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Abstract

Viscoelastic materials exhibit complex stress-strain behavior with re-
spect to time, temperature and magnitude. Study of viscoelastic
behavior by physical experimentation is very much limited by the
cost and current capabilities of rheological equipment. Additionally,
macroscopic relaxations often occur at time-scales that are imprac-
tical to study experimentally. For this reason, computer molecular
dynamic simulations are becoming increasingly popular in this field
of study. Mechanical behavior on the molecular level can be studied
through the use of autocorrelation functions with the intention of using
them to eventually predict the macroscopic stress relaxation modulus
of the given material. However, the inversion of such functions into
a useful model tends to be a very ill-posed problem and many widely
used inversion methods do not adequately address this ill-posedness.
Mechanical relaxation is explored on a microscopic level through the
use of autocorrelation functions for several simple bead-spring mod-
els of short polymer chains. Specifically, the end-to-end and dihedral
angle correlation functions are analyzed. The parameters are found
to collapse to single-valued functions for the freely jointed and freely
rotating models.
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1 Introduction

A glassy material is one which exhibits the properties of a normal solid at
very low temperatures but lacks a defined crystal structure. That is, it is an
amorphous or disordered solid. However, glasses are not completely disor-
dered, as one would see in a gas. Rather they only display short-range order
as opposed to the long-range order seen in crystalline solids [28]. Thus, as
its degree of order resembles that of a liquid, it can be questioned whether
a glass is a true solid or just a super-cooled liquid [89]. Mechanical behavior
of glassy materials is generally much more complicated than that of normal
crystalline solids and, because such materials constitute much of our man-
made world, the understanding of this behavior is the subject of a great deal
of research. There remain many unanswered questions in glass research.

Much of the confusion about glassy materials stems from the incredible time
scales with which they deform and change. A popular myth about window
glass, for example, states that very old window glass is thicker at its base due
to the glass flowing with time. In fact, the old glass panes are thicker at the
bottom because the techniques used in manufacture did not yield uniform
thickness and clearly the builder would mount the panes with the thick side
down for practical reasons [82]. Theoretical estimates of the flow time of glass
have shown that a result consistent with the one stated in the myth would
have to occur over a time period much longer than human history [90]. Thus,
it becomes clear that one cannot practically perform experiments to study
behavior that occurs over such long time-scales. For this reason, much work
is performed in the field in search of greater understanding of the molecular
basis of long-term changes in glassy materials. In this paper we attempt to
contribute to this understanding through molecular level simulation of sim-
plified polymer chains.

1.1 Mechanical Properties

1.1.1 Viscosity and Modulus

One property of most glassy materials is that they exhibit viscoelastic behav-
ior over some wide range of temperatures. The various moduli that describe
the mechanical response of the material are, generally, time dependent. A
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notable example is stress relaxation. If one were to attempt to apply a finite
strain (deformation) to an elastic material, one would encounter a constant
resistive stress proportional to the strain (i.e. Hooke’s Law). The ratio of
this stress to the applied strain is constant with respect to time for a given
material and state point and is called the modulus. Additionally, the me-
chanical properties of a Newtonian liquid is described through the ratio of
the resistive stress with the applied strain rate which is called the viscosity
of the liquid. As a result, one can model an elastic solid as an ideal spring
while a liquid can be modeled as an ideal dashpot.

However, in a viscoelastic material, one finds both elastic solid-like and liquid-
like behavior. The resulting mechanical behavior can be modeled as a com-
bination of springs and dashpots [29]. The stress-strain relationship is much
more complicated for such a material and is given by equation (1):

σ (t) =

∫ t

0

G (t− s) γ̇ (s) ds (1)

where G is the time dependent relaxation modulus of the material, σ is stress
and γ̇ is the strain rate [29].

Anyone who has dealt with systems of springs and dashpots knows that
such a system has an associated decay curve when perturbed. Such decay
curves are of interest experimentally and one can obtain one through a stress-
relaxation experiment.

If one were to apply a small constant strain to a viscoelastic material, one
would encounter a resistive stress that slowly decays (i.e. relaxes) to zero.
The time for this stress to decay characterizes the stress-relaxation time-
scale of the material. The fact that this force decays to zero reflects the
material’s inability to store elastic energy over very long times. This is due
to the partially liquid like characteristics of the material which cause it to
dissipate mechanical energy by deforming non-elastically. Essentially, the
material makes configuration adaptations on the molecular level in order to
adjust to its newly imposed shape. Through this mechanism it is said the
material loses its ”memory” of its original shape. One can easily measure
G (t) on the macroscopic level through such stress-relaxation experiments. It
is clear that if γ (t) takes the form of a step function at s=0, then the strain
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Figure 1: Stress Relaxation Data [39].

rate (velocity of deformation) is approximately a delta function at time zero.
Thus, equation (1) reduces to:

σ (t) = γ (0)G (t) (2)

That is, the measured stress is proportional to the time-dependent modulus.

Figure 1 displays the results of compressive stress relaxation tests for var-
ious elastomeric o-rings. In this test the percent sealing force retention is
equivalent to the modulus. Such testing is very important to scientists and
engineers. For example, one of many factors that caused the Challenger dis-
aster was that booster rocket o-rings became non-pliable (i.e. took a long
time adjust to shape changes) and did not seal correctly in the low morning
temperatures [73].

It is very often useful to describe G in the frequency domain by performing
a one sided Fourier transform on G (t) producing a real storage modulus,
G (ω)′, and an imaginary loss modulus, G (ω)′′. The storage modulus strictly
describes the elastic or energy storing behavior of the material while the
loss modulus instead describes the liquid-like or energy dissipating behavior.
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The reason why this is so is clear when considering dynamic experiments
in frequency space. To perform a dynamic modulus test, for example, one
applies an oscillating shear strain to the sample and observes the magnitude
and phase angle of the resulting stress.
From such an experiment one obtains a complex modulus:

G∗ (ω) = G (ω)′ + ıG (ω)′′ (3)

by using the following relationship:

σ (t) = γ0 (G′ sinωt+G′′ cosωt) (4)

where γ0 is the amplitude of the applied sinusoidal strain. Given that in
a purely elastic material response displacement is always in phase with the
applied force while a viscous response is always 90 degrees out of phase
with the oscillating driving force,[29] it becomes clear that Fourier sine and
cosine components of the transform provide the loss and storage modulus
respectively. The division of the modulus into energy storing and dissipating
frequency dependent constituents also provides additional information about
the mechanical properties of the material as discussed below. The exact re-
lationships is shown in equation (5).

G′ (ω) = ω

∫ ∞
0

G (s) sinωsds G′′ (ω) = ω

∫ ∞
0

G (s) cosωsds (5)

An example of dynamic moduli is shown in Figure 2.

The driving frequency of the experiment is directly related to the shear rate.
For a given driving amplitude (i.e. maximum shear) an increase in driving
frequency results thus results in the shear being applied over a shorter time
period and thus exposes the material to higher shear rates. The shear rate
plays an important rule in the mechanical response of a viscoelastic material.
For example, silly-putty easily stretches or ’flows’ like a liquid for small shear
rates while it shatters like window glass when subjected to a violent shock
(Figure 3). That is, the ability of silly-putty to dissipate energy at large
strain rates (i.e. high frequencies) is relatively weak.
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Figure 2: Dynamic Relaxation Moduli in pascals (N/m2) [65]

Figure 3: Top:Silly Putty Under Small Strain Rates. Bottom: Silly Putty
Under Large Strain Rates [23]

In dielectric spectroscopy experiments one takes a polar viscoelastic material
and observes its polarization with regard to an external sinusoidally varying
electric field. Such experiments are similar to capacitance testing. The im-
posed electric field is of a known form but the measured field in the material
will differ from the imposed field in a way depending on the properties of
that material. The measurements will lag and differ in magnitude from the
driving field as a result of the energy needed to reorient the average dipole
of the material. Watching the phase behavior of the dipole with switching
frequency one can obtain a complex permittivity, ε∗ (ω), which should be
comparable to the macroscopic modulus since the movement of the dipoles
is determined by their local viscous environments and the overall material
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response is thought to be based on configurational changes on the molecu-
lar level. The equations governing these experiments are the same as those
of the dynamic modulus testing listed above. However, experimental result
have been contradictory [1, 22, 61]. The shapes of the macroscopic and mi-
croscopic frequency based relaxation spectra have not been found to coincide
in every case. The analysis of relaxation functions is expounded on in a later
section.

1.1.2 The Debye Model

Dielectric spectroscopy is of particular interest because of the existence of
a particularly useful model of dielectric relaxation: the Debye Model. The
Debye Model begins with the assumption that the molecule being rotated
by the external field can be approximated by a rigid rod. In addition, it is
assumed that the environment of the molecule can be modeled as a uniform
frictional bath. Carrying through the analysis of the model [25] one finds the
complex permittivity to be described by the following function:

ε∗ (ω) =
1

1 + ıωτ
(6)

and the equivalent time domain relaxation function is a single exponential:

φ (t) = e−t/τ (7)

While this model is useful, the majority of materials are not well described
by the equations of the Debye Model. That is, they display varying degrees
of non-Debye behavior.

1.1.3 Non-Debye Relaxation Functions

To make physical statements about either time or frequency dependent mod-
uli one must fit them to functional forms. This can be tricky, especially for
the frequency dependent data. The time dependent stress relaxation mod-
ulus is often fit by a stretched exponential or Kohlrausch-Williams-Watts
(KWW) function as it’s called in the literature [44].
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G (t) = Ae
−

“
t

τKWW

”βKWW

(8)

The frequency dependent data is often fit using a Cole-Davidson (CD) func-
tion (9) [24].

G∗ (ω)−G∞
G0 −G∞

= G′ (ω)− ıG′′ (ω) =

(
1

1 + ıωτCD

)βCD
(9)

It is worth noting that both the KWW and the CD functions are simply the
Debye formulas above with the addition of the exponent, 0≤ β ≤1, which
marks the degree of non-Debye behavior. However, these functions are in no
way equivalent, that is, they are not Fourier transform pairs.

