
COMPARISON BETWEEN AN INFEASIBLE
INTERIOR POINT ALGORITHM AND A

HOMOGENEOUS SELF DUAL ALGORITHM FOR
SEMIDEFINITE PROGRAMMING

by

Qian Xia

Submitted in Partial Fulfillment

of the Requirements for the Degree of

Masters in Mathematics

New Mexico Institute of Mining and Technology

Socorro, New Mexico

Jan. 18, 2006

ABSTRACT

Semidefinite Programming (SDP) involves the optimization of a linear

cost function subject to linear constraints over symmetric positive semidefinite

matrix variables. One important issue in the design of interior point codes

for SDP is the use of an infeasible interior point method versus the use of the

homogeneous self dual reformulation. Infeasible interior point methods begin

with a solution that may be infeasible with respect to the linear equalities but

is feasible with respect to the positive semidefiniteness constraints. Some types

of semi-definite programming problems are hard to solve using an infeasible

interior point method. For example, if the problem has an unbounded optimal

region, most infeasible interior point methods have difficulty. The homogeneous

self dual (HSD) reformulation produces a problem with a bounded optimal

region, with a known strictly feasible starting point.

In this project, we implement both an infeasible interior point (IIP)

and a homogeneous self dual (HSD) algorithm for semi-definite programming.

We compare the algorithms in terms of robustness, iteration counts and CPU

time.

TABLE OF CONTENTS

LIST OF TABLES iii

1. LINEAR and SEMIDEFINITE PROGRAMMING 1

1.1 Linear Programming . 1

1.2 Semidefinite programming . 3

2. AN INFEASIBLE INTERIOR POINT (IIP) METHOD FOR

SDP 6

2.1 Introduction . 6

2.2 First Order Necessary Condition (FONC) 9

2.3 Predictor Step . 11

2.4 Corrector Step . 13

2.5 Stopping Conditions . 14

3. A HOMOGENEOUS SELF DUAL (HSD) METHOD FOR

SDP 16

3.1 Introduction . 16

3.2 Homogeneous self dual linear programming 16

3.3 Homogeneous self dual algorithm for Semidefinite programming 20

3.3.1 First Order Necessary Condition 26

3.3.2 Predictor and Corrector steps 28

3.3.3 Stopping Conditions . 37

i

4. COMPUTATIONAL RESULTS 39

4.1 Introduction . 39

4.2 Comparison of Robustness . 42

4.3 Comparison of Efficiency, Iteration Counts and CPU time 42

5. CONCLUSIONS 61

Bibliography 62

ii

LIST OF TABLES

4.1 Accuracy (maximum error) . 43

4.2 Accuracy (maximum error) . 44

4.3 Accuracy (maximum error) . 45

4.4 Accuracy (maximum error) . 46

4.5 Contingency Table for HSD and IIP 47

4.6 Contingency Table for SeDuMi and CSDP 47

4.7 Time per iteration . 48

4.8 Time per iteration . 49

4.9 Time per iteration . 50

4.10 Time per iteration . 51

4.11 Iteration counts . 52

4.12 Iteration counts . 53

4.13 Iteration counts . 54

4.14 Iteration counts . 55

4.15 CPU time, seconds . 56

4.16 CPU time, seconds . 57

4.17 CPU time, seconds . 58

4.18 CPU time, seconds . 59

iii

CHAPTER 1

LINEAR and SEMIDEFINITE PROGRAMMING

1.1 Linear Programming

Linear programming problems (LP) involve optimizing a linear func-

tion of a vector of variables subject to linear constraints. The standard form

of the linear programming problems is

Primal maximize cT x (1.1)

subject to Ax = b, (1.2)

x ≥ 0, (1.3)

where c and x ∈ Rn, b ∈ Rm, and A ∈ Rm×n. Here cT x is called the objective

function; Ax = b is a system of linear equation constraints and x ≥ 0 is a

nonnegativity constraint. If x satisfies the constraints Ax = b and x ≥ 0, it is

called a feasible solution.

The first practically efficient method for linear programming was the

simplex method. But as the problems to be solved became larger, its high

complexity became an obvious disadvantage, because the simplex method could

require an exponential number of iterations. For example, the Klee-Minty

problem requires 2n simplex iterations[15, 22].

1

2

In 1979, Khachiyan developed the ellipsoid method which is a poly-

nomial algorithm for linear programming, but because it converges slowly, it is

not competitive with the simplex method on big problems[22].

In 1984, Karmarkar developed an interior point method without ref-

erence to the dual to solve linear programming that was polynomial, requiring

O(n log 1
ε
) iterations. It was shown to be practically efficient[22].

In 1992, Yinyu Ye developed a homogeneous self dual algorithm to

solve linear programming. It reformulates the linear programming problem and

then applies a primal-dual method to solve the reformulated problem[23].

