807 x 10-23) 214 

[JK-1], L is the spectral radiance [Wm-2m-1sr-1],  is the band effective center 215 

wavelength [m] and K1 and K2 are calibration coefficients [Wm-2sr-1m-1] (Table 2). 216 

 217 

2.2.2. Surface temperature 218 

For Landsat images the surface temperature (Ts) is estimated using Tb and 0 with the 219 

following empirical relationship (Morse et al., 2000). 220 

 221 

25.0
0

b
s

T
T                    (3) 222 

 223 

where 0 = 1.009 + 0.47 ln(NDVI). 224 
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 225 

For MODIS images the split window technique is used. Split window algorithms take 226 

advantage of the differential absorption in two close infrared bands to account for the 227 

effects of absorption by atmospheric gases. Several split window algorithms are currently 228 

available to derive surface temperature from brightness temperature when multiple 229 

thermal bands are available. In this study, the algorithm developed by Price (1984)  was 230 

applied since Vazquez et al. (1997) determined that it performed better than other 231 

algorithms. Ts is given by 232 

 233 

  75)1(48)(8.1 323131 TTTTs     (4) 234 

 235 

where T31 is the brightness temperature obtained from band31 [K], T32 is the brightness 236 

temperature obtained from band 32 [K],  = (31+ 32)/2,  = 31 –32, 31 is the surface 237 

emissivity in band 31 and 32 is the surface emissivity in band 32. 238 

Cihlar et al. (1997) developed an algorithm to calculate the surface emissivity from 239 

NDVI. 240 

(NDVI)..εεΔε ln0134400101903231                    (5) 241 

where )ln(029.09897.031 NDVI .  242 

2.2.3. Daily evapotranspiration 243 

In SEBAL, daily ET was interpolated by assuming the instantaneous evaporative fraction 244 

(EF) when the satellite was passing over is approximately equal to the daily mean value 245 
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(Shuttleworth et al., 1989; Brutsaert and Sugita, 1992; Crago, 1996; Farah et al., 2004; 246 

Gentine et al., 2007). The soil heat flux is assumed to be zero on a daily basis (Kustas et 247 

al., 1993). Based on the known value of the instantaneous EF, the daily-averaged net 248 

radiation flux, and the soil heat flux over a daily period, daily ET (ET24) can be computed 249 

by (Bastiaanssen et al., 1998):  250 

 251 


)(86400 2424

24

GREF
ET n 

     (6) 252 

  253 

where  HEEEF   , 86400 is a constant for time scale conversion, ET24 is daily 254 

ET [mmd-1], Rn24 is daily-averaged net radiation [Wm-2] and G24 is daily-averaged soil 255 

heat flux [Wm-2]. 256 

 257 

2.3. UP-SCALING (AGGREGATION) PROCESS 258 

In the up-scaling process, two different procedures were evaluated. The first consisted of 259 

applying SEBAL first and then aggregating the output variable (daily ET). The second 260 

consisted of aggregating Landsat pixels of input variable (radiance) to obtain pixels at the 261 

MODIS scale before SEBAL was applied (Figure 2). If the model is insensitive to an 262 

input parameter, aggregating the value with increasing scale will have little influence on 263 

model predictions. However, when the model does not operate linearly, the change in 264 

data aggregation could increase or decrease model predictions (Quattrochi and Goodchild, 265 

1997; French, 2001; Liang, 2004). 266 

 267 
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Aggregation imagery was obtained by simple averaging and by nearest neighbor 268 

selection, and done with ERDAS IMAGINE (Leica Geosystems LLC). The simple 269 

averaging resampling method calculated the arithmetic mean over an n by n window. 270 

Since a pixel value of satellite imagery is considered to be the integrated value over the 271 

corresponding area on the ground, simple averaging is considered appropriate for 272 

aggregating remotely sensed images. The simple averaging method smoothes the original 273 

data values and therefore produces a “tighter” histogram than the original data set. 274 

Furthermore, aggregating a data set by simple averaging generally decreases the variance 275 

and also increases the spatial autocorrelation (Anselin and Getis, 1993). 276 

The nearest neighbor approach uses the value of the input pixel closest to the center of 277 

the output pixel. To determine the nearest neighbor, the algorithm uses the inverse of the 278 

transformation matrix to calculate the image file coordinates of the desired geographic 279 

coordinate. The pixel value occupying the closest image file coordinate to the estimated 280 

coordinate will be used for the output pixel value in the georeferenced image. Unlike 281 

simple averaging, nearest neighbor is appropriate for thematic files having data file 282 

values based on a qualitative system. One advantage of the nearest neighbor method is 283 

that, unlike the simple averaging resampling method, its output values are original input 284 

values. The other advantage is that it is easy to compute and therefore fastest to use. 285 