1.1.4 Time-Temperature Superposition

Most experimental set-ups are only useful for limited ranges of frequency
or time. Therefore one needs to piece together data from different exper-
iments to create a set of master curves of material properties over several
orders of magnitude (e.g. viscosity-temperature curves). However, in or-
der to do this, one must make certain physical assumptions. One assumes
Time-Temperature Superposition (TTS) [80]. TTS states that for viscoelas-
tic material time and temperature are essentially equivalent for a given ma-
terial [29]. That is, one can determine long time behavior of the relaxation
modulus by performing the experiment at lower temperature and vice-versa.
When using TTS one is assuming that if the entire experiment were possible
at a single temperature, the resulting modulus curve would be the same as
the curve composed of the superposition of many different experiments. It
is a useful property to utilize when fitting various models. A material for
which TTS is found to be valid is called rheologically simple. However, it
has been observed that TTS ceases to hold true as one approaches the glass
transition temperature in polymers [68, 79]. Thus one must be careful in
one’s application of TTS.

Once the assumption that TTS holds is made, the principal is not very diffi-
cult to apply. After obtaining experimental results at several different tem-
peratures there are two shift factors one needs to overlay the data: a time
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scale shift factor and a modulus scale shift factor, aT and bT respectively
[76]. First, one chooses the reference temperature (To) and then calculates:

aT =
D (To)

D (T )
bT =

ρT

ρoTo
(10)

for each experimental temperature where D is the diffusion coefficient and ρ
is the density. Application to the complex modulus G∗ produces [76]:

G∗ (ω, T ) = bTG
∗ (ωaT , To) (11)

The final result should be a graph like figure 4:

Figure 4: Application of TTS producing frequency dependent moduli master
curves [76]

Similarly, one finds [76]:

G (t, T ) = bTG (t/aT , T0) (12)

The derivation of these results is relatively straightforward in terms of the
Rouse model. The Rouse model is simplified bead-spring model of polymer
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chains. The most important implication of the model with regard to TTS
is that all relaxation times change the same with respect to temperature.
This model is discussed in more detail in a later section 3.1. Here only some
important results of the model are necessary in demonstrating how the shift
factors are obtained. A more detailed description can be found in [76].

First, the reciprocal of the diffusion coefficient of a material represents a kind
of characteristic relaxation time at a given temperature.

τ ∼ 1

D(T )
(13)

In addition, one can find that the modulus associated with this time to be
related to the product of density and temperature.

G (τ) ∼ ρT (14)

The first result is obtained from relationship (14):

G (t0, T0)

G (t, T )
(15)

where T0 is the reference temperature.
If one assumes that all relaxation times for the system change with temper-
ature in the same manner as the characteristic relaxation time determined
by the diffusion coefficient, we can use relationship (13) to relate the the
differing time scales of the experiments.

t

t0
=
D (T0)

D (T )
(16)

Thus, using definition (10) results in:

G (t, T ) = bTG (t/aT , T0) (17)

The frequency space result follows from the fact that time and frequency
have reciprocal units. Thus the result for the complex modulus, G∗, is:

G∗ (ω, T ) = bTG
∗ (ωaT , T0) (18)

It is important to note that, in order for the above process to produce a
smooth master curve, the functional form of the modulus curve must be the
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same for different temperatures. However, since one cannot generally do a
single experiment covering the full range of time it is easy to assume the
functional form to be much simpler than it may actually be.

For example, in [77] stress relaxation moduli are determined for glycerol and
is found to be reasonably well fit by stretched exponentials. The stretching
parameter, β was found to vary with temperature. One may be inclined
to state that this clearly demonstrates TTS is violated. The researchers,
however, concluded that it was not necessarily a violation and continued to
construct a master curve for glycerol. Their rational was that perhaps the
master curve is not a stretched exponential but rather best described by a
stretched exponential with a slowly varying stretching parameter.

This is not a claim to make without reasonable justification. From the above
derivation, we know that if TTS applies than all relaxation times must change
in the same way with regard to a given change in temperature. Thus we then
must describe our modulus curve in terms of a spectrum ρ (τ):

G (t) =

∫ ∞
0

ρ (τ) e−t/τdτ (19)

It is this spectrum, ρ (τ), that must maintain its shape from one temperature
to another and merely shift horizontally. Unfortunately, this spectrum is very
difficult to obtain for a relaxation curve and impossible to determine with
absolute certainty. This is explored further when spectral inversion methods
are discussed.

As a result, the modulus curves are often described by useful but merely em-
pirical functions, such as the KWW stretched exponential and Cole-Davidson
(CD) functions, that often don’t completely describe the modulus and/or lack
theoretical justification. This poses several difficult questions if one finds the
parameters of ones functional fits to change with temperature. Does this
function really describe the decay? Does the change in the function’s param-
eters truly reflect an alteration in the underlying relaxation spectrum or is it
a result of an inappropriate fitting function?

The first difficulty with using the KWW or CD functions is a practical one.
In general these functions do not follow the principle of TTS. To illustrate
this point let’s consider the two functions. Let us consider, for the sake
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of simplicity, a fundamental relaxation coefficient of one. By TTS each re-
laxation experiment (performed at a different temperature) sees the same
relaxation but a different scaling of time:

φ (t)1 = e−(t)β (20)

φ (t)2 = e−(αt)β (21)

If a scaling factor of aT = 1/α is introduced to the second equation then
clearly φ2 would be equivalent to φ1. However if we assume that as a result
of the change of temperature which caused the change of the decay constant
the stretching exponent increased by some small amount δ then no simple
scaling factor will force the second function to be equal to the first. This is
made more clear by looking at the log transforms of these functions:

log φ (t)1 = −tβ (22)

log φ (t)2 = −γtβtδ (23)

where γ = αβ+δ. Clearly no scalar factor can make these two functions equal
as each one dependents on time in a different manner.

The second difficulty is that empirical fits of data are inherently limited. The
function will invariably fail to fit the data perfectly. As a result one can never
be too sure if the physical significance of a change in parameter values. If
the fit does not work over the entire range of data then a change of fitting
parameters may not indicate a shift in the underlying physics but perhaps a
change in the region best fit by the function being used. This issue will be
addressed further in the results sections.

1.2 The Glass Transition

As was stated before, viscoelastic materials display properties of solids and
liquids. In addition, it is not surprising that that these materials are essen-
tially liquids at high temperatures. As is seen in figure 6, when the tempera-
ture is lowered the seemingly liquid viscoelastic material becomes more and
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more viscous. The viscosity actually diverges to infinity at a nonzero tem-
perature. This observation is important for several reasons. The viewpoint
of viscosity as being the result of thermally activated processes would cause
one to expect Arrhenius behavior of viscosity [76]:

ν ∼ exp
A

T
(24)

where A is a constant and T is temperature. That is, one would expect the
viscosity to diverge at absolute zero. The actual behavior is instead empiri-
cally described by the Vogel-Fulcher equation [86, 30].

ν ∼ exp
A

T − T0

(25)

The viscosity is observed to diverge at this nonzero temperature T0. In ad-
dition, one sees the viscosity become so great at some nonzero temperature
T ≥ T0 that the material is essentially a solid. For this reason one would
reason that since there is a change in phase that there should exist some
temperature Tg ≥ T0 where the behavior clearly transitions from that of a
highly viscous liquid to that of a solid: the glass transition temperature.

The existence of the glass transition is an often debated topic in modern
physics. Many polymers exhibit solid-like behavior at room temperature but
lack the ordered molecular structure of common solids. In addition, many do
not consider it to be a true phase transition because of the arbitrariness with
which the transition temperature Tg is defined and the fact that it changes
with cooling-rate. The glass-transition is often defined as the point when the
viscosity of the substance becomes 1012 poise. Water, for comparison, has a
viscosity of 10−2 poise.

An alternative definition is that Tg is the temperature at which the volume
of a sample departs from its equilibrium volume for a given cooling rate [55].
Experimentally this is done by cooling a sample at a given rate to different
temperatures and watching to see if the volume of the sample decays to an
equilibrium level. A plot of this phenomena is shown in figure (5).

However, the consideration of the glass transition as a real phase transition
is still controversial. Since there is no latent heat associated with the glass
transition temperature or a discontinuity of thermodynamic property such
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Figure 5: The glass transition temperature Tg [55]

as density or volume, the glass transition is not considered to be a first-order
phase transition [89]. What one does see is a discontinuity in the slope of
thermodynamic properties such as heat capacity or specific volume (as seen
in figure (5)) [47] by which one would consider the glass transition to be a
second order phase transition.

The temperature dependence of viscosity in glassy materials is generally
shown through Angell plots (figure (6)) where one plots the log of viscos-
ity versus Tg/T . One notes that there are two distinct behaviors in such a
plot. There are materials whose behavior is linear on the Angell plot and
those which show a divergence. Such materials are called strong and fragile
glass formers, respectively. These labels come from old glassblowing terms.
The viscosity of a material that shows linear behavior on an Angell plot
clearly has a weaker temperature dependence as it cools and as a result it is
much easier to obtain uniform cooling, hence they are strong glass formers.
Fragile glass formers, on the other hand, exhibit drastic changes in viscosity
for small changes in temperature at low temperatures which leads to weak-
ness in the glass.

However, an Angell plot is sometimes not useful because the dependence of
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Figure 6: An Angell Plot for various glassy materials [62]

viscosity on pressure is ignored. If one were to plot viscosity data from dif-
ferent pressure experiments one would end up with a multi-valued function.
Additionally, the exact value of Tg is questionable and one would like to
create plots of material properties without having to accept the theoretical
baggage of the glass transition. For these reasons, the search for a single suit-
able material parameter with which one obtains a single-valued function for a
relaxation behavior, such as viscosity, has been an important area of research.

Such a suitable static material property is called a scalar metric. The idea
is that the time-scale of relaxation behavior of a viscoelastic material can be
completely described by a single variable property of the material (the scalar
metric). The term scalar metric is used because the ability to describe the
relaxation properties of the material by a single variable implies that this
same variable represents a distance from the glass transition. It has been
found that packing fraction, non-bonded energy density and the location of
the first peak of the static structure factor all can serve as scalar metrics
[18]. In addition, it has been found that the product T−1V −γ can serve as a
scalar metric where T is temperature, V is specific volume and γ is a system
specific parameter [20]. Regardless of the temperature, pressure or density,
when a type of relaxation time-scale for a series of simulations is plotted
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versus one of these scalar metrics the the data collapses to a single valued
curve. We will explore the scalar metric further after introducing the reader
to molecular dynamics.

1.3 Molecular Dynamics

In the field of condensed matter physics there are two different ways of sim-
ulating systems of molecules: Monte-Carlo (MC) and Molecular Dynamics
(MD). In Monte-Carlo simulations the next move of the molecule is randomly
generating and has certain probability of being accepted or rejected by the
code based on physical arguments for the system. MC simulations are useful
for obtaining thermodynamic and configurational information and is clearly
useful for Quantum level simulation. However, time is not clearly defined for
these types of simulations.