Any linear program has associated with it another linear program that

is called the dual and the original one is called the primal. These two problems

have the same data objects arranged in different ways. The associated dual

problem in standard form is:

(Dual) minimize bT y (1.4)

subject to AT y − c ≥ 0, (1.5)

where y ∈ Rm is the dual variable.

Assume the constraint matrix A has linearly independent rows. We

define the primal-dual feasible set F and strictly feasible set F 0 by :

F = {(x, y, z)|Ax = b, AT y − z = c, x, z ≥ 0},

F 0 = {(x, y, z)|Ax = b, AT y − z = c, x, z > 0} [23].

There are several theorems that describe the relationship between the

primal and dual problems. Proofs can be found in [5].

3

Theorem 1 (Weak Duality in Linear Programming). Each value of the

primal objective function for a primal feasible solution provides a lower bound

for every value of the dual objective function [5].

Theorem 2 (Strong Duality in Linear Programming). If a primal prob-

lem possesses an optimal solution then its dual has an optimal solution and

optimal values of the two problems are equal [5].

Theorem 3 (Complementary Slackness in Linear Programming). At

optimality, each dual linear constraint is active or the corresponding primal

variable is 0 or both [5].

We define the duality gap as: the difference between the primal and

dual objective values of primal and dual feasible solutions, bT y − cT x.

1.2 Semidefinite programming

Semidefinite programming is a generalization of linear programming

in which symmetric matrices as well as real vectors are included among the

variables, and positive semidefiniteness conditions on the matrix variables are

included in the constraints. This definition is taken directly from [22].

To extend the idea of Linear Programming to Semidefinite program-

ming, we have semidefinite programming (SDP) problems in the following stan-

dard form [3]:

4

(Primal) maximize tr(CX) (1.6)

subject to A(X) = b, (1.7)

X � 0 (1.8)

(Dual) minimize bT y (1.9)

subject to AT (y)− Z = C, (1.10)

Z � 0 (1.11)

where

A(X) =

tr(A1X)
tr(A2X)

...
tr(AmX)

AT (y) =

m∑
i=1

yiAi.

When X = diag(x) is a diagonal matrix, the semidefiniteness con-

straint is simply x ≥ 0 and the SDP is a linear program. At the same time the

objective function tr(CX) and constraints A(X) = b are linear combination of

the elements of X[1, 3, 16].

X � 0 is the only nonlinearity in the semidefinite program. The set of

symmetric and positive semidefinite matrices forms a convex cone, so we have

a convex optimization problem. In practice, X and Z are often block diagonal.

Each block must be positive semidefinite[1, 3, 16].

Most primal-dual interior-point methods for linear programming have

been generalized to semidefinite programming. As in linear programming,

5

these methods have polynomial worst-case complexity, and perform very well

in practice[22].

Semidefinite programming unifies several standard problems and has

been applied to many fields, such as electrical engineering, structural engineer-

ing and combinatorial optimization[2, 20].

There are several theorems that describe the relationship between the

primal and dual problems to the semidefinite program[6]. Proof can be found

in [21].

Theorem 4 (Weak Duality in Semidefinite Programming). Each value

of the primal objective function provides a lower bound for every value of the

dual objective function [6].

Theorem 5 (Strong Duality in Semidefinite Programming). If the

optimal primal and dual objective values are finite and both the primal and

dual problems have strictly feasible solutions, then the optimal primal and dual

objective values are equal [6].

Theorem 6 (Duality Gap in Semidefinite Programming). If X and Z

are primal and dual feasible, the duality gap is equal to tr(ZX) [6]. When

X and Z are primal and dual optimal, tr(ZX)=0. This is the complementary

slackness theorem in semidefinite programming.

CHAPTER 2

AN INFEASIBLE INTERIOR POINT (IIP) METHOD
FOR SDP

2.1 Introduction

A simple interior-point method for LP starts from a strictly feasi-

ble point near the central path, but in some cases it is not easy to find a

strictly feasible point. In fact, the set of strictly feasible points is empty for

some problems[22]. Infeasible interior-point methods for linear programming

do not require the initial point to be strictly feasible, but instead require x0, z0

components be strictly positive. Newton’s method steps then move successive

solutions towards primal and dual feasibility. Infeasible interior point methods

have also been developed for SDP[22].

The algorithm used in this project is a predictor corrector variant

of the algorithm of Helmberg, Rend, Vanderbei and Wolkowicz (HRVW)[9].

It is known as the HKM method. This is because the method was devel-

oped independently in three separate papers. The HKM search direction was

developed independently by Helmberg, Rendl, Vanderbei, and Wolkowicz[9],

Kojima, Shindoh, and Hara[10] and Monteiro[14]. H, K, M are the initials of

the first authors of the three papers. HKM uses Newton’s method to solve the

first order necessary condition for a logarithmic barrier problem. As the barrier

parameter µ is reduced, the optimal solutions to the barrier problem approach

optimal solutions to the SDP.

