Ten's Complement Arithmetic

Brian Borchers

Many mechanical adding machines, such as the Felt and Tarrant Comptometer and the Hoffritz Adder shown in Figure 1 have somewhat mysterious numerical labels. Next to the digit 4, a 5 appears, next to the digit 3, a 6 appears, and so on. By using these mysterious labels it is possible to perform subtraction with a machine that would normally only be able to perform addition. The system of arithmetic that makes this possible is called ten's complement arithmetic [1].

The Hoffritz adder that we will use in our examples has seven digits. On this machine, $9999999+1$ rolls over to 0 instead of 10000000 . This behavior is the key to the ten's complement system. If we want to subtract $x-y$, we can instead compute

$$
x-y=x+(10000000-y)-10000000
$$

The number $10000000-y$ is called the ten's complement of y. Because of the way in which the adder rolls over to 0 , it is not actually necessary to subtract off the 10000000 .

The tricky part is finding the ten's complement of y. To do this, we write

$$
10000000-y=(9999999-y)+1
$$

The number $9999999-y$ is called the nines' complement of y. Computing $9999999-y$ is easy. Simply replace easy digit in the number y with nine minus the digit. These are exactly the alternate labels shown in Figure 1.

So, the procedure for subtracting $x-y$ is as follows. Enter x into the adder. Then add the nines' complement of y. Finally, add 1.

For example, suppose that we want to compute $57-78$. We start by clearing the adder and then add 57 . The nines' complement of 78 is 9999921 . After adding 9999921 and adding one more, we get 9999979 . This is the ten's complement representation of a negative number. To convert back to the conventional notation, we take the nines complement and get 0000020. Then we add 1 to get 0000021 . Thus $57-78=-21$.

In using this scheme to add and subtract numbers it is important to distinguish between positive and negative numbers. By convention, any number in the adder whose leading digit is $0,1,2$, 3 , or 4 represents a positive number, and any number that begins with a $5,6,7,8$, or 9 represents a negative number. The number -1 is represented as 9999999. The largest positive number that can be represented on the Hoffritz adder is +4999999 . Surprisingly, the most negative number is -5000000 , which is represented as 5000000 .

Although some early electronic computers used decimal arithmetic and the ten's complement system, most modern computers use binary arithmetic. In binary arithmetic, a similar complementary arithmetic scheme can be used. Rather than ten's complement arithmetic, we now have two's complement arithmetic.

References

[1] Knuth, D. E. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd ed. New York, Addison-Wesley, 1997.

Figure 1: Nines' Complement Labels on the Hoffritz Adder.