In MD simulations, however, one defines the series of potentials (interatomic,
bond, torsion, etc.) for the molecules, begins the simulation, and then in-
tegrates Newton’s Laws to obtain particle trajectories. That is, the MD
method is simplify the solving of a large system of differential equations.
One additionally holds the simulation in a certain statistical mechanical en-
semble such as constant number of particles, volume and temperature (NVT)
or constant number of particles, pressure and temperature (NPT). The tem-
perature is maintained through one of a variety of numerical thermostats
[15, 32, 63] which achieve their goals through very different means and the
details of which are beyond the scope of this paper. Given the additional lim-
itations of computational ability one “fools” the simulated sample of atoms
and molecules into thinking it is a constituent of a larger sample by applying
periodic boundary conditions (see figure (7)) in which a particle leaving the
right side of the box returns on the left. A useful introduction to molecular
dynamics methods is provided by Allen and Tildesley [4].

The above definitions for MC and MD are the accepted definitions in the
field of molecular simulation. In terms of the general definition of Monte
Carlo, Molecular Dynamics would still be considered a type of Monte Carlo
simulation with regard to the fact that the choice of initial values for the
MD simulation is essentially random. In addition, the method of extracting
useful information from each simulation method is very similar. With Monte
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Figure 7: Periodic Boundary Conditions [85]

Carlo simulations one generally extracts useful information using averages
over the sets of accepted confirmations which are non-time-dependent values.
However with MD simulations one, again, is concerned with average values
curves obtained through time-dependent autocorrelation functions. The dis-
tinction is the amount of deterministic calculation performed between the two
methods. The simulationist’s MC method relies almost completely on argu-
ments based on energy and randomly generated positions while MD methods
are based on Newton’s Laws after the determination of the initial positions.
Thus, as mentioned above, the most significant difference is how well time is
defined. The calculations obtained from MD and MC simulations are equiv-
alent under the assumption of ergodicity. Using ergodicity one assumes that
if a MD simulation is run over a sufficiently long time period then most of
the possible confirmations of the system have been explored and therefore
the time average values obtained from MD simulations should be equivalent
to the ensemble averages calculated via MC simulation.

Simplified polymeric models were simulated under constant density (NVT)
or constant pressure (NPT) ensembles using the LAMMPS [69] molecular
dynamics code available from Sandia National Labs. Simulations consisted
of 80 ten-site (10 mer) chains and 5 single unattached ’penetrants’ interacting
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via Lennard-Jones (LJ) potentials and FENE potential bonds and integrated
with a Verlet algorithm [84]. The chosen polymer model is similar to those
explored in MD simulations by Kremer and Grest [45]. The temperature for
all simulations and pressure for NPT simulations are maintained by algo-
rithms inside LAMMPS based on methods developed by Nosé and Hoover
[63]. Again since these algorithms are standard and taken without modifi-
cation, the details are not discussed here. On a basic level, fluctuations of
temperature or pressure are controlled through added energy terms in the
system’s Hamiltonian. The user defines the magnitude of these fluctuations
through ”friction factors.”

A Lennard-Jones potential is an empirically derived potential given by equa-
tions 26-28 [87]. The simulations in this research used the LJ potential
parameters σ and ε of argon.

ULJ (r) = UR
LJ (r) + UA

LJ (r) (26)

UR
LJ =

{
4ε
((

σ
r

)12 −
(
σ
r

)6)
+ ε r ≤ 21/6σ

UR
LJ = 0 r ≥ 21/6σ

(27)

UA
LJ =

{
4ε
((

σ
r

)12 −
(
σ
r

)6)
+ ζ Rc > r ≥ 21/6σ

UA
LJ = −ε r ≤ 21/6σ

(28)

Since we are working in the numerical world, the potential must be truncated
at some point Rc. The parameter ζ is added to the attractive part of the
potential so that ULJ (Rc) = 0 and we choose Rc = 2.5σ for a full LJ simu-
lation. We also consider separately a purely repulsive LJ potential which is
clipped at its minimum. This is useful in that it greatly speeds up compu-
tation time but it does not affect our data when used for high temperature
systems. That is, at high temperatures the contribution of attractive inter-
atomic forces causes the system to have a higher density but does not alter
the character of relaxation behavior as will be seen in later sections. In ad-
dition, the full force LJ simulations, which we call ’attractive’, demonstrate
a gas-liquid phase transition at high temperatures which is undesirable. The
repulsive LJ simulations are equivalent to hard-sphere simulations in that
they do not show this phase transition. Simulations are run on the order
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of 107 to 108 time steps and correspond to nanosecond order experiments.
These computations, however, can take up to several weeks to run.

The bonds are held together using finite extension non-linear elastic (FENE)
[76] potentials.

UFENE (r) =

{
−κ

2
r2
bond ln

[
1− (r/rbond)

2] , for r < rbond

∞, for r > rbond
(29)

where rbond = 1.5 and κ = 30.

Three different types of polymer models have been simulated. Freely jointed
models have no constraining potentials on bond angles. In freely rotating
models, the bonds angles are stiff and set to 120 degrees but are allowed to
rotate freely. The bond angle potential is defined by the following function:

UB (θ) = K (θ − θo)2 (30)

where θo = 120 degrees and K=0 for freely jointed systems and K=500 for
freely rotating and ’torsion’ systems. For ’torsion’ models, torsion barrier
potentials are added to the freely rotating model limiting the available dihe-
dral angles. The potentials are defined as:

E = KT (d+ cos (nφ)) (31)

where we define for our systems K=2.8, d=1, and n=3.

1.4 Diffusion and the Scalar Metric Revisited

Calculating diffusion constants for simulated polymers is relatively straight-
forward. In that sense, they are useful guide for determining the quality of
simulation runs. This also makes them a convenient basis for finding a scalar
metric. To calculate the diffusion coefficient of our polymer chains we first
run a simulation of the chain which outputs position data. We determine
the center of mass of each chain and then we calculate the mean squared
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displacement (MSD) averaged over all of the chains in the system. The dif-
fusion coefficient can be found using the Einstein relation [34]:

D = lim
t→∞

〈|r (t)− r (0)|2〉
6t

(32)

where D is the diffusion coefficient and the statement in the angle brackets
is the mean squared displacement. The method is altered for numerical data
by simply plotting the MSD versus time and fitting a line of slope 6D to
its long time region. An approximation for D is determined by performing
the simulations long enough so that the linear region of the MSD plot covers
more than a decade of time and by calculating D for many different runs of
the same simulation.

We then use equation (33) to produce D∗, the dimensionless diffusion coef-
ficient. The dimensionless version is used due to findings for scalar metric
studies in hard-sphere simulation studies [36].

D∗ = D

(
Nm

(kTd2)1/2

)
(33)

where m is the mass of a bead, N is the length of the chain, k is Boltzmann’s
constant and d is the effective hard sphere diameter. The calculation of the
effective diameter, however, is a potential source of difficulty. For simulations
using only the repulsive part of the LJ potential we use the Barker Henderson
[12] equation:

dR =

∫ ∞
0

1− exp

(
−U

R
LJ (r)

T

)
dr (34)

Since this works for only for repulsive potentials it must be corrected for the
full LJ potential (attractive) simulations. At this point we must now intro-
duce the radial distribution function: g (r). Traditionally g (r) is obtainable
through the Fourier transform of the structure factor obtained through scat-
tering experiments [53]. The g (r) is essentially the probability of finding
another particle a given distance, r, from a chosen particle in the system.
Thus if we choose a particle in the system, use the locations of the other
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particles at all time-steps and repeat this for every particle in the system we
can approximate the g (r) for the system.

The radial distribution function for disordered systems is zero for r < rparticle
and then shows a sharp peak for r > rparticle. This location of this peak corre-
sponds to the classical turning point of the interparticle collisions. Therefore
it serves as a reliable measure of the effective hard sphere radius. Thus we use
the following equation [18] to approximate d for the attractive LJ simulations:

dA = dR

(
rApeak
rRpeak

)
(35)

where the A and R stand for attractive and repulsive, respectively. Then
packing fraction is calculated using:

η =
π

6
d3ρ (36)

It is clear (figures 8 and 9) that packing fraction works very well as scalar
metric for D∗. We see that D∗ separates into constant density or constant
pressures lines when plotted versus 1/T but collapses onto a single curve
when plotted versus packing fraction, η.

1.5 Autocorrelation and Relaxation Functions

While the diffusion coefficient can tell us a lot about translational movements
and relaxation in a material it does not tell us about configurational changes
that are theorized to serve as the basis of macroscopic relaxation behavior.
In addition, the diffusion coefficient is a single measure. One would like to
obtain a level of detail of the relaxation as is available through modulus test-
ing. This level of detail is obtained through the study of autocorrelation
functions. An autocorrelation function measures how the configuration of
the system at one initial time matches or “correlates” with the configuration
at a later time. The actual application generally uses averages of the dot
products of descriptive vectors. There are two autocorrelation functions of
interest we will be looking at: the P2 autocorrelation function and the dihe-
dral autocorrelation function (DACF).
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Figure 8: The square of D∗ vs. 1/T. No apparent correlation

Figure 9: The square of D∗ vs. η. Strong correlation
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The P2 autocorrelation function is determined from the simulation position

data. It is calculated by equation (37) where
−−→
u (t) is the vector drawn from

the first mer in the chain to a later one (usually the last) and the angle brack-
ets denote an average over all initial times and chains in the system. The P2

function is believed to describe relaxation behavior of the polymer via the
Fluctuation-Dissipation Theorem [46]. That is, the behavior of small fluctu-
ations correspond to the reaction (i.e. dissipation) of the material to minute
external perturbations. Therefore, the average P2 relaxation of a system at
equilibrium should be equivalent to the relaxation seen if we had applied a
small deformation to the simulation cell or perturbed the chains themselves.
This is an extremely important result as it allows to avoid difficulties in per-
forming calculations for systems out of thermodynamic equilibrium.

The Fluctuation-Dissipation Theorem was formulated first for electric cir-
cuits by Nyquist [64] and then generalized by Callen [19]. The derivation of
the theorem is outside the scope of this paper and can be found in the above
articles. The important take-home message of the articles is that one is able
to use fluctuation information from a system in equilibration to describe ir-
reversible (dissipative) processes. The P2 function is based on fluctuations
in average chain orientation. Thus, by the Fluctuation-Dissipation Theorem,
one would expect the P2 autocorrelation function to relate most closely to
dielectric relaxation results.