6

7

We implement an infeasible interior point method to solve semidefinite

programming problems in the MATLAB environment in this project, based on

an article of Brian Borchers[1].

We begin with a logarithmic barrier problem[1]:

maximize tr(CX) + µ log det X (2.1)

(PBP) A(X) = b (2.2)

X � 0 (2.3)

where µ > 0 is the barrier parameter. To get the dual problem, firstly, we

introduce the Lagrange function with the dual variable y:

L(y, X) = tr(CX) + µ log det X − yT (A(X)− b). (2.4)

The dual of this problem will be miny(maxX(L(y, X))). To get the maximum

of L(y, X), we take the derivative of L(y,X) respect to X and let it be equal to

0. We obtain

C + µX−1 − AT (y) = 0. (2.5)

This will be the equality constraint of the dual variable problem. Then

µX−1 = AT (y)− C. (2.6)

Let

AT (y)− C = Z, (2.7)

so that

µI = ZX (2.8)

8

or

X = µZ−1. (2.9)

Applying the trace operation to both sides of (2.5), we obtain

tr((C + µX−1 − AT (y))X) = 0 (2.10)

tr(CX) + tr(µI)− yT A(X) = 0 (2.11)

tr(CX) + nµ− yT A(X) = 0 (2.12)

tr(CX)− yT A(X) = −nµ. (2.13)

Rewrite the tr(CX)− yT A(X) and X in L(y, X), then we have

max(L(y, Z)) = yT b− nµ + µ log det (µZ−1) (2.14)

max(L(y, Z)) = bT y − nµ + nµ log µ− µ log det Z. (2.15)

In (2.15), “−nµ + nµ log µ” is constant, so the dual variable barrier problem

can be written as

minimize bT y − µ log det Z (2.16)

(DBP) AT (y)− C = Z (2.17)

Z � 0. (2.18)

The solutions of the barrier problems trace out a curve called the

central path. Goldfarb and Scheinberg showed that the primal and dual cen-

tral path converge to the analytic center of the optimal set[8]. However Hal-

icka, Klerk and Roos showed that this conclusion is correct only when we

have a strictly complementary solution[11], which means the solution satisfies

rank(X)+rank(Z)=n.

9

2.2 First Order Necessary Condition (FONC)

Let us get started from the logarithmic barrier problem to derive the

FONC. The Lagrangian function of DBP is

L(y, Z) = bT y − µ log det Z − tr(XT (AT (y)− c− Z)). (2.19)

Here, y and Z are the dual variables. Taking the derivative of L with respect

to Z, we have

∂L

∂Z
= −∂(µ log det Z)

∂Z
+

∂(tr(XT Z))

∂Z
(2.20)

∂L

∂Z
= −µZ−1 + X. (2.21)

To get an optimal solution, we need ∂L/∂Z = 0, so −µZ−1 + X = 0.

Thus we have

µI = ZX. (2.22)

This is a complementary slackness condition. When we get to the optimal

point, µ will be equal to 0. Taking the trace of both sides, we obtain

tr(µI) = tr(ZX) (2.23)

nµ = tr(ZX) (2.24)

µ =
tr(ZX)

n
, (2.25)

as µ approaches 0, tr(ZX) goes to zero.

So a pair of primal and dual optimal solutions to (PBP) and (DBP)

satisfy µ = tr(ZX)
n

. Now we have the first order necessary conditions for the

10

barrier problem

Z + C − AT (y) = 0 (2.26)

b− A(X) = 0 (2.27)

µI = ZX (2.28)

X � 0 (2.29)

Z � 0. (2.30)

The first two equations and the last two matrix inequalities come

from primal and dual feasibility for the SDP. The third equation is the comple-

mentarity condition. Because our initial solutions might not be feasible with

respect to the constraints, we define the primal and dual infeasibilities as

Fp = b− A(X) (2.31)

Fd = Z + C − AT (y). (2.32)

If our algorithm strictly follows the central path, i.e., let µ = tr(ZX)
n

in each iteration, we will find that there is no progress made. On the other

hand, if we let µ = 0 in each iteration, the solution quickly reach the boundary.

Once it gets close to boundary, it will be very difficult to continue making good

progress. So our algorithm consists of two major steps: a predictor step and

a corrector step. In the predictor step, we determine how much of a decrease

in µ is possible. In the corrector step, we use that µ in system (2.26-2.30) and

take a Newton’s method step.

Before we can talk about the predictor step and corrector step, we

need to know our initialization. We follow the method in K.C.Toh, M.J.Todd

11

and R.H. Tutuncu’s paper[19].