However, the disadvantage is that nearest neighbor generates a choppy, "stair-stepped" 286 

effect. The image tends to have a rough appearance relative to the original data (Cover 287 

and Hart, 1967; Atkinson, 1985; Dodgson, 1997; Bian et al., 1999). 288 
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The aggregation was operated at six levels: 30, 60, 120, 250, 500 and 1000 m pixel sizes. 289 

At each level, Landsat scale 30 by 30 m pixels were broken into 10 by 10 m pixels with 290 

the same pixel values; the data were then aggregated directly from the 10 m resolution 291 

instead of from a previous aggregation. This procedure made it easier to aggregate from 292 

the Landsat 30 m pixel size to MODIS 250, 500 and 1000 m pixel sizes. 293 

 294 

3. RESULTS AND DISCUSSION 295 

 296 

3.1. SEBAL CONSISTENCY BETWEEN LANDSAT AND MODIS 297 

The SEBAL algorithm was applied to both Landsat 7 and MODIS images acquired on 298 

September 14, 2000 and June 16, 2002 and estimated their daily ET rates. In order to 299 

check the consistency of SEBAL performance for the different satellite sensors, SEBAL 300 

estimated ET from Landsat and MODIS images were compared each other. Spatial 301 

distribution of ET maps for visual verification and histograms and basic statistics for 302 

quantitative examination were selected. Two approaches were used to inspect the ET 303 

estimation difference between two different satellite sensors: one is a difference image 304 

(pixel-by-pixel difference between Landsat and MODIS estimates), while the other was a 305 

relative difference image (absolute value of the pixel difference was divided by the 306 

MODIS derived pixel value). Basic statistics of the difference and relative difference 307 

images were also computed to quantify the discrepancy between Landsat and MODIS 308 

estimates. 309 

 310 

3.1.1 Comparison between Landsat (30m) and MODIS (250m) estimated ET 311 
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Figure 3 shows that the June image taken during the summer has significantly higher ET 312 

rates than the September image taken in the early fall. All of the ET images clearly show 313 

high ET rates in the irrigated fields and riparian areas along the Rio Grande Valley, while 314 

low ET rates are shown in the surrounding desert areas and bare soils. The city of 315 

Albuquerque has a somewhat higher ET rate than surrounding desert areas due to urban 316 

and residential vegetations. 317 

 318 

The disparate spatial resolutions of Landsat- and MODIS-based ET images result in some 319 

differences in ET distribution, as may be expected. Many small areas (length scale on the 320 

order of 10 to 100 m) with high ET rates along the river are captured well in the Landsat-321 

based ET map with a spatial resolution of 30 m. These peak ET rates are averaged out, 322 

however, on the MODIS derived ET map with a spatial resolution of 250 m. Figure 3 323 

shows that MODIS derived ET distributions have a tighter and taller histogram and fewer 324 

pixels have close to zero (0.0 to 0.5) ET than the histogram from Landsat imagery. In the 325 

table of basic statistics in Figure 3, the ET map derived from the Landsat 7 image shows 326 

a higher maximum and standard deviation than the one derived from the MODIS images. 327 

However, the mean values of Landsat- and MODIS-based ET images are very similar. 328 

The minimum value of ET in each image equals to zero. 329 

 330 

Difference images between the Landsat-based ET at 30m resolution and MODIS-based 331 

ET at 250m resolution show how these products are dissimilar to each other (Figure 4). 332 

Each difference image was produced by subtracting MODIS-based ET from Landsat-333 

based ET [ETLandsat – ETMODIS], with brown-colored pixels in the difference map in Figure 334 
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4 representing points where the MODIS-based ET is significantly higher than Landsat-335 

based ET. Blue-colored pixels represent points where the ET from Landsat is 336 

significantly higher than the ET from MODIS imagery. Areas with apparently high ET 337 

differences (> +2.0 or < -2.0 mm/d) shown as brown or blue, are observed along the 338 

boundary between Rio Grande River riparian areas and surrounding deserts. These high 339 

differences are mostly due to (1) disagreement in image georeferencing between the 340 

Landsat and MODIS imagery and (2) differences resulting from subtracting the ET value 341 

of a large (250m) MODIS based pixel from that of a small (30m) Landsat based pixel.  342 

 343 

It is not trivial to generate georeferenced imagery with error of less than one pixel 344 