P2 (t) =
3〈
−−→
u (0) ·

−−→
u (t)〉 − 1

2
(37)

Similar to the case of relaxation modulus, one can apply Fourier sine and
cosine transforms to the P2 function into to obtain data in frequency space.
The real and imaginary parts are usually labeled G (ω)′ and G (ω)′′ respec-
tively. This notation reflects that of dielectric relaxation experiments.

There exist a number or other relaxation autocorrelation functions one can
calculate which are often done as the simulated models become more and
more complex. For the three systems of interest in this work, the dihedral
angle autocorrelation function has also been calculated (38) [17] where φ is
the dihedral angle. The DACF, like the P2, is a calculated measure of relax-
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Figure 10: P2 Autocorrelation Angle

Figure 11: Dihedral Autocorrelation Angle

ation behavior. However, while the P2 is primarily a measure of the rotational
relaxation of most often the entire chain, the DACF measures the torsional
relaxation between beads of the chain. That is, the two functions describe
relaxation in two different axes which are perpendicular to each other this
is illustrated in figures 10 and 11 and describe relaxation on two different
length scales.

fφ (t) =
〈cosφ (0) cosφ (t)〉 − 〈cosφ (0)〉2

〈cosφ (0)2〉 − 〈cosφ (0)〉2
(38)

The angle brackets in equations (37) and (38) denote ensemble averages at
each time t. An ensemble is the set of all possible states of a system. Clearly
such a set is not practically obtainable through simulation. One makes the
assumption of ergodicity, that is, such a set can be obtained by running the
simulation for a sufficiently long period of time [8]. This assumption, how-
ever, begins to breakdown near the glass transition where the system falls
out of equilibrium [51]. The averages are then calculated by averaging the
set of curves obtained for every possible starting position. This is made more
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clear by modifying equation (37) to reflect the actual method of calculation:

P2 (∆t) = lim
N→∞

∑N
i=1 ~u (ti) · ~u (ti + ∆t)

N
(39)

Figure 12: P2 autocorrelation function for a repulsive FR system of LJ tem-
perature 1.6 and density 1.06
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2 Fitting Autocorrelation Functions

The plots of these autocorrelation functions tend to be relatively feature-
less non-exponential decays (figure (12)). This lack of landmarks in the plot
not only makes the choice of fitting function difficult but also the choice of
inversion algorithm. It also poses difficulty because the source of the non-
exponentiality of the decay is a point of contention. There are two viewpoints
of the basis of non-exponential decay: homogeneous and heterogeneous. The
microscopic level is often qualitatively (but unrealistically) described as par-
ticles moving through a frictional medium such as the picture obtained from
Langevin’s treatment of brownian motion [34]. A homogenous explanation
claims that each molecule in the system shows the same decay behavior and
this behavior happens to be non-exponential, that is, the friction imparted by
the medium does so as to produce non-exponential decay behavior for each
molecule. The heterogeneous picture is that each molecule at a particular
moment in time and position in space only demonstrates single exponential
decay and it is variations and movements, in time and space, of different fric-
tional regions that as an ensemble average produces non-exponential decay
of the system as a whole. A more detailed exploration of this issue can be
found in an excellent article by Ediger [27]. These two physical explanations,
are contradictory in terms of the underlying physics and this fact needs to
be addressed when considering which model to use in one’s fit [37].

2.1 Spectral Method

The model assumption is the following Fredholm Integral Equation (IFK) of
the 1st kind:

P2 (t) =

∫ ∞
−∞

G (τ) e−t/τdlnτ (40)

The use of this equation implies that the relaxation process is the superpo-
sition of many single exponential decays, that is, heterogeneous. Given the
flexibility and number of fit parameters, it is not very difficult to obtain a
very good fit of the data. Unfortunately, the kernel of the IFK, e−t/τ , is
not orthogonal [40]. That is, for the inner product defined by the integral
over the entire real line the set of functions e−t/τ τ ∈ < is not orthogo-
nal. Indeed, it may be very difficult to produce a subset of this set which is
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orthogonal. Thus, the inversion of this IFK is significantly ill-posed. There-
fore, the obtained distributions are non-unique and it becomes necessary to
regularize the solution is some fashion. Constraining the non-negativity of
G (τ) is an obvious and powerful way to eliminate oscillating solutions. A
few regularization methods are discussed in the next section. A broader ex-
ploration of spectral methods was performed by Istratov [40]

The most common method for solving for distributions of relaxation times
(DRT’s) is Tikhonov Regularization. Tikhonov Regularization is a varia-
tion to standard Least Squares methods. Using the notation of the stan-
dard inverse problem: Gm = d where G is the operator, m is the model
and d is the data, instead of minimizing ‖Gm − d‖2 we instead minimize
‖Gm − d‖2 + α2‖Lm‖2 where α is the regularization parameter and L is
the regularizing operator (often the identity or a derivative operator). The
integral equation is reduced to the standard matrix-vector inverse problem
either through simple quadrature or a series of representing function. These
methods are described in detail in standard inverse problems texts [11].

A commonly used program in producing Tikhonov regularized solutions is
CONTIN, developed by Provencher [71]. Karatosos and Adolf [43, 42] and
others [10, 6, 3] have utilized CONTIN to obtain DRT’s of relaxation func-
tions. CONTIN determines the regularization parameter by invoking the
Principle of Parsimony, that is, by increasing the degree of regularization
until the point that the curve fit begins to break down. A more accessi-
ble constrained Tikhonov regularization MATLAB script was developed by
Berglund [16] and several different methods for determining the regularizing
parameter for a given problem exist [11].

However, it should be noted that the gain in stability in using Tikhonov reg-
ularization is matched by a loss in informational resolution. Therefore, one
must be careful of the confidence one has in the obtained model, especially
with inversions where a priori knowledge of the expected model is lacking.

2.2 Multi-exponential Model

Another heterogeneous model is a sum of decaying exponentials or multi-
exponential model. The difference between the multi-exponential and spec-
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tral models is that the spectral model is a linear inverse problem where
one seeks a continuous underlying distribution while the multi-exponential
model is a nonlinear problem which conveys similar information as the spec-
tral model but assumes the spectra to consist of a series of delta peaks.
The aforementioned review by Istratov includes several methods for multi-
exponential models not covered in this article. This paper deals with only
the most pertinent methods.

The Levenberg-Marquardt (LM) algorithm is a robust variant of Gauss-
Newton (GN) optimization (based on Newton’s root solving algorithm). It
is discussed in detail in the original papers [49, 54] and in the text [11]. It
differs from the GN method by the inclusion of an additional parameter to
ensure convergence. A notable difficulty in the method arises when there
exists several local minima in the plot of the residual in parameter space.
It becomes difficult to identify the global minimum of the problem. Unfor-
tunately, this is exactly the case in fitting a sum of exponentials. One can
work around this problem by utilizing several different but reasonable initial
guesses. This is referred to as the Multi-Start Method [11]. Additionally,
the locations or relative positions of the delta peaks can be user-defined to
remove degrees of freedom but without any theoretical reasoning this choice
will be arbitrary and limit the usefulness of the results.

2.3 The KWW and CD functions

Spectral and multi-exponential methods indeed provide very good fits of the
data, however, they are incapable of providing any clarity or insight into
the basis of the physical relaxation phenomena. If the intention of the re-
search is be able to relate the relaxation behavior to physical descriptors
such as a scalar metric then unique physically significant model parameters
are necessary. The difficulty with spectral methods is that in order to limit
the instability of the algorithm with regard to error one must lose informa-
tion through regularization. Additionally, it is arguable whether or not the
transformation into decay constant space provides any clarity of physics be-
cause the spectrum is more difficult to describe and fit than the relaxation
function itself. The problems associated with multi-exponential fitting are
non-uniqueness and limits in resolving close peaks. Also, there is a lack of
clear theoretical justification for one distribution of peaks versus another.
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Therefore the next functions of interest are chosen for their importance in
experimental research and their relatively small number of degrees of free-
dom. The direction of the research is very much into finding or refuting the
physical significance of the parameters in these functional forms.

The P2 function is very often fit in time space using the Kohlrausch-Williams-
Watts (KWW) or stretched exponential function:

P2 (t) = e−(t/τKWW )β (41)

which was first applied to capacitor discharge by Kohlrausch [44] and later
rediscovered and applied to dielectric relaxation by Williams and Watts [88].
The KWW function, however, has its own difficulties. Generally, it does
not fit the early and late regions of the decay very well and the β changes
quite substantially depending on how much of these early and late regions
one attempts to fit [14] in addition to the amount of error present. In past
literature the choice of the KWW region has been mostly arbitrary. How-
ever, the benefit of using a KWW fit is that it is very stable once a consistent
methodology for the fit region is developed. The β, which when written as
n = 1− β is the degree of non-exponentiality, is a very attractive candidate
as a system specific descriptor of relaxation behavior. Additionally, one can
make either an argument for a homogeneous or heterogeneous picture of the
decay physics as the stretched exponential has an associated spectrum for
each beta. As one can see in figure 13, the spectrum broadens with decreas-
ing beta [50].

In frequency space relaxation functions are not generally fit with a Fourier or
Laplace transform of the KWW function but instead with the Cole-Davidson
[24] (CD) function:

ε (ω)∗ − ε∞
ε0 − ε∞

= ε′N (ω)− ıε′′N (ω) =

(
1

1 + ıωτCD

)βCD
(42)

where the subscript N denotes that the storage and loss parts of the function
are normalized and the zero and infinity denote low and high frequency limits
respectively. Unless β=1, τKWW 6= τCD and βKWW 6= βCD. The KWW and
CD functions appear almost indistinguishable in time space, however, their
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Figure 13: τ spectrum of KWW function for different βs [50]

spectra are very different (figure 14) until β approaches a value of 1 (figure
15). A more in-depth evaluation and comparison of the KWW and CD
functions was performed by Lindsey and Patterson [50].
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Figure 14: Spectrum of KWW and CD functions: βKWW=0.5, βCD=0.37,
τKWW=0.25, τCD=1.0 [50]

Figure 15: Spectrum of KWW and CD functions: βKWW=0.95, βCD=0.95,
τKWW=1.0, τCD=1.0. Note how both spectra are starting to resemble delta
functions.
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3 Relevant Theoretical Models and Spin Glasses

There have been a number of attempts to formulate theoretical basis for
the relaxation behavior seen in viscoelastic materials, unfortunately, no such
theory has yet shown itself to be the definitive theory of relaxation and/or
the glass transition. I cannot cover all such theories since they are far too
numerous but I will provide an outline of the most pertinent. A detailed
explanation of these theories is outside the scope of this paper but can be
found in the accompanying references. I will stress only what is important for
this research. In addition, in this section I provide some information about
spin glasses with which much research has been done into the possible basis
of glassy behavior.