X0 = diag(ξiIni
), y0 = 0, Z0 = diag(ηiIni

), (2.33)

where i=1, · · · , L (number of blocks), ni is the size of block i, Ini
is the identity

matrix of order ni, and

ξi = ni max
1 + |bk|

1 + ‖A(i)
k ‖F

, 1 ≤ k ≤ m

ηi =
1 + max[maxk{‖A(i)

k ‖F}, ‖C(i)‖F]
√

ni

.

2.3 Predictor Step

We can apply a Newton’s method step for the first order necessary

conditions and we let µ = 0. Let

F(X, y, Z) =

 Z + C − AT (y)
b− A(X)

ZX

 (2.34)

The gradient of F respect to X,y,Z is :

∇F =

 0 −AT I
−A 0 0
Z 0 X

 . (2.35)

Then, the Newton’s method step is obtained by solving

∇F

 ∆X
∆y
∆Z

 = −F(X, y, Z). (2.36)

12

By (2.31) and (2.32), we have: 0 −AT I
−A 0 0
Z 0 X

 ∆X
∆y
∆Z

 =

 −Fd
−Fp
−ZX

 (2.37)

Expand this system and we have the Newton’s method equations for this step

−A(∆X) = −Fp (2.38)

∆Z − AT (∆y) = −Fd (2.39)

Z∆X + ∆ZX = −ZX (2.40)

.

The following method to solve these three equations is taken directly

from a talk of Brian Borchers. We solve for (∆Z, ∆y, ∆X) from these three

equations. First, we can solve for AT (∆ y) from (2.39), we have

AT (∆y) = Fd + ∆Z. (2.41)

Then, multiply this equation by Z−1 on the left and X on the right and apply

A() to both sides and we have

A(Z−1AT (∆y)X) = A(Z−1FdX) + A(Z−1∆ZX). (2.42)

By equation (2.40), we have ∆ZX = −ZX − Z∆X, so

A(Z−1AT (∆y)X) = A(Z−1FdX) + A(Z−1(−ZX − Z∆X)) (2.43)

A(Z−1AT (∆y)X) = A(Z−1FdX) + A(−X) + A(−∆X) (2.44)

A(Z−1AT (∆y)X) = A(Z−1FdX) + A(−X) + A(X)− b (2.45)

A(Z−1AT (∆y)X) = A(Z−1FdX)− b. (2.46)

13

We define the Schur complement matrix O as

O =
[
A(Z−1A1X) · · ·A(Z−1AmX)

]
. (2.47)

The equation (2.46) can be written as

O∆y = A(Z−1FdX)− b. (2.48)

Once we’ve solved for ∆y, we can solve for ∆Z and ∆X by

∆Z = −Fd + AT (∆y) (2.49)

∆X = −X − Z−1∆ZX. (2.50)

∆X might not be symmetric, because the product of symmetric matrices could

give us an unsymmetric matrix. We can keep ∆X symmetric by letting

∆Xs =
∆X + ∆XT

2
. (2.51)

After we get the direction (∆Xs, ∆y, ∆Z), we need to keep the point feasible.

We use a line search to find the maximum step length. Details of the eigenvalue

line search technique are in section 3.3.2.

2.4 Corrector Step

When the point is close to the boundary, the primal-dual method

performs badly. In the corrector step, we can bring the point back to the

central path[16].

We set µ̃ = tr(ZpXp)

n
(the subscript p means we use Z, X computed

14

from the predictor step), and solve

∆Z − AT (∆y) = −Fd (2.52)

−A(∆X) = −Fp (2.53)

Z∆X + ∆ZX = −ZX + µ̃I. (2.54)

We can solve this system of equations in the same way as the predictor step.

The Schur complement matrix O can be reused, so the factorization of O doesn’t

need to be repeated. After we get the movement direction, we use the same

principles as in the predictor step to find the maximum step length. Finally,

we update the variables.

2.5 Stopping Conditions

In each iteration, we need to check the following conditions:

Primal Feasibility:

‖A(X)− b‖2

1 + ‖b‖2

< τ

Dual Feasibility:

‖AT (y)− C − Z‖F

1 + ‖C‖F

< τ

Duality Gap:

tr(ZX)

1 + |bT y|+ |tr(CX)|
< τ

In theory, for primal and dual feasible solutions,

tr(ZX) = bT y − tr(CX).

15

We showed this in section 1.2. In practice, even when the primal and dual

feasibility are satisfied, the two sides of this equation can be different because

of the computational round off errors. In some cases, the objective function

gap is negative. We use tr(ZX) in this project. We let τ = 1e-8.