(Eugenio and Marqués, 2003). The georeferencing of two maps with spatial resolutions 345 

differing an order of magnitude is especially difficult (Liang et al., 2002). One or two 346 

pixels of georeferencing disagreement can cause abrupt ET changes at the boundaries 347 

between riparian (high ET) and desert (low ET) areas. The effect of different pixel sizes 348 

is clearly demonstrated with the brown and blue pixels located along the sudden 349 

transition from riparian area to desert. The brown-colored pixels (ET difference < -2 350 

mm/d) are located in the desert and result from subtracting a large MODIS pixel located 351 

partially in the riparian area with relatively high ET from a small Landsat pixel located in 352 

the desert with zero ET. The blue-colored pixels (ET difference > 2 mm/d) are located in 353 

the riparian area and result from subtracting a large MODIS pixel located partially in the 354 

desert from a riparian area located small Landsat pixel. 355 

 356 
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Basic statistics (mean and standard deviation) allow a quantitative means of comparison 357 

and evaluation. Positive and negative differences due to georeferencing disagreement 358 

between two images tend to cancel each other in these calculations since they occur in 359 

opposite directions at both sides of the transgression from riparian to desert area. 360 

Therefore the mean and standard deviation of each difference image were calculated 361 

based on the “absolute” difference between Landsat- and MODIS-based ET images. For 362 

both study dates, the mean and standard deviation of difference between the Landsat and 363 

MODIS-based ET are within 1.0 mm/day. Basic statistics in Figure 4 show that the 364 

September images have a slightly lower mean difference and standard deviation than the 365 

June images. However, this does not imply that the September Landsat- and MODIS-366 

based ET images agree better than June images. The difference in basic statistics is 367 

caused by the smaller values of the mean and standard deviation of ET rates in the 368 

September images.  369 

 370 

Relative difference images were produced as well by dividing the absolute difference 371 

image by the MODIS derived ET image [|(ETLandsat – ETMODIS)| /ETMODIS] (Figure 5). The 372 

relative difference value ranges from zero to infinity. The infinity values occur when the 373 

MODIS-based ET is much smaller than the Landsat-based ET. The infinity values were 374 

constrained to 1.0 and pixels having zero values either in the MODIS-based ET or in the 375 

Landsat-based ET image are also assigned to 1.0 as relative difference. Most of the pixels 376 

having 1.0 (red-colored) relative difference are located in the desert area. One interesting 377 

point is that the quite a few pixels having 1.0 as relative difference are found along the 378 

transition zone between riparian and desert areas. Those pixels result from 30 m Landsat 379 
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pixels having high ET inside 250 m coarse resolution of MODIS pixels having low ET 380 

(Figure 5).  381 

 382 

Figure 6 presents three dimensional graphs of the relationship between relative difference 383 

and daily ET rate on both June and September images. Both graphs in Figure 6 show that 384 

large relative difference predominantly occur in areas having low ET while areas having 385 

ET such as greater than 3 mm/d exhibit relative differences of about less than 0.4. 386 

However, there are some points having 1.0 relative difference with daily ET greater than 387 

2.0 mm/d. These points are resulted from pixels having significant difference between 388 

Landsat and MODIS derived ET and mainly due to georeferencing disagreement between 389 

Landsat and MODIS satellite images. These questionable points are mostly located in the 390 

boundary area between riparian and surrounding desert.  391 

 392 

3.2. ANALYSIS OF UP-SCALING EFFECTS 393 

The spatial distribution and its statistical features were evaluated and compared among 394 

the four different up-scaling methods across the five aggregation levels. Output up-395 

scaling aggregated the SEBAL estimated daily ET rates either with simple averaging or 396 

the nearest neighbor resampling method. The resultant aggregated ET map may represent 397 

the best estimate of ET at the coarser resolution, since the aggregated ET was derived 398 

directly by aggregation of the fine resolution ET data. For input up-scaling, since the 399 

radiometric observations (radiance) or SEBAL model inputs were aggregated, one 400 

expects to retrieve the best estimate of a radiometric observation at the coarser 401 
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resolutions. These aggregated data were used as input to the SEBAL model and 402 

calculated daily ET.  403 

 404 

The different up-scaling methodologies were evaluated by: (1) spatial distribution of 405 

aggregated imagery by four different schemes at each aggregation level to evaluate the 406 

changes in spatial pattern after aggregation, and (2) histograms and basic statistics of the 407 

aggregated data for different up-scaling schemes at all levels. The spatial details lost 408 

during aggregation were considered to be the difference between original image and up-409 

scaled image. In this study difference images were created by subtracting the up-scaled 410 

pixels from the original pixels of the Landsat- or MODIS-based ET estimates. While 411 

relative difference images were produced by dividing the absolute difference by the 412 

original Landsat- and MODIS-based ET images. The statistical and spatial characteristics 413 

of differences were evaluated by analyzing the spatial distribution of differences as well 414 

as the mean and standard deviation of absolute differences. 415 

 416 

3.2.1. Effect of aggregation 417 

Spatial and statistical characteristics of up-scaled products from June and September 418 

Landsat-based ET maps at 30m resolution to five aggregation levels are presented in 419 