3.1 Rouse Model

Recalling the derivation of the equations of Time-Temperature Superposition
in section 1.1.4 the reader may remember that results from the Rouse Model
were utilized. The Rouse Model was perhaps the earliest theory of polymer
dynamics [75]. A polymer chain in the Rouse Model is represented by a num-
ber of beads (N) connected by springs with root mean square (RMS) length
b. The beads only interact through the springs and each bead’s behavior
is influenced by its own individual friction coefficient ζ. Using the Einstein
relation:

D =
kT

ζ
(43)

The Rouse Model predicts the diffusion coefficient for the chain to be [76]:

DR =
kT

Nζ
(44)

and thus one can obtain a characteristic “Rouse time” where the chain dif-
fuses a distance comparable to its size.

τR ≈
R2

DR

(45)

The size of the chain is generally related to the number of monomers by a
power law.
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R ≈ bN ν (46)

where 1/ν is the fractal dimension of the polymer.

Unfortunately this prediction for the diffusion coefficient is not consistent
with experimental results [26] as the diffusion coefficient for dilute polymers
is instead found to be proportional to the reciprocal of the square root of N.
However, from the Rouse Model one can derive a prediction of the end-to-end
autocorrelation function (that is, P2) [26].

P2 (t) = Nb2
∑

p=1,3,5...

8

p2π2
exp− p2

2τR
t (47)

As successive squares of small odd integers differ by more or less than factors
of two it is clear from the discussion presented in [40] that such a model may
be impossible to confirm. This is because the resolution for spectral and
multi-exponential methods is not, generally, fine enough to separate peaks
differing by less than a factor of two. The results of the application of this
model to our simulation results can be found in section 5.2.

3.2 Mode Coupling Theory

While the Rouse Model primarily deals with dilute polymer dynamics, Mode-
Coupling Theory (MCT) attempts to describe the onset of the glass transi-
tion and was first developed by Leutheusser [48] and Bentzelius et al. [13].
The idea behind MCT is that the fluctuation of a dynamic variable decays
through hydrodynamic modes [34]. That is, there exists a feedback mecha-
nism through which these fluctuations in the structure slow down and can-
not relax [47]. These relaxation modes are generally described by relaxation
spectra (see section 2.1). The glass transition is explained in the theory by
particle “caging” [31]. Particle caging is the idea that as a liquid becomes
more and more dense the neighboring particles form a sort of cage around
each other and that a particle must then do more and more work to escape
this cage.

An important prediction of MCT is that the longest relaxation time scales
as a power law [47]:
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τα ∝ (T − TC)−γ (48)

where TC is the critical temperature for the onset of the glass transition. The
immediate result of this prediction is that near the glass transition one would
expect viscosity to scale by this same power law as opposed to the Vogel-
Fulcher equation given earlier (equation (25)). It is also important to note
that TC 6= T0. Unfortunately it has been found that relaxation/viscosity data
is only described by a power law over a limited range and the Vogel-Fulcher
seems more appropriate. Götze and Sjögren [31] claim that this does not
necessarily imply a violation of MCT but that TC is not the glass transition
temperature but an important intermediate temperature between the glass
transition temperature and a temperature where the relaxation behavior is
approximately Arrhenius.

It has been found that some relaxation modes slow down at the glass transi-
tion (α relaxation modes) and some do not (β relaxation modes) [41]. Conse-
quently, it is then these α relaxation processes that are of particular interest
of researchers. In addition, these modes dictate material behavior on inter-
mediate to long timescales while β processes deal with fast decaying atomic
and quantum level phenomena. More detailed treatments of MCT can be
found in [72].

3.3 Coupling Model

The Coupling Model (CM), introduced over 30 years ago [56], has been pri-
marily the work of K.L. Ngai. The Coupling Model attempts to be a general
theory of relaxation. The idea behind CM [60] is the picture of a cooperative
system of identical relaxing species (such as ions in a viscous conductor or
entangled polymer chains). At short time the particles can be considered to
be non-interacting at short time and thus the relaxation rate is constant:

W (t) = W0 (49)

After some critical time, tC , the molecules interact more strongly and thus
the relaxation becomes slowed down. The relaxation rate is then:

W (t) = W0 (t/tC)−n (50)
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where,0 ≤ n ≤ 1 , is the “coupling parameter” which is a measure of the
degree of interaction and non-exponentiality. If one then solves for the re-
laxation function, using W0 = 1/τ0 one finds:

φ (t) = exp

[
−
∫ t

0

W (s) ds

]
=

{
exp [−t/τ0] , t < tC

exp
[
− (t/τ ∗)1−n] , t > tC

(51)

where,

τ ∗ = [(1− n)ωnCτ0]
1/(1−n) (52)

So we see that CM predicts the short time behavior to be essentially Debye.
This is a very important part of CM. As one can see in equation (50), if
this assumption were not made the relaxation rate would diverge in the limit
t→ 0.

In [60], Ngai et al. argue that a heterogeneous picture of relaxation, such
as given through spectra or distributions of relaxation times (DRT), is in-
compatible with the Coupling Model. They list a number of reasons for this.
For one, the relationship between τ0 and τ ∗ differs depending on whether the
KWW function was constructed from a Coupling Model or a DRT approach.
Their argument is that the interactions affect the relaxation in a way as to
make it non-exponential and not that is arises from the superposition of sin-
gle exponential Debye processes. A more in depth discussion is contained
in the article mentioned above. The main limitation of CM seems to be
that it does not provide a detailed explanation of molecular level relaxation
processes and how these exactly contribute to overall macroscopic behavior.
Additional information about the Coupling Model can be found in the al-
ready cited articles and in [58, 83]. Also, Philips has published a detailed
review of stretched exponential relaxation behavior [67].

3.4 Spin Glasses

A spin glass is a material that exhibits high magnetic frustration, that is, it
demonstrates an inability to remain in its ground state. A spin glass’s behav-
ior with respect to magnetization is very similar the behavior of viscoelastic
materials with respect to mechanical deformation. Below the material’s spin
glass transition temperature, when an applied magnetic field is removed,
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Figure 16: Changing β for 3-dimensional Potts model. q = number of frac-
tional spins available. q = 3 circles, red, q = 4 stars, violet, q = 5 squares,
black, q = 6 hexagons, magenta, and q = 8 triangles, blue [33].

the magnetization decays non-exponentially. As a result, spin glass models
are useful in the study of viscoelastic behavior [5]. Spin glasses are often
modeled by an Ising spin model or the more general Potts model. Such mod-
els are constructed from large arrays of interacting spins. In such models
correlation and autocorrelations are important in defining relaxation func-
tions for the systems. Researchers have found that one-dimensional Ising [52]
and 3-dimensional Potts [33] models exhibit physical glass behavior such as
stretched exponential decay and Vogel-Fulcher scaling of decay times. The
research on the 3-dimensional Potts model utilized KWW functional fits on
the function P(t) which was the fraction of spin sites that had not changed
spin. Halpern found actually found the parameter β for these functions to
vary with temperature which implies that TTS does not apply to these model
systems.
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4 Research Context: Physical Aging and Ma-

terial Clocks

At this point it becomes necessary to draw out the larger context for the
following research. It is probably not exactly clear to the reader how these
relaxation function relate to the mechanical moduli. The relationship be-
tween relaxation functions and dielectric data was made clear in section 1.5
when discussing the Fluctuation Dissipation Theorem. The relaxation spec-
tra of mechanical and dielectric data do differ [1], however, they appear very
similar when one narrows their view on the α relaxation region which was
introduced in the section on Mode Coupling Theory [22].

One important application of this research is in the field of physical or struc-
tural aging of polymers. Physical aging is the variation of physical variables
of a material as it approaches equilibrium after a perturbation [51]. If we
recall the discussion of viscoelastic behavior in the introductory chapters, we
know that physical relaxation, as occurs in a material approaching equili-
bration, can occur over timescales beyond what is practical experimentally
(often much longer than the expected lifetime of the typical experimental-
ist). For this reason, computer simulation, among other methods, is used to
provide the information with which one could predict long-term performance
of these materials.

Additionally, the picture of viscoelastic mechanical behavior in section 1.1.1
is a greatly simplified view. In reality, engineering objects using viscoelastic
materials is very difficult because one often operates in a range where the
response in nonlinear and the glassy nature of the material means that one
is dealing with a substance not in equilibrium. As a result, there is a great
deal of research into developing what are called nonlinear constitutive models
that can predict these more complicated material responses in addition to the
long-term behavior [55]. Such models often make use of ”material clocks.”
A material clock is a reduced material time, depending on the current state
and history of the material, that dictates the relaxation behavior and may
differ greatly from laboratory time. An overview of constitutive models and
material clocks can be found in the article by McKenna [55]. The clocks in
the models reviewed by McKenna either depend on stress or free volume. A
recent model developed D.B. Adolf et al., instead, looks to potential energy
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to describe the material time [2]. If such a constitutive model shows itself to
adapt well to predicting viscoelastic behavior, it could then be used in Finite
Element codes to be used by engineers.

The research presented in this paper fits into a proposed constitutive model
by providing detailed information about how the relaxation of a material
changes with respect to state variables. This information is hoped to fit into
a theoretical framework of the glass transition such as Mode Coupling The-
ory so that one is better able to predict the behavior. For example, if one is
working within the context of Mode Coupling Theory one would attempt to
fit the various relaxation parameters with power laws:

τ = (T − TC)γ (53)

where one could of course substitute some scalar metric in place of tempera-
ture, T. The details of such analysis is outside the scope of this paper. The
general idea is presented in order to help answer any questions of why such
research is being performed.
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5 Methods and Results

5.1 Spectral

Very quickly in the search for a procedure for analyzing our autocorrelation
functions it became clear that the spectral methods were not practical. The
first limitation of the method is the loss of information as a result of the
need to regularize. Because of this, it is difficult to believe in the reality of
the obtained spectrum. Since one of our intentions in the research is the
evaluation of Time-Temperature Superposition, this level of uncertainty is
undesirable. One of the main stipulations of TTS is that all relaxation times
of a system should shift the same with a change in temperature. In other
words, the distribution does not change from one temperature to another.
Thus we are stuck with the problem of the subjectively deciding what kind
of variation in spectrum would be significant enough to signal that TTS has
been violated.