The following are the main steps for IIP:

1. compute the initial value (X0, y0, Z0) by (2.33)

2. use a loop until a stopping criterion is satisfied

(a) predictor step

i. compute Schur complement matrix O by (2.47)

ii. compute the search direction (∆X, ∆y, ∆Z) using HKM method

by (2.50),(2.48),(2.49)

iii. compute the step length αp, αd

iv. update the variables

(b) corrector step

i. compute µ using µ = tr(ZpXp)

n

ii. compute the search direction (X0, y0, Z0) using HKM method

by solving (2.52)(2.53)(2.54)

iii. compute the step length αp, αd

iv. update the variables

CHAPTER 3

A HOMOGENEOUS SELF DUAL (HSD) METHOD
FOR SDP

3.1 Introduction

E. de Klerk showed that the initialization strategy of embedding a

linear programming problem in a skew-symmetric self dual problem can also

be extended to the semi-definite case[7]. By using this reformulation, the ini-

tialization problem of semi-definite problems is solved.

In this project, we are aiming to implement a homogeneous self dual

skew-symmetric algorithms to solve semidefinite programming problems in the

MATLAB environment. Following the method of SDPHA, a rank-4 update

technique is employed in this algorithm[17].

3.2 Homogeneous self dual linear programming

Homogeneous means that the right-hand sides of the constraints are

zeros. Self duality can be defined as following[23]:

Let Ã ∈ Rp×p be skew-symmetric (meaning ÃT = −Ã), and let b̃ =

−c̃ ∈ Rp then the problem

minimize c̃T µ̃ (3.1)

subject to Ãµ̃ ≥ b̃, (3.2)

µ̃ ≥ 0 (3.3)

16

17

where µ̃ ∈ Rp, is called a self dual linear programming problem.

The associated dual of this problem is

maximize b̃T ỹ (3.4)

subject to ÃT ỹ ≤ c̃, (3.5)

ỹ ≥ 0. (3.6)

Because b̃ = −c̃ and ÃT = −Ã, the primal and dual are exactly the same except

that the variable names are different. For self dual linear problems, there is the

following theorem.

Theorem 7[23]: The self dual linear problem is equivalent to its dual. Suppose

that self dual linear problem has a feasible solution µ̃, then µ̃ is also feasible

in the dual problem, and the two objective values sum to zero. Moreover, in

this case self dual linear programming problem has an optimal solution, and

its optimal value is zero.

A proof can be found in [23].

Ye presents a homogeneous self dual linear program (HLP) relating

(LP) and (LD)[23]. Given any x0 ≥ 0, z0 ≥ 0 and y0, he formulated the HLP

as

(HLP) min ((x0)T z0 + 1)θ (3.7)

subject to Ax− bτ + b̄θ = 0 (3.8)

− AT y + cτ − c̄θ ≥ 0 (3.9)

bT y − cT x + ḡT θ ≥ 0 (3.10)

b̄T y + c̄T x− ḡτ = −(x0)T z0 − 1 (3.11)

18

where y is free, x ≥ 0, τ ≥ 0, θ is free, b̄ = b − Ax0, c̄ = c − AT y0 − z0,

z̄ = cT x0 + 1− bT y0.

Constraints (3.9),(3.10) can be written as

− AT y + cτ − c̄θ − z = 0 (3.12)

bT y − cT x + ḡθ − κ = 0 (3.13)

where z ≥ 0, κ ≥ 0.

There are the following theorems about homogeneous self dual linear

problems. They are taken directly from [23].

Theorem 8[23]

1. (HLD) has the same form as (HLP), i.e., (HLD) is simply (HLP) with

(y, x, τ, θ) being replaced by (y′, x′, τ ′, θ′).

2. (HLP) has a strictly feasible point

y = y0, x = x0, τ = 1, θ = 1, z = z0 > 0, κ = 1.

3. (HLP) has an optimal solution and its optimal solution set is bounded.

4. The optimal value of (HLP) is zero, and for any feasible point (y, x, τ, θ, z, κ) ∈

Fh, where Fh denotes the set of all points(y,x,τ ,θ,z,κ) that are feasible for

(HLP),

((x0)T z0)θ = xT z + τκ. (3.14)

19

5. There is an optimal solution (y∗, x∗, τ ∗, θ∗, z∗, κ∗) ∈ Fh such that

(
x∗ + z∗

τ ∗ + κ∗

)
> 0.

Theorem 9[23] Let (y∗, x∗, τ ∗, θ∗ = 0, z∗, κ∗) be a strictly self-complementary

solution for (HLP).

I. (LP) has a solution (feasible and bounded) if and only if τ ∗ > 0.In this case,

x∗/τ ∗ is an optimal solution for (LP) and (y∗/τ ∗, z∗/τ ∗) is an optimal

solution for (LD).

II. If τ ∗ = 0 then κ∗ > 0, which implies that cT x∗ − bT y∗ < 0, i.e., at least

one of cT x∗ and −bT y∗ is strictly less than zero. If cT x∗ < 0 then (LD)

is infeasible; if −bT y∗ < 0 then (LP) is infeasible; and if both cT x∗ and

−bT y∗ < 0 then both (LP) and (LD) are infeasible.