Figures 7 –10. Figure 7 presents ET maps from output up-scaling using simple averaging 420 

resampling on June 16, 2002, at spatial resolutions of 60, 120, 250, 500 and 1000m. This 421 

method produces the most statistically and spatially predictable behavior. The least 422 

predictable – but still acceptable – behavior is produced by input up-scaling using nearest 423 

neighbor resampling. An example for June 16, 2002 is presented in Figure 8. Figures 9 424 
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and 10 present the histograms and statistics for the different up-scaling methods on, 425 

respectively, June 16, 2002 and September 14, 2000. Although spatial detail was lost 426 

with the increase in pixel size, the overall spatial distribution of ET of each aggregated 427 

map (for example Figures 7 and 8) was in agreement with the original ET maps in Figure 428 

3.  429 

 430 

All histograms of ET distribution (Figures 9 and 10) show the dominance of close to zero 431 

ET values and this frequency decreases a few percent (3.4 to 1.3%) with pixel size only 432 

when output up-scaling with simple averaging was applied. This feature might be 433 

explained by the observation that desert areas along the riparian corridors are classified to 434 

have zero ET in fine resolution of 30m. However, these desert areas are easily mixed 435 

with riparian areas when applying simple averaging, while nearest neighbor resampling 436 

schemes hardly affect the frequencies in the histogram since nearest neighbor produces a 437 

subset of the original data. The 60 and 120m pixel sized histograms in Figures 9 – 10 438 

exhibit an almost constant frequency occurrence of 2.0% for June imagery and 3.0% for 439 

September imagery over ET rates ranging from 2.5 to 7.5 mm/d and from 1.0 to 5.0 440 

mm/d, respectively. This constant frequency changes into a concave down shape as pixel 441 

size is increased further with simple averaging resampling in both output and input up-442 

scaling. That is, the frequency of pixels having 5 – 6 mm/d ET increases but the 443 

frequency of pixels having 3 – 4 mm/d decreases with simple averaging is applied. Pixels 444 

having 5 – 6 mm/d of ET in this study area are mainly surface water, agricultural fields 445 

and riparian vegetation pixels located along the Rio Grande riparian corridor. There are 446 

pixels having 3 – 4 mm/d of ET located inside of the riparian corridor as well as in the 447 
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transition zone between riparian and surrounding desert. These pixels are mostly located 448 

along the transition zone between riparian areas and surrounding deserts areas and 449 

adjacent to the Rio Grande River. These pixels have low ET, but when averaged with 450 

adjacent higher ET pixels the contrast disappears. However, histograms from nearest 451 

neighbor resampling stayed rather consistent in shape at each resolution. 452 

 453 

The basic statistics and histograms also show the statistical changes through aggregation. 454 

With either output up-scaling or input up-scaling, the mean values of the simple 455 

averaging and nearest neighbor images remain essentially constant across all aggregation 456 

levels in both days. However, ET maps derived using nearest neighbor show a more 457 

“blocky” pattern than those derived using from simple averaging (for example Figures 7 458 

and 8). This difference in spatial distribution is due to the fact that simple averaging 459 

decreases the standard deviation with increasing pixel size, while the standard deviation 460 

from nearest neighbor aggregation stays fairly constant across all aggregation levels.  461 

 462 

The differences in aggregation procedures between simple averaging and nearest 463 

neighbor cause the fundamental difference in statistics of the aggregated data. The simple 464 

averaging method aggregates based on data values, and the resulting values are confined 465 

to the mid range. However, the nearest neighbor resampling is based on location, its pixel 466 

value varying with the location of central pixels in new coordinates as the pixel size 467 

changes. Therefore, the aggregated results are a systematically sampled subset of the 468 

original data, and their values are expected to be less confined. This explains the 469 

somewhat larger data ranges for the nearest neighbor resampling method, but the mean of 470 
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the data does not change significantly. Many regional-scale hydrological process models 471 

require input parameters over a large area.  Direct area averaging technique has often 472 

been used to generate the regional-scale model input parameters (Shuttleworth, 1991; 473 

Chehbouni and Njoku, 1995; Croley et al., 2005; Maayar and Chen, 2006). For example, 474 

direct averaged values of air temperature, precipitation, humidity, surface roughness 475 

length and so on were used as input parameters in hydrologic models (Brown et al., 1993; 476 

Maayar and Chen, 2006). However, the standard deviation of the data set decreases as the 477 

aggregation level increases, therefore users need to check the sensitivity of the range of 478 

the variable of the model prior to applying direct averaging for data aggregation. 479 