In addition, the obtained distribution is very much dependent on the method
of regularization. One could employ the parsimony principle, as used in the
CONTIN program mentioned earlier, but then one is left trying to make
judgements about significant variations in the distribution for a set of dis-
tributions that is not believed to truly reflect the reality of the physical
phenomena.

The third limitation of the method is that such a procedure does not very
much simplify our view of the data. The obtained spectrum is more compli-
cated and more difficult or impossible to describe by a single function than
the original relaxation function. What is, instead, of practical interest is a
method resulting in a manageable number of physically relevant parameters.

5.2 Multi-exponential Model

The situation for a multi-exponential approach is slightly better. One can
use the predictions of the Rouse model (equation (47)) to attempt to reg-
ularize the problem. In order to evaluate this method the following fit was
performed:
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Figure 17: Eleven Term Multi-Exponential Fit: Low Packing Fraction

P2 (t) = A [exp−t/τ + 1/9 exp−9t/τ + 1/25 exp−25t/τ + . . .] (54)

The results of an eleven term fit for two systems on opposite ends of the
simulation range, in terms of packing fraction, are show in figures 17 and 18.

This procedure clearly leaves a lot to be desired in terms of fitting the
data. Even with a relatively large number of terms the P2 function is not
adequately described. There are many reasons for the failure of this method-
ology. First, the very use of this functional form assumes Time-Temperature
Superposition to hold. The fit is seen to transition from underestimating
the shorter time region at low packing fractions to overshooting it at high
packing fractions. This systematic failure of the fitting procedure seems to
suggest that TTS does not hold for our systems. Second, the coefficients of
our exponential series decrease as n−2. Thus if our relaxation curve is not
well described by two to three exponentials then it is unlikely that we will
obtain a reasonably good fit with a Rouse model at all.

Without the ability to use the Rouse model as a guide the situation is very
similar to that of spectral methods. Clearly we will need more than two
degrees of freedom in describing this function with a sum of exponentials
barring some new theoretical motivation as to the specific form of the series.
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Figure 18: Eleven Term Multi-Exponential Fit: High Packing Fraction

If one uses very few parameters in constructing a fit of the data the assump-
tion of Time-Temperature Superposition is often necessary. On the other
hand if one wants to fit the function as a way to explore whether or not TTS
should be assumed then one tends to get bogged down in a large number of
degrees of freedom. In the latter case, the ill-posedness of the problem makes
it very difficult to then reduce the number of parameters to something more
reasonable and again it is hard to judge what kind of variation in any of
these parameters to be significant.

5.3 The KWW Model

The KWW stretched exponential function is a very attractive choice in light
of the above problems. The advantage of the KWW function is that it works
very well for a large variety of data. The main source of difficulty in the
KWW fit is the determination of the region of fitting. The P2 function gen-
erally exhibits non-stretched (non-KWW) behavior at very short and very
long times. At long time, the function behaves similar to a single exponential
until the function becomes noise limited at approximately P2 (t) = 0.05 or
later depending on the quality of the simulation run. It is unclear, however,
exactly where the noise becomes dominant and it is possible that the func-
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tion actually becomes non-exponential in the region before becoming noise
limited.

5.3.1 The Ballistic Region

At short time the P2 function displays ’ballistic’ behavior. The behavior
in this regions is not adequately described by a single exponential (figure
(19)). It is described better when a stretched exponential fit is used up but
this fit often fails as well and unnecessarily influences other regions of the fit
making it more difficult to correctly nail down β. The idea behind the term
’ballistic’ is that it is assumed that at short times the chains have not felt
the potentials of their neighbors and thus are moving at constant angular
velocities. Thus, one assumes this behavior is approximately described by
P2 (t) = 3

2
cos t − 1

2
then to a rough approximation the short time behavior

of the plot of ln− lnP2 is close to linear with a slope of two. Fitting the
cosine to the earlier region appears to be more accurate for some systems and
impossible for others. This is probably due to the discrete sampling of the
P2 function. As the ballistic region is not expected to shift with state point
one ends up losing the necessary data to resolve this region as one simulates
systems that relax more and more slowly. Getting the LM algorithm to
converge for this method is also difficult. An additional concern is whether
the numerical precision in the algorithm becomes a significant factor at such
early times where thousands of numbers very close to one are averaged.

However, the ballistic region does not seem to be of much interest experi-
mentally. What will be found in section 5.3.3 is that this region can be fit
reasonably well by extending the obtained stretched exponential function to
short times. Additionally, as we will see when the Cole-Davidson function is
explored, a very accurate fit of this region does not significantly impact the
representation of the relaxation function in frequency space as this region
gets lost in the high frequency noise. Therefore, we will focus instead on the
more important intermediate to long-time regions of the P2 autocorrelation
function.

Regardless of which model: KWW, spectral or multi-exponential, is used it
is not very difficult to produce a very good fit of the data. Unfortunately,
these fit often have some degree of non-uniqueness and the minimum of the
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Figure 19: Multi-exponential Fit of ”Ballistic” Region

Figure 20: Stretched Exponential Fit of ”Ballistic” Region
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Figure 21: Cosine fit of ”Ballistic” Region

residuals in parameter space tend to be shallow or contain multiple local min-
imums. Therefore one often obtains large uncertainties with regard to the
exact values of the parameters. It then becomes difficult to decide which P2
parameters are changing and which staying the same in group of simulations
at different state points.

5.3.2 Time-Temperature Superposition Revisited

The principle of Time-temperature superposition would suggest that the P2
functions of these different simulations should overlay given a correct scaling
of the axes and indeed they appear to overlay to some extent depending on
when one considers the ’ballistic’ region to end and where the single exponen-
tial region begins. However, given how relatively featureless the P2 functions
are, it is difficult to know what kind of variances between different relaxation
functions are truly significant. Such an overlay, shifting the curves such that
all the curves line up at P2 (t) = 0.5, is shown in figure (22). If the raw data
overlays without difficulty one expects the functional fits to have parame-
ters, which given the same scaling, are the same. For example, one would
expect the β for the KWW fit to remain constant or the relative positions
of the multi-exponential decay constants and the magnitudes to remain the
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Figure 22: Overlay plot of P2 decays for several different state points

same (see discussion in section 1.1.4). Unfortunately, depending on which
region of the function one fits with a stretched exponential, the extent of the
ballistic region and the error present, the β can change to such an extent as
to make an attempt to correlate it with packing fraction, or another scalar
metric, impossible. Clearly a consistent method of determining the region
of the fit is necessary to determine whether or not the parameter is changing.

5.3.3 Method for Fitting the KWW function to P2 Relaxation
Functions

We have developed such a method. The ”stretched” region is found through
plotting what has been termed the Lindsey-Patterson (LP) form:

ln (− lnP2 (t)) (55)
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against the Modified Lindsey Patterson (MLP) form:

ln

(
−d lnP2 (t)

d ln t

)
(56)

and finding where the slope is one. Given the assumption that P2 has KWW
behavior, one is plotting

β ln t− β ln τ + ln β (57)

versus

ln

[(
t

τ

)β
− lnA

]
(58)

Then, in the region where
(
t
τ

)β � lnA the second term reduces to

β ln t− β ln τ (59)

and thus one expects a slope of one in the stretched exponential region given
that our approximation is valid. Since A is almost always very near to one,
a region where this approximation is valid has been found for every obtained
P2 function. One then plots the LP form, the modified LP form and the
original P2 versus ln t over this reduced domain and find the parameters β,
τKWW , and possibly A for each one using a Levenberg-Marquardt algorithm.
However, the numerical derivative greatly magnifies the error present and
may make it difficult to find a slope one region. As a result, much of the
data accumulated by previous students was not of high enough precision to
be usable and a great deal of work was required to reduce the numerical error
present in the data.

The graph in figure 23 demonstrates how one finds the stretched exponential
region using this method. The validity of the approximation in equation (59)
is confirmed if a slope one region is found for the system. As a result of this
assumption the determined stretched exponential region can be found to be
very small. Fortunately, the KWW function constructed by the obtained
parameters seem to adequately describe a much larger region. The constant,
A, is often reintroduced into the fit of P2 on the restricted time domain in
order to confirm that the region conforms to the approximation. Interestingly
enough, when this parameter, A, is used in the fitting P2 versus time the
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Figure 23: ln
(
−d lnP2(t)

d ln t

)
versus ln (− lnP2 (t))

obtained beta is very close to the β found when fitting the modified Lindsey
Patterson form but when A is assumed to be one the obtained β is much
closer to the value obtained from fitting the regular Lindsey Patterson form.
Solving for β and τkww for several different packing fractions (figure 5.3.3)
leads to strong argument for a changing β which would appear to violate
TTS. According to some, this would imply that system is near the glass-
transition [68]. However, given that the correlation between β and packing
fractions holds for very low packing fractions, this cannot be the case.

What we see in figures 5.3.3 and 26 is that the relaxation behavior is very
close to Debye-like at low packing fractions and β decreases with increasing
packing fraction. According to the Coupling Model we are seeing this as a
result of increased interaction between the chains. It is interesting that the
curve for freely jointed systems has begun to level off at a nonzero value of
β. Thus, the simulation material is rheologically simple (i.e. TTS holds)
only at higher packing fractions. The curve for the freely rotating systems
may just be beginning to level off but one cannot know for sure until our
computational capacity improves.

53



Figure 24: Stretched Exponential Fit

Figure 25: Changing Beta for Freely Rotating (Circles) and Freely Jointed
(Squares) Systems
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Figure 26: Changing Beta for Freely Rotating (Circles) and Freely Jointed
(Squares) Systems

A non-constant β is not without precedent in the literature. It is very often
seen in the experimental work of Ngai and his colleagues [59, 57, 66] and
we saw earlier that it occurs in spin-glass models of viscoelastic behavior.
Since packing fraction is generally difficult to obtain experimentally, most
researchers plot β versus τKWW . In order for us to better connect our results
with experiment, it is useful to plot β versus τKWW (figure 26).

After fitting the stretched region it is relatively simple procedure to fit the
single exponential ”tail” region. This region, however, generally contains
much more error as a result of the method of calculation (see section 1.5).
One approach is to roughly determine the domain of the single-exponential
tail by performing a log transformation of the data and finding the long-
time linear region then performing a weighted LM fit of the untransformed
data on this restricted domain. One expects the residuals of this fit to vary
systematically in the region better described by another function (such as
the stretched exponential) and this is indeed found to be the case (figure
27). Repeating this procedure for several iterations one ends up with a very
reasonable fit of the data (figure 28).
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Figure 27: Residuals Obtained Fitting Tail Region with Single Exponential

From the results of this fitting procedure across a large number of systems
one can see that τtail scales with τKWW (figure 29). Additionally, the con-
stant, B, is seen to correlate with packing fraction in the same way as β
(figure 30), however, with a great deal of scatter.