A proof can be found in [23].

COROLLARY [23]

Let (ȳ, x̄, τ̄ , θ̄ = 0, z̄ = 0, κ̄) be any optimal solution for (HLP). Then if κ̄ > 0,

either (LP) or (LD) is infeasible.

Interior-point algorithms can be used to solve (HLP). The following

theorem resembles the central path analyzed for (LP) and (LD).

Theorem 10[23] For any µ > 0, there is a unique (y, x, τ, θ, z, κ) in F 0
h such

that (
Xz
τκ

)
= µe

20

where X = diag(x) denotes the diagonal matrix with diagonal entries equal

to the components of x, and e is an vector with all the entries equal to 1.

newheadline Let (dy, dx, dτ , dθ, dz, dκ) be in the null space Q of the constraint

matrix of (HLP) after adding surplus variables z and κ, i.e.,

Adx − bdτ + b̄dθ = 0 (3.15)

− AT dy + cdτ − c̄dθ − dz = 0 (3.16)

bT dy − cT dx + ḡT dθ − dκ = 0 (3.17)

− b̄T dy + c̄T dx − ḡT dτ = 0 (3.18)

Then we have

(−dx)
T dz − dτdκ = 0. (3.19)

Theorem 10 defines the path in (HLP)[23]:

L =

{
(y, x, τ, θ, z, κ) ∈ F 0

h : (
Xz
τκ

) =
xT z + τκ

n + 1
e

}
. (3.20)

3.3 Homogeneous self dual algorithm for Semidefinite programming

In this chapter we use a slightly different form of semidefinite program

(Primal) minimize tr(CX) (3.21)

subject to A(X) = b (3.22)

X � 0 (3.23)

(Dual) maximize bT y (3.24)

subject to AT (y) + Z = C (3.25)

Z � 0 (3.26)

21

It can be shown that this form is equivalent to the standard form

(Primal) maximize tr(CX) (3.27)

subject to A(X) = b (3.28)

X � 0 (3.29)

(Dual) minimize bT y (3.30)

subject to AT (y)− Z = C (3.31)

Z � 0 (3.32)

stated in Chapter1.

Proof : The objective function of the primal problem in standard form (3.19)

is equivalent to minimizing −tr(CX). By multiplying equation(3.22) by -1, we

have

−A(X) = −b. (3.33)

Then, the associated dual will be :

(Dual) minimize − bT y (3.34)

subject to − AT (y) + Z = −C (3.35)

Z � 0 (3.36)

Let C ′ = −C, b′ = −b, A′ = −A. Then, the standard form is

equivalent to

22

(Primal) minimize tr(C ′X) (3.37)

subject to A′(X) = b′ (3.38)

X � 0 (3.39)

(Dual) maximize b′T y (3.40)

subject to A′T (y) + Z = C ′ (3.41)

Z � 0. (3.42)

So the first form and the standard form have the same optimal solution, except

the objective function values have different signs.

The reason we do this is to match the SDPHA notation. It is easy to

transform a standard form of SDP to this form:

1. the primal objective function is changed from

maximize tr(CX)

to

minimize − tr(CX).

2. the primal constraints are changed from

subject to A(X) = b (3.43)

X � 0 (3.44)

23

to

subject to −A(X) = −b (3.45)

X � 0. (3.46)

3. the dual objective function is changed from

minimize bT y

to

maximize − bT y.

4. the dual constraints are changed from

subject to AT (y)− Z = C (3.47)

Z � 0 (3.48)

to

subject to −AT (y) + Z = −C (3.49)

Z � 0. (3.50)

Following the HSD method for linear programming, we can rewrite

the semi-definite programming problems in this form:

primal minimize cT x (3.51)

subject to Ax = b (3.52)

X � 0 (3.53)

24

The dual to primal can be written as

dual maximize bT y (3.54)

subject to AT y + z = c (3.55)

Z � 0 (3.56)

where A = [vec(A1), vec(A2), · · · , vec(Am)]T , c = vec(C), x = vec(X), z =

vec(Z). The notation vec() means the operation of converting a matrix to a

column vector with the same elements as the matrix in column-major order.

This form is very similar to the form of linear programming.