 480 

In fact, the SEBAL algorithm is nonlinear; that is the mean aggregated ET (output up-481 

scaled) at any given resolution does not equal the modeled ET value of an aggregated 482 

input value (input up-scaled). However, as demonstrated by visual examination of the 483 

spatial distribution of ET in Figures 7  10, the contrast as well as the basic patterns (high 484 

and low values and their relative locations) of ET between output up-scaling and input 485 

up-scaling show a slight disagreement. A slightly higher mean and standard deviation 486 

was found in the results from input up-scaling with simple averaging than from output 487 

up-scaling with simple averaging; however there is almost no difference between input 488 

and output up-scaling when applying the nearest neighbor method. Overall, statistical and 489 

spatial characteristics produced by input up-scaling show relatively good agreement with 490 

those of the output up-scaling method. 491 

 492 
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3.2.2. Difference of aggregated data versus original Landsat (30m) and MODIS 493 

(250m) estimated ET 494 

First, aggregation difference was examined by comparing aggregated maps with the 495 

original ET map at 30m resolution derived from Landsat imagery. Tables 3 and 4 present 496 

the basic statistics of difference and relative difference against original Landsat derived 497 

ET on June 16, 2002 and September 14, 2000 produced by four different up-scaling. The 498 

mean values of absolute difference and relative difference range from 0.14 to 0.63 mm/d 499 

and from 0.55 to 0.82, respectively.  500 

The mean and standard deviation values of absolute difference from September image are 501 

smaller than those from June image. The smaller mean difference and standard deviation 502 

is explained by the smaller values of the ET rates in the September image. Mean values 503 

of absolute difference from output up-scaled maps are similar with those from input up-504 

scaled maps; however consistently higher standard deviations are found in input up-505 

scaled maps (Tables 3 – 4). This result confirms that aggregated model output data 506 

provide the best estimate of model output at the coarser resolution.  507 

 508 

The mean and standard deviation of the absolute differences also increase with pixel size. 509 

This is mainly due to the mixed pixel effect. Since aggregation tends to average out the 510 

small surface features, the difference between aggregated imagery and the original fine 511 

resolution imagery increases with aggregation levels. One interesting note is that the 512 

mean of the relative difference increase with pixel size, however standard deviation 513 

actually slightly decreases with pixel size. In this study relative difference is bounded to 514 

be not greater than 1.0. Therefore, as mean values increase to approach 1.0, the standard 515 
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deviation of absolute difference actually decreases with increasing relative difference. 516 

Based on the mean and standard deviation of the absolute difference and relative 517 

difference, although the difference increases with aggregation levels, the ET of the 518 

original images seems to be better preserved from the output up-scaling than input up-519 

scaling. 520 

 521 

Both of the 3D frequency plots in Figure 11 between up-scaled ET and its relative 522 

difference against Landsat-based ET show patterns similar to those in Figure 6. That is, 523 

relative difference decreases with ET. However, points having 1.0 relative difference 524 

with daily ET greater than 1.0 mm/d are greatly diminished in Figure 11. In particular, 525 

the top portion of Figure 11, which shows the relative difference between the output up-526 

scaled ET and the ET obtained from simple averaging, shows very few of these 527 

questionable points. In the bottom portion of Figure 11, which shows the relative 528 

difference between the input up-scaled ET and the nearest neighbor up-scaled ET, there 529 

are some points with a relative difference of 1.0, but there are far fewer such points than 530 

in Figure 6. This indicates that there are fewer georeferencing disagreements between 531 

Landsat-derived ET and output up-scaled ET than the one between Landsat and MODIS 532 

images. 533 

 534 

Next, we compare aggregation differences by comparing up-scaled maps at 250m 535 

resolution with the original ET map from MODIS. This requires that we first examine 536 

which aggregation scheme produces the best match with the original MODIS-based ET 537 

and then check the quality of the different aggregation schemes. Landsat-based ET maps 538 
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at 30 m resolution were aggregated into 250 m resolution maps by applying the four 539 

different aggregation schemes already presented in Figure 2. Table 5 show the basic 540 

statistics of the absolute difference and relative difference of images from the four 541 

different up-scaling schemes at 250m resolution compared with MODIS-based ET of 542 

June and September.  543 

 544 

The mean and standard deviation of absolute difference and relative difference from 545 

output up-scaling with the simple averaging map are smaller than the one from input up-546 

scaling (Table 5). Also the simple averaging method generates smaller absolute 547 

difference and relative difference than the nearest neighboring method. This implies that 548 

output up-scaling with simple averaging map has best agreement with MODIS derived 549 

ET. No difference between output and input up-scaling is found from the nearest 550 

neighbor aggregation method. As shown in the previous section, the maximum and 551 

standard deviation of the ET maps produced by simple averaging are decreased as data 552 

were aggregated to 250m resolution. However, the nearest neighbor aggregation method 553 

generated images having a similar maximum and standard deviation to the original image 554 