5.3.4 The KWW Model in Frequency Space

These methodologies have allowed us to have a little more confidence in our
obtained values. The restricted domains found for both the stretched expo-
nential and single-exponential regions are often relatively small. However,
the piecewise combination of these two functions appears to describe the en-
tire curve very well and additionally the two curves match very closely in the
cross-over region. We can evaluate this description of the P2 function more
quantitatively by performing the following transform:

P2 (ω) =

∫ ∞
0

−dP2

dt
e−ıωtdt (60)
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Figure 28: Final Fit of Tail Region

Figure 29: Comparison of τtail and τKWW
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Figure 30: Long-time single exponential constant, B,versus packing fraction

of both the data and our piecewise construction and overlay the two trans-
formed functions. To avoid introducing error associated with a numerical
derivative one utilizing the following property:

L
(
−dφ (t)

dt

)
= ıωL [φ (t)]− φ (0) (61)

An example overlay for the transformed data and fit for the imaginary part
of the transform is shown in figure 31. The result is fairly good but it but can
be improved by patching the long-time region of the P2 function with the ob-
tained single-exponential fit instead of truncating the curve. The patch is be-
gun where the function begins to become noise limited (P2 (t) ≈ 0.10→ 0.05)
to attempt an limit the amount of bias introduced into the transform. The
result is much nicer as is seen in figure 32. The obvious consequence is that
we have made an assumption about the long-time behavior of the relaxation
function. As the low-frequency (and thus long-time) region of the patched
and non-patched transform seem to agree it is clear that we have not intro-
duced much bias.
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Figure 31: Overlay of Loss P2

Figure 32: Overlay of Patched Loss P2
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Unfortunately, there appears to be a fair amount of high frequency oscillation
in the transformed time-space fit. This is a result of the inexact crossover
from the stretched exponential to the single exponential tail introducing a
discontinuity into the curve. The discontinuity could be avoided if the con-
tinuity of the cross-over point is somehow factored into the fitting procedure
or perhaps introducing some smooth interpolant inbetween the two behavior
regions. However, we are concerned primarily with producing good parame-
ter values and not so much with the exact transform of our fit.

5.4 The Cole-Davidson Model

5.4.1 Transforming the Data and Time-Temperature Superposi-
tion

Figure 33: A) P2 function for an FR system of temperature 1.6 and density
1.06. B) The transform of the P2 function for the same system. The non-
patched data are the noisy grey squares while the patched in the smooth
black line
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The Cole-Davidson functional form was evaluated by using the same one-
sided Fourier transform of the data described in equation (60). In actually
performing the transform of the time-dependent data one must cautiously
weigh the consequences of truncation. The area of the data as it approaches
zero becomes dominated by high-frequency noise which one does not wish
to include but one also does not wish to introduce truncation error either.
The approach used for these data sets was to use the long-time single ex-
ponential fit found earlier to “patch” the long-time region of the relaxation
function and effectively remove this high-frequency noise without sacrificing
the character of the long-time tail. In figure 33 one can see an example of this
transform for a FR system with and without the patch. It is clear that the
inclusion of the patch smoothes the curve while retaining the fundamental
shape.

One can attempt to apply TTS to the frequency data as was attempted with
the time domain data (figure 34). One can see that the loss functions seem
to overlay very well on a log-log scale but the differences become very clear
when one, instead, plots the data on a linear-log scale.

The inapplicability on TTS to this dataset becomes even more apparent when
using a Cole-Cole (CC) [21] plot (see figure 35). One can see that the various
curves differ significantly when plotted in this manner and they seem to be
qualitatively similar to the CD function.

The reader may notice that many of the curves in figure 3 appear to cross the
y-axis while the function forms seem to approach the origin tangent to the
y-axis. This y-axis crossing behavior is actually expected for realistic systems
and also occurs in the Debye model when molecular inertia is accounted for
[70]. The derivation of this expectation follows from the assumption that
for a realistic relaxating system the time-dependent relaxation function must
have a slope of zero at time zero.

5.4.2 Cole-Davidson Fitting

After performing the transform one then fits the CD function by reducing it
into real and imaginary parts obtaining:
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Figure 34: A) Attempted overlay of loss functions for repulsive FJ systems
(T,ρ,η): (1.8, 0.593, 0.3037),(1.8, 0.676, 0.3462) and (0.5, 1.06, 0.6207) (black
squares, red circles and blue triangles). The insert is a close up of the peak
on a linear-log scale. B) Same as A but attempted for repulsive FR systems
(1.6, 0.6123, 0.318), (2.0, 0.944, 0.477) and (1.6, 1.06, 0.5633) (black squares,
red circles and blue triangles)

(
1

1 + ıωτ

)β
= cos βΘ cosβ Θ− ı sin βΘ cosβ Θ (62)

where:

Θ = arctanωτ (63)

Then one can either fit the real and imaginary parts simultaneously or sep-
arately again using a nonlinear least squares algorithm. The section of the
curve near the Nyquist cut-off, ω = π∆t, was not used in the fits as the error
due to finite sampling begins to dominate the behavior of the transform in
that region. The separate fits are shown in figures 36 and 37.
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Figure 35: A) CC plots for FJ systems (T,ρ,η): (1.8, 0.593, 0.3037)-R,(1.8,
0.676, 0.3462)-R and (0.5, 1.06, 0.6207)-R (black squares, red circles and
blue triangles). The insert is a close up of the peak on a linear-log scale. B)
Same as A but for FR systems (1.6, 0.6123, 0.318)-R, (2.0, 0.8056, 0.407)-R
and (0.8, 0.944, 0.552)-A (black squares, red circles and blue triangles). The
dashed lines correspond to the Debye function and a CD function of β=0.5

These fits appear to work fairly well. However, they are shown using a
logarithmic x-axis which sometimes makes the fits look better than they
really are. In figure 38 we see that the CD function does not exactly describe
the location and shape of the peak in the loss modulus.

However, there may not exist any simple functional forms that could per-
form any better. Fits of the more complicated Havriliak-Negami form were
attempted:

G (ω)∗ −G∞
G0 −G∞

=

(
1

1 + (ıωτCD)α

)βCD
(64)

and the additional parameter, α, converged to a value of one and thus corre-

63



Figure 36: LM fit of Real Part of Transform

sponded to the CD form. Regardless, the CD function seemed to perform to
a satisfactory level across a wide range of state points for both FR and FJ
systems (see figure 39).

Applying this fitting procedure to the same systems as used for the KWW fit-
ting one obtains the relationships with packing fraction seen in figure 40.The
reported values of βCD and τCD are the average of those obtained from fitting
the real and imaginary parts. It was found that the behavior of βCD with
respect to η very closely mirrors that of βKWW as is seen in figures 40A and
40C. Both methods result in a collapse of the parameter, β, with regard to
packing fraction.
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Figure 37: LM fit of Imaginary Part of Transform

Figure 38: Closeup of LM fit of Imaginary Part of Transform
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Figure 39: A) and B) Storage and loss plots for repulsive FJ systems with
CD fits (T,ρ,η,β,τ): (0.5, 1.06, 0.621, 0.575, 3544.5),(1.0, 1.033,0.566, 0.581,
196.56) and (1.8, 0.676 0.3462, 0.6508, 10.494) (red circles, blue squares and
green triangles). C) and D) Same for FR systems: (1.6, 1.06, 0.5633, 0.545,
83720)-A, (2.0, 0.944, 0.477, 0.606, 10.35)-R and (1.2, 0.6628, 0.356, 0.662,
39.61)-R
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Figure 40: A) Obtained s for FJ systems. The solid green triangles and
inverted black triangles represent KWW fits for repulsive and attractive sys-
tems respectively. The solid blue squares and red diamonds represent CD
fits for repulsive and attractive systems respectively. B) The obtained s for
the same FJ systems using same labeling scheme as A. C) Obtained s for FR
systems using the same scheme as A. D) The obtained s for the same FR
systems using same labeling scheme as A.
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5.4.3 Comparison of the CD and KWW forms

At first glance it appears that the two functions merely differ by some con-
stant. In fact, the relationship between βCD and βKWW is found to be linear
(figure 41A) for FR and FJ systems. The relationships obtained by least
squares fitting were:

βKWW = 0.747βCD + 0.253 (65)

for FJ systems and:

βKWW = 0.778βCD + 0.223 (66)

for FR systems. The fits were regularized by taking advantage of the fact
that for βCD = 1 the curve is a Debye function and therefore it is required
that βKWW = 1 as well. These relationships differ from the one found by
Lindsey and Patterson [50] (solid line in figure 6A):

βKWW =

{
0.970βCD + 0.144 0.2 ≤ βCD ≤ 0.6

0.683βCD + 0.316 0.6 ≤ βCD ≤ 1.0.
(67)

It is possible that this difference reflects the fact that our relaxation functions
were not found to be globally described by a KWW function but rather only
in a small intermediate region in time.

A similar correlation between the KWW and CD functions was found for
the decay constants τKWW and τCD (figures 40B and 40D). The relationship
(figure 6B) between τKWW and τCD was found to be:

τKWW = τCD(1.1877βCD − 0.1877) (68)

τKWW = τCD(1.141βCD − 0.141) (69)

for FJ and FR systems respectively. Again the least squares fits were regu-
larized by applying the constraint that when the curve is a Debye function,
βCD = βKWW , then it is required that τCD= τKWW . The Lindsey-Patterson
prediction for the decay constant seems reasonable for FJ systems but not
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for FR systems:

τKWW = τCD(1.184βCD − 0.184) (70)

Figure 41: A) Cross-plot of βs obtained through KWW and CD fits of the
data. The solid red circles correspond to FJ-attractive and the hollow to FJ-
repulsive. The solid blue squares correspond to FR-attractive and the hollow
to FR-repulsive. The solid line corresponds to the relationship found by
Lindsey and Patterson. B) Cross-plot of τ obtained through KWW and CD
fits of the data. The solid line is the predicted relationship by Lindsey. The
solid red circles correspond to FJ-attractive and the hollow to FJ-repulsive.
The solid blue squares correspond to FR-attractive and the hollow to FR-
repulsive.