We can extend the homogeneous self dual algorithm to semidefi-

nite programming. Following the method of the homogeneous self dual linear

programming algorithm, the above problems can be embedded in the skew-

symmetric self dual problem with nonempty interior as:

min ᾱθ (3.57)

Ax − bτ + b̄θ = 0 (3.58)

− AT y + cτ − c̄θ − z = 0 (3.59)

bT y − cT x + ḡT θ − κ = 0 (3.60)

− b̄T y + c̄T x − ḡτ = −ᾱ (3.61)

25

where

A = [vec(A1), vec(A2), · · · , vec(Am)]T (3.62)

c = vec(C) (3.63)

x = vec(X) (3.64)

z = vec(Z) (3.65)

mat(z) � 0 (3.66)

mat(x) � 0 (3.67)

τ ≥ 0 (3.68)

κ ≥ 0 (3.69)

b̄ =
bτ 0 − Ax0

θ0
(3.70)

c̄ =
AT y0 + z0 − cτ 0

θ0
(3.71)

ḡ =
cT x0 − bT y0 + κ0

θ0
(3.72)

ᾱ =
(z0)T x0 + τ 0κ0

θ0
. (3.73)

26

It is clear that the above constrains are equivalent to the following form

min ᾱθ (3.74)

A(X) − bτ + b̄θ = 0 (3.75)

− AT (y) + Cτ − C̄θ − Z = 0 (3.76)

bT y − tr(CX) + ḡT θ − κ = 0 (3.77)

− b̄T y + tr(C̄X) − ḡτ = −ᾱ (3.78)

X � 0 (3.79)

Z � 0 (3.80)

τ ≥ 0 (3.81)

κ ≥ 0 (3.82)

where C̄ is a matrix converted from the vector c̄ with the same elements.

3.3.1 First Order Necessary Condition

To derive the first order necessary conditions, we can use the La-

grangian method. First, we construct the associated barrier problem

min ᾱθ − µ(log det X + log det Z + log κ + log τ) (3.83)

+ A(X) − bτ + b̄θ = 0 (3.84)

− AT (y) + Cτ + C̄θ − Z = 0 (3.85)

+ bT y − tr(CX) + ḡT θ − κ = 0 (3.86)

− b̄T y − tr(C̄X) − ḡτ = −ᾱ. (3.87)

27

where µ >0 is the barrier parameter. Then we introduce the Lagrangian mul-

tipliers ŷ ∈ R, X̂ ∈ Rn×n
+ , τ̂ ∈ R+ and κ̂ ∈ R+. For each µ >0, there is a

corresponding Lagrangian function:

Lµ(X, y, Z, θ, κ, τ) (3.88)

=ᾱθ − µ(log det X + log det Z + log κ + log τ) (3.89)

− ŷT (A(X)− bτ + b̄θ) (3.90)

− tr(X̂T (−AT (y) + Cτ + C̄θ − Z)) (3.91)

− τ̂(bT y + tr(CT X) + ḡθ − κ) (3.92)

− θ̂(−b̄T y − tr(C̄T X)− ḡτ + ᾱ). (3.93)

To get the optimal solution, we let ∂Lµ/∂Z = 0 and ∂Lµ/∂κ = 0.

Then we have −µZ−1 + X̂ = 0 and −µκ−1 + τ̂ = 0, meaning

ZX̂ = µI (3.94)

κτ̂ = µ (3.95)

When µ approaches 0, these two equations are also the complementary equa-

tions for problem (3.74-3.78). By the properties of the self dual problem (3.74-

3.78). At the optimal point, X̂ = X, τ̂ = τ , we have

ZX = 0 (3.96)

κτ = 0. (3.97)

28

We can generalize the first order necessary conditions as

A(X) − bτ + b̄θ = 0 (3.98)

− AT (y) + Cτ − C̄θ − Z = 0 (3.99)

bT y − tr(CX) + ḡT θ − κ = 0 (3.100)

− b̄T y − tr(C̄X) − ḡτ = −ᾱ (3.101)

ZX = 0 (3.102)

τκ = 0. (3.103)

The first four equations are from constraints and the last two are the comple-

mentary equations.

We use the HKM method to obtain a search direction. Let

(y0, X0, τ 0, θ0, Z0, κ0) = (0, I, 1, 1, I, 1).

It is a strictly feasible solution, because if you plug this point into constraints

(3.75-3.78), all of them will be satisfied, also, X0 � 0 and Z0 � 0.

The algorithm consists of two steps: the predictor step and the cor-

rector step.

3.3.2 Predictor and Corrector steps

Predictor step:The predictor step is simply a Newton’s method step

for the first order necessary conditions. The equations for this step are

29

A(∆X) − b∆τ + b̄∆θ = 0 (3.104)

− AT (∆y) + C∆τ − C̄∆θ −∆Z = 0 (3.105)

bT ∆y − tr(C∆X) + ḡT ∆θ −∆κ = 0 (3.106)

− b̄T ∆y + tr(C̄∆X) − ḡ∆τ = 0 (3.107)

Z∆X + ∆ZX = −ZX
(3.108)

∆τκ + τ∆κ = −τκ.
(3.109)

We solve for the direction from this equation system. We then compute the

proper step length σ̄ such that Xk + σ̄∆Xp > 0, Zk + σ̄∆Zp > 0, τ k + σ̄∆τp > 0,

κk + σ̄κ̄p > 0.