(Figures 9  10). This explains why the mean and standard deviation of absolute 555 

difference between aggregated Landsat ET image using simple averaging and MODIS-556 

based ET are smaller than from nearest neighbor (Table 5).  557 

 558 

Although the difference increases with aggregation levels, the ET of 559 

the original images seems to be better preserved with output up-scaling than 560 
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with input up-scaling. Out of the four different up-scaling procedures, output up-scaling 561 

with simple averaging performs best. However, all four aggregation schemes are still 562 

acceptable since the mean and standard deviation values of absolute difference are all less 563 

than those from the original Landsat ET imagery in Figure 4. 564 

 565 

3.3. COMPARISON OF SEBAL UNCERTAINTY WITH UP-SCALING EFFECTS 566 

 567 

As mentioned in Section 1, it has been reported that SEBAL daily ET estimates agree 568 

with ground observation with an accuracy of 10%.The great strength of the SEBAL is 569 

due to its internal calibration procedure that eliminates most of the bias in latent heat flux 570 

at the expense of increased bias in sensible heat flux (Allen et al., 2007; Hong, 2008). 571 

 572 

In order to examine the difference among up-scaling schemes, the relative difference 573 

between up-scaled ET images at 120 and 1000m resolutions are calculated and histogram 574 

and descriptive statistics are shown in Figure 12. Relative difference is calculated 575 

between Upscaling2, 3 or 4 against Upscaling1 (Figure 2) as [|(ET upscaling2, 3 or 4 – 576 

ETupscaling1)| /ET upscaling1]. Up-scaling1 (output simple averaging) is taken as reference 577 

since output simple averaging generates the best matched up-scaled map with respect to 578 

the MODIS-derived ET map (Table 5). As shown in Figure 1, the study area includes 579 

surrounding desert where soil moisture is little thus ET is very small. Since area having 580 

very low ET can easily introduce very high relative difference and moreover it is difficult 581 

to precisely estimate ET in desert area anyhow, the area having less than 1mm/day is 582 
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excluded in this analysis. The portion of area having less than 1mm/day covers about 583 

50% of whole study area. 584 

 585 

As shown in Figure 12, first, mean relative difference increases with pixel spatial 586 

resolution, and second, relative difference between simple averaging and nearest 587 

neighboring resampling (Upscaling1-Upscaling2 and Upscaling1-Upscaling4) has a lot 588 

higher mean and standard deviation than the one between two simple averaging schemes 589 

(Upscaling1-Upscaling3). This simply indicates that as pixel size increases, the difference 590 

between simple averaging and nearest neighboring resampling increases. However, mean 591 

relative difference between Upscaling1 and Upscaling3 (input simple averaging) in both 592 

120m and 1000m resolution are all less than 10% which is smaller than the magnitude of 593 

SEBAL uncertainty. A little difference between output and input up-scaling implies that 594 

SEBAL is close to linearity model and that is due to its internal calibration procedure 595 

(dT-Ts relationship). Another interesting point is that for the 1000m resolution histograms 596 

of Upscaling1-Upscaling2 and Upscaling1-Upscaling3, considerable data points have 597 

relative difference greater than 10% and especially lots of pixels (15% frequency) have 598 

relative difference greater than 90%. Those areas having >90% relative difference are 599 

mainly located along the boundary between riparian and desert areas. These pixels in the 600 

boundary area are mixed with riparian (high ET) and desert (low ET), thus the difference 601 

between up-scaled ET map by simple averaging and nearest neighbor resampling is 602 

significant and causes very high relative difference.  603 

 604 
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Based on the result of relative difference analysis, the difference between simple 605 

averaging and nearest neighbor is a lot bigger than the uncertainty of the SEBAL 606 

procedure. Therefore, users have to aware of the difference and are careful to select 607 

appropriate up-scaling scheme for their research. 608 

 609 

 610 

4. CONCLUSIONS 611 

 612 

Daily evapotranspiration rates were predicted using the SEBAL algorithm from Landsat 613 

7 and MODIS imagery. The objectives of this study were to test the consistency of the 614 

SEBAL algorithm for the different satellite sensors and to investigate the effect of 615 

various proposed aggregation procedures.  616 

 617 

Although ET maps derived from the Landsat 7 images showed higher maximum and 618 

standard deviation values than those derived from the MODIS images, the mean values of 619 

Landsat- and MODIS-based ET images were very similar. Discrepancy in direct pixel-620 

by-pixel comparison between Landsat- and MODIS-based ET was due to mainly 621 

georeferencing disagreement as well as the inherent differences in spatial, spectral and 622 

radiometric resolutions between imagery from the different satellite sensors.  623 