The difference between the mappings of the CD relaxation parameters to
those of the KWW function for each system is not altogether unexpected
and may possibly indicate variation in the composition of the relaxation
functions for the systems (FJ and FR) and/or some difference in descriptive
bias between the two functional forms (KWW and CD).
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5.4.4 Discussion

The decision of which functional form one should use to describe relaxation
phenomena is not one to be taken lightly. The behavior of the various func-
tions are actually quite different when the underlying distributions of re-
laxations times are studied [38, 81]. It has been found that one type of
representation of relaxation can often be adequately described by another
for certain parameter and frequency ranges [50, 78, 6, 7, 35] however the
commonly found mappings from one function to another can be inaccurate
in other instances [38]. The KWW function is very often used due to the lack
of competing time-space functions that describe relaxation. As is clear from
the above sections, the KWW function does not seem to be as practical as
the CD function in describe the decay of the end to end vector. Describing
the intermediate to long regions of this decay in time required the use of both
a KWW and single exponential function and a total of six parameters. The
CD function appears to achieve a high quality fit in frequency using only
two. Using the inverse transform [88, 50]:

P2 (t) =

∫ ∞
0

G′′ (ω)

G0 −G∞
cosωt

dω

ω
(71)

where G0−G∞ is chosen as to normalize the result and applying this trans-
form to the CD fit (figure 42) one can see the CD function works surprisingly
well in time space.

In figure 42 the fits of the KWW and CD functions for a sample E(t) are
compared both in time and by using a CC plot. It can be seen that these two
fits describe very different regions of the decay function. The KWW func-
tions seems more appropriate in the short to intermediate time regions while
the CD function fits much better for the intermediate to long time domain.
The KWW function could, of course, be fit a number of other ways (figure
43) however, as was shown earlier, the fitting would be performed over the
wrong region. It also becomes clear from figure 42 and 43 that without using
additional terms (such as a single exponential) the frequency spectrum will
not be adequately fit by a KWW function. In the context of our previous
findings, it is surprising that such a good fit of the data is obtained using
only the CD function. The underlying distribution of relaxation times (figure
14) of the CD function increases rapidly and then displays a sharp cut-off
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Figure 42: A) Comparison of KWW fit (dotted black line) as calculated by
the method of section 5.3.3 and the inverse transform of the CD fit (dotted
red line) of a repulsive FR system (T=2.0, ρ=0.944, η=0.477). The original
data corresponds to the solid blue line. The insert is a close-up of the short
time region to emphasize the difference between the KWW and CD fits in this
region. B) Comparison of transformed KWW and CD function fits plotted
in a Cole-Cole fashion using the same color scheme as part A.

at large times while the distribution for the KWW function slowly decays to
zero at large relaxation times. The sharp cut-off present in the distribution
for the CD function ensures that there exists a well defined largest relaxation
time, in other words, a single exponential tail.

The differences in the descriptive bias of the KWW and CD functions are
made even more clear when one attempts to map the parameters of one
function to another in spite of the discrepancy between the underlying dis-
tributions of relaxation times. Many such attempts exist in the literature
[50, 74, 91] however the obtained mappings almost always differ from each
other to some significant extent. This lack of correspondence is likely due
to differences in fitting procedure and/or, if the map is attempted through
experimental or simulation data, the fact that the underlying data is not
likely to be perfectly described by either or both of the functions over their
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Figure 43: A) Cole-Cole plot of the transformed data (red circles) and trans-
form of KWW function (blue squares) using parameters predicted from LP
and the obtained CD parameters. B) Corresponding losses for fit in part A.
C) Cole-Cole plot of transformed data (red circles) and transform of KWW
function (blue squares) using parameters which provide and excellent fit of
the low frequency regions. D) Corresponding loss plots for fit in part C.

entire domains. It has been seen in earlier sections and [9] that the KWW
function parameters can be very sensitive to the manner to which they are
obtained. These details in the fitting procedure may not have been ade-
quately addressed in previous comparisons of the KWW and CD functions.

5.5 Torsional Systems

The results of CD fit are promising, however, we have only considered the FR
and FJ models thus far. The addition of a torsional barrier to the dihedral
angles of the simulated chains greatly complicates matters. Two relaxation
functions, the P2 and DACF, must be dealt with. Recalling section 1.3 we
know the magnitude of the peaks of the torsional barrier to coincide with a
temperature of 2.8 in Lennard-Jones units. It was found for temperatures
greater than approximately 2.0 that the systems did not differ in overall
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behavior significantly from the FR systems. Packing fraction functioned rea-
sonably well as a scalar metric for the diffusion coefficient and the DACF
curves decayed very quickly compared with the P2 function. However, as one
approaches lower temperatures the situation is very different.

5.5.1 Diffusion and the Scalar Metric

Figure 44: The square of D∗ versus η for repulsive Torsion systems. One can
see the beginnings of separate density lines in stark contrast to the smooth
single-valued function that existed for FR and FJ systems (see figure 9)

For the FR and FJ systems the work of finding a suitable scalar metric was
primarily the work of former students [18, 36]. Their results functioned as a
foundation from which the chain relaxation could be explored and then com-
pared to. Unfortunately, for systems with torsional barriers packing fraction
ceased to be a suitable scalar metric. In figure 44 one can see this breakdown
occurring.
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One witnesses the beginnings of individual curves for each density form as
the temperature decreases significantly below 2.0. As a result it was decided
to follow the method of Casalini and Roland [20] in which one uses the fol-
lowing collapse function:

C = T−1V −γ =
ργ

T
(72)

where V is the specific volume and γ is a material dependent constant. The
parameter, γ is generally obtained via trial and error. In figure 45 one can
see the result of this procedure applied to D∗.

Figure 45: The square of D∗ versus ρ4.15

T
for repulsive Torsion systems.

It is easily seen that this result is much cleaner than the one obtained us-
ing packing fraction. The same procedure can be applied to other dynamic
quantities for which, in general, the value of γ will differ. It is unfortunate
that this is the case because one is thus required to collect a number of γ
values to describe a single material.

74



5.5.2 P2 and the DACF

Figure 46: β versus τ for repulsive Torsion systems. The squares correspond
to the P2 function and the inverted triangles to the DACF

Not only for the diffusion coefficient did the addition of torsional barriers
complicate matters. In dealing with the relaxation functions not only was
packing fraction unavailable as a scalar metric but the parameters of these
functions also ceased to be single valued functions of the decay constant τ .
The P2 and DACF were both fitted using the procedure outlined for the FR
and FJ data. The stretching exponent, β was a function of both τ and T
(figure 46).

Even the relationship between the decay constant of the P2 function and the
DACF is not a simple matter. As the temperature of the system is decreased
the DACF begins to decay much more slowly than the P2 function resulting
in the DACF becoming the limiting relaxation process. Applying the CR
procedure to β one obtains the result in figure 47

A reasonable collapse is thus obtained. However, one begins to wonder that
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Figure 47: β versus ρ11

T
for repulsive Torsion systems. The squares correspond

to the P2 function and the inverted triangles to the DACF

when using such a large value of γ whether the collapse function is really
physically relevant. One could, for example, be merely plotting the data in
such a way that the differences between the points are made only to look
less significant. Without any tie to a physical theory it is difficult to know.
The procedure is applied to the decay constants in figure 48. In this plot
one sees that a collapse of τ for the DACF with regard to the CR collapse
function does not seem possible. It is clear that a great deal more work will
be necessary in the search for a scalar metric for this data.
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Figure 48: Left) τ versus ρ4.15

T
for repulsive Torsion systems. The squares

correspond to the P2 function and the inverted triangles to the DACF Right)

τ versus ρ11

T
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6 Conclusions

There are several important messages to be extracted from the body of work
presented in this paper. Some of these messages pertain to the specifics of
the results and others, more general, which pertain to the field as a whole.
It is hoped that from the results section the difficulty of extracting useful in-
formation from relaxation functions is clear. In dealing with data that does
not contain distinguishing landmarks it is not easy to know when differences
in the data become significant or whether one is analyzing the correct region.
Additionally, it becomes apparent that a more consistent theory of relaxation
in disordered materials is necessary to make the analysis of such materials
both more practical and more applicable to reality.

The need for such a theory is most evident when attempting to fit P2 func-
tions or the DACF where one is required to make use of empirically based
fitting functions. The use of the KWW function posed several difficulties
because of the fact that the function only applies in a narrow region. While
the methodology presented above renders the determination of this region
much easier than it was before one is still required to piece together several
functions to describe a single continuous curve.

With the CD function, on the other hand, one is able to almost completely
describe the relaxation using only two parameters. However, unless one per-
forms their simulation or experiment in the frequency domain one is faced
with the difficult task of transforming the data. One must balance many
requirements to successfully transform the data. One wishes to eliminate
noise without altering the fundamental character of the data.

Several options exist for dealing with this issue. One could truncate and risk
losing important data, smooth and risk significantly altering the data’s char-
acter or having to dedicate greater amounts of time in collecting the data in
order to reduce the influence of noise. Fortunately for the FR and FJ and
some of the torsion systems the single exponential “tail” of the relaxation
function could be used to smooth only the last region of the data where the
amplitude of the noise becomes greater than that of the signal. However, it
was found to be impossible to determine the the single exponential region
for many of the DACFs obtained from high temperature Torsional systems.
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There were other difficulties in analyzing the Torsional model that did not
exist for the FR and FJ models. All of the assumptions that could be used for
the simpler molecular models were clearly not applicable. A suitable scalar
metric could be found for individual relaxation parameters but no scalar met-
ric could be found to be universally applicable and in the case of τDACF no
such metric could be discovered. Clearly a new approach will be necessary
to remedy this problem.

The completion of the above work was no trivial matter. In simulation re-
search the data gathering process can be very long and tedious. In contrast
to a great deal of experimental research the costs associated with this data
gathering process lies only with time and manpower. Without the limita-
tion of having to buy expensive materials to perform the research on or new
expensive equipment whenever one seeks to explore a new aspect of the re-
search the expectations on the quality of the data thus becomes much more
stringent. While only about one hundred unique data points are shown in
the above plots each point represented tens of hours of work. Data for a sin-
gle state point would often be rerun several times as ever higher standards
of precision became necessary. Additionally, several different methods would
often be explored simultaneously each with their own requirements from the
data.

The field of this research requires a great deal of background knowledge that
one is generally unlikely to encounter in the course of one’s undergraduate
education. Making sense of all of it can seem to be an insurmountable task
and it often easy to lose sight of the big picture. It is hoped that this paper
will serve not only as a review of all the work performed for the last year and
a half but also as a useful guide for those beginning work in closely related
areas.
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