 624 

The output up-scaling scheme produced slightly better ET maps than the input up-scaling 625 

scheme. Both simple averaging and nearest neighbor resampling methods can preserve 626 

the mean values of the original images across aggregation levels. However, the simple 627 
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averaging resampling method resulted in decreasing standard deviation values as the 628 

resolution coarsened, while the standard deviation did not change across aggregation 629 

levels with the nearest neighbor resampling method. For difference analysis, large 630 

relative differences predominantly occur in areas having low ET (desert and bare soil) 631 

while areas having high ET (agricultural field and riparian vegetation) exhibit small 632 

relative differences. Out of the four different up-scaling procedures proposed in this study, 633 

output up-scaling with simple averaging performs best. However, other aggregation 634 

schemes are still acceptable. 635 

 636 

Results of the relative difference analysis among up-scaling schemes show that a little 637 

difference between output and input up-scaling is found. However, there significant 638 

difference exists between simple averaging and nearest neighbor and its difference is a lot 639 

bigger than the uncertainty of the SEBAL procedure. 640 

 641 
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Table 1. Band spatial resolutions (m] and wavelengths (μm) of Landsat 7 and 
MODIS sensors. 
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Band width 
[μm] 
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#MODIS band5 is not used in this study because of streaking noise,  
*Not available 
 



Table 2. Constants K1 and K2 [ Wm-2ster-1μm-1] for Landsat 7 ETM+ (NASA, 
2002) and MODIS (http://modis.gsfc.nasa.gov/). 
 
 

 K1 K2 

Landsat 7 666.09 1282.71 

MODIS (band 31) 730.01 1305.84 

MODIS (band 32) 474.99 1198.29 

 
 



Table 3. Basic statistics of difference [mm/d] between up-scaled ET and original 
Landsat-based ET (30m). (note: statistics are calculated from absolute value of 
the difference) 

 
June 16, 2002 September 14, 2000 

Up-scaling 
approach 

Up-scaling 
operation Mean 

difference 
Standard 
deviation 

Mean 
difference 

Standard 
deviation 

AVG_601 0.20 0.34 0.14 0.24 

NN_602 0.18 0.30 0.14 0.28 

AVG_120 0.30 0.48 0.17 0.27 

NN_120 0.32 0.35 0.23 0.33 

AVG_250 0.51 0.79 0.25 0.35 

NN_250 0.32 0.38 0.23 0.35 

AVG_500 0.54 0.81 0.27 0.36 

NN_500 0.38 0.41 0.27 0.36 

AVG_1000 0.63 0.90 0.30 0.38 

Output 

NN_1000 0.43 0.43 0.33 0.42 

AVG_60 0.28 0.50 0.14 0.25 

NN_60 0.18 0.31 0.15 0.28 

AVG_120 0.29 0.51 0.16 0.28 

NN_120 0.28 0.36 0.23 0.34 

AVG_250 0.53 0.85 0.24 0.36 

NN_250 0.32 0.38 0.23 0.35 

AVG_500 0.54 0.87 0.25 0.37 

NN_500 0.38 0.41 0.28 0.39 

AVG_1000 0.62 0.95 0.28 0.39 

Input 

NN_1000 0.43 0.43 0.32 0.42 
1Aggregated to 60m by simple averaging, 2 Aggregated to 60m by nearest 
neighbor



Table 4. Basic statistics of relative difference [-] between up-scaled ET and 
original Landsat-based ET (30m). (note: statistics are calculated from absolute 
value of the relative difference) 

 
June 16, 2002 September 14, 2000 

Up-scaling 
approach 

Up-scaling 
operation Mean relative 

difference 
Standard 
deviation 

Mean relative 
difference 

Standard 
deviation 

AVG_601 0.55 0.44 0.68 0.42 

NN_602 0.56 0.45 0.69 0.43 

AVG_120 0.58 0.42 0.70 0.40 

NN_120 0.60 0.42 0.73 0.40 

AVG_250 0.64 0.40 0.74 0.37 

NN_250 0.65 0.41 0.75 0.38 

AVG_500 0.64 0.39 0.74 0.37 

NN_500 0.69 0.38 0.78 0.35 

AVG_1000 0.65 0.39 0.76 0.36 

Output 

NN_1000 0.72 0.37 0.82 0.32 

AVG_60 0.60 0.44 0.70 0.41 

NN_60 0.56 0.45 0.70 0.42 

AVG_120 0.61 0.42 0.71 0.40 

NN_120 0.62 0.42 0.73 0.39 

AVG_250 0.66 0.40 0.76 0.37 

NN_250 0.65 0.41 0.75 0.38 

AVG_500 0.67 0.40 0.76 0.37 

NN_500 0.69 0.39 0.78 0.35 

AVG_1000 0.68 0.39 0.77 0.36 

Input 

NN_1000 0.73 0.36 0.82 0.32 
1Aggregated to 60m by simple averaging, 2 Aggregated to 60m by nearest 
neighbor 



Table 5. Basic statistics of difference [mm/d] and relative difference [-] of up-
scaled ET against original MODIS-based ET (250m). (note: statistics are 
calculated from absolute value of the difference) 

 
June 16, 2002 September 14, 2000 

Up-scaling 
approach 

Up-scaling 
operation Mean 

difference 
Standard 
deviation 

Mean 
difference 

Standard 
deviation 

AVG_2501 0.41 0.39 0.31 0.37 Output 
 NN_2502 0.46 0.41 0.36 0.41 

AVG_250 0.43 0.40 0.32 0.38 
Input 

NN_250 0.46 0.41 0.36 0.41 

 Mean relative 
difference 

Standard 
deviation 

Mean relative 
difference 

Standard 
deviation 

AVG_250 0.60 0.38 0.71 0.36 Output 
 NN_250 0.67 0.37 0.78 0.34 

AVG_250 0.65 0.38 0.75 0.36 
Input 

NN_250 0.67 0.37 0.78 0.34 
1Aggregated to 250m by simple averaging, 2 Aggregated to 250m by nearest 
neighbor  
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Figure 2. Location of the study area (18km by 90km). True color Landsat 7 (30 m 
by 30 m resolution) and MODIS (250 m by 250 m resolution) images on June 16, 
2002. 
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Figure 2. Schematic of up-scaling schemes applied in this study. (Upscaling1: 
output up-scaling with simple averaging, Upscaling2: output up-scaling with 
nearest neighbor, Upscaling3: input up-scaling with simple-averaging and 
Upscaling4: input-up-scaling with nearest neighbor). 
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Min 0.00 0.00  0.00 0.00 
Max 15.19 7.37  7.51 5.16 
Mean 1.81 1.86  1.10 0.90 
Std 2.46 2.07  1.78 1.39 
 

        
 
Figure 3. Landsat (30 m) and MODIS (250 m) derived ET by SEBAL of June and 
September. Bin size of the histogram is 0.5 mm/d and frequency occurrence 
exceeding 20% marked next to the arrow. The histograms and basic statistics 
are based on the entire maps (18 km x 90 km). Enlarged areas (9 by 6 km) 
shown at the bottom correspond to the dotted square of the upper images 



Difference map: [ETLandsat – ETMODIS] 
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Figure 4. ET difference map (30 m) between the Landsat estimated ET (30m) 
and the MODIS estimate ET (250m). (note: mean and standard deviation (STD) 
are calculated with the absolute difference). Enlarged areas (12.5 by 17 km) 
shown at the bottom correspond to the dotted square of the upper images. 



Relative difference between Landsat estimated ET (30m) and MODIS estimate 
ET (250m): [|(ETLandsat – ETMODIS)| / ETMODIS]| 
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Figure 5. Relative difference (30 m) between the Landsat estimated ET (30m) 
and the MODIS estimate ET (250m) on June 16, 2002. Enlarged areas (12.5 by 
17 km) shown at the bottom correspond to the dotted square of the upper images. 



 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 6. 3D frequency plot of the relative difference between Landsat drived ET 
(30m) and MODIS derived ET (250m) against MODIS derived ET (250m) (top: 
June 16, 2002 and bottom: September 14, 2000).



           
 
 

Output up-scaling with simple averaging on June 16, 2002 
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Figure 7. ET maps from output up-scaling using simple averaging resampling on 
June 16, 2002. Spatial resolutions are 60, 120, 250, 500 and 1000 m from the 
left. This method produces the most statistically and spatially predictable 
behavior. 
  



 
 
            Input up-scaling using nearest neighbor on June 16, 2002 
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Figure 8. ET maps from input up-scaling using nearest neighbor resampling on 
June 16, 2002. Spatial resolutions are 60, 120, 250, 500 and 1000 m from the 
left. This method produces the best predictable behavior but is still acceptable. 
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Input up-scaling using simple averaging 
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Input up-scaling using nearest neighbor 
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Figure 9. Frequency distribution and basic statistics of up-scaled maps on June 
16, 2002. Bin size of the histogram is 0.5 mm/d and frequency occurrence 
exceeding 20% marked next to the arrow. 
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Output up-scaling using nearest neighbor 
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Input up-scaling using simple averaging 
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Input up-scaling using nearest neighbor 
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Figure 10. Frequency distribution and basic statistics of up-scaled maps on 
September 14, 2000. Bin size of the histogram is 0.5 mm/d and frequency 
occurrence exceeding 20% marked next to the arrow. 



 
 
 
 
 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 11. 3D frequency plot of the relative difference between up-scaled daily 
ET (250 m) and Landsat derived ET (30m) on June 16, 2002 against Landsat 
derived ET (30m) (top: up-scaling output with simple averaging and bottom: up-
scaling input with nearest neighbor). 
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1000 x 1000 m2 pixel resolution 
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Figure 12. Frequency of the relative difference among up-scaling schemes. 
 