We derived a simple procedure to compute the direction

(∆y, ∆X, ∆τ, ∆θ, ∆Z, ∆κ)

following the method of SDPHA[4].

Let

ĀT = [AT ,−c,−c̄] (3.110)

rc = −τκ. (3.111)

Let E, F ∈ Rn2×n2
, Rc ∈ Rn×n be such that

Evec(∆X) = vec(XZ∆X) (3.112)

Fvec(∆Z) = vec(X∆ZX) (3.113)

Rc = −XZX. (3.114)

30

Then equation(3.108) has the equivalent vector form:

Evec(∆X) + Fvec(∆Z) = vec(Rc) (3.115)

By equation(3.109) and equation(3.111), we have

∆κ =
rc

τ
− κ

τ
∆τ. (3.116)

By equations(3.105) and (3.110), we have

ĀT

 ∆y
∆τ
∆θ

 = −vec(∆Z). (3.117)

Multiplying ĀE−1F times both sides of the (3.117), we have

ĀE−1FĀT

 ∆y
∆τ
∆θ

 = −ĀE−1Fvec(∆Z). (3.118)

By equation(3.115), we have:

E−1Fvec(∆Z) = −(vec(∆X)− E−1vec(Rc)) (3.119)

Then we have:

ĀE−1FĀT

 ∆y
∆τ
∆θ

 = Ā(vec(∆X)− E−1vec(Rc)) (3.120)

ĀE−1FĀT

 ∆y
∆τ
∆θ

 = Āvec(∆X)− ĀE−1vec(Rc). (3.121)

Because

ĀT = [AT ,−c,−c̄], (3.122)

31

and

rc = −τκ, (3.123)

Āvec(∆X)− ĀE−1vec(Rc) =

 Avec(∆X)
−cT vec(∆X)
−c̄T vec(∆X)

− ĀE−1vec(Rc). (3.124)

By equations(3.104) (3.106) and (3.107), we have

Āvec(∆X)− ĀE−1vec(Rc) =

 ∆τb−∆θb̄
−bT ∆y − ḡ∆θ + ∆κ

b̄T ∆y + ḡ∆τ

− ĀE−1vec(Rc).

(3.125)

Because ∆κ = rc

τ
− κ

τ
∆τ , we have

Āvec(∆X)− ĀE−1vec(Rc) =

 ∆τb−∆θb̄
−bT ∆y − ḡ∆θ + rc

τ
− κ

τ
∆τ

b̄T ∆y + ḡ∆τ

− ĀE−1vec(Rc).

(3.126)

Āvec(∆X)− ĀE−1vec(Rc) =

 0m×m b −b̄
−bT −κ

τ
−ḡ

b̄T ḡ 0

 ∆y
∆τ
∆θ

+

 0m×1
rc

τ

0

− ĀE−1vec(Rc). (3.127)

Let

rh =

 0m×1
rc

τ

0

− ĀE−1vec(Rc). (3.128)

32

By (3.121), (3.127) we haveĀE−1FĀT −

 0m×m b −b̄
−bT −κ

τ
−ḡ

b̄T ḡ 0

 ∆y
∆τ
∆θ

 = rh. (3.129)

Let

O = ĀE−1FĀT (3.130)

=
[
Ā(Z−1Ā1X) · · · Ā(Z−1ĀmX)Ā(Z−1(−C)X)Ā(Z−1(−C̄)X)

]
. (3.131)

We notice that the computation of the matrix O is the same as in the

infeasible interior method, except that we use Ā instead of A. Let

M = O +

 0m×m 0m×1 0m×1

01×m
κ
τ

+ α1 0
01×m 0 α2

 (3.132)

f1 =

 0m

1
0

 , g1 =

 b
0
0

 , f2 =

 0m

0
−1

 , g2 =

 b̄
ḡ
0

 (3.133)

p = (f1, f2,−α1f1 − g1,−α1f2 − g2); q = (g1, g2, f1, f2). (3.134)

Equation(3.129) can be written as:

(
M + pqT

) ∆y
∆τ
∆θ

 = rh (3.135)

It can be shown that M is symmetric and positive definite following the method

in [9].

Proof: If we can show O is symmetric and positive definite, we can say that

M is symmetric and positive definite. By definition O=ĀE−1FĀT .

Let Ā(v) = v1A1 + v2A2 + · · ·+ vm+1(−C) + vm+2(−C̄).

33

For any v ∈ Rm+2,

Let N = vT (O)v

= vT (ĀE−1FĀT)v

= (ĀT v)T E−1FĀT v

= vec(ĀT (v))T E−1Fvec(ĀT (v))

= (vec(ĀT (v)))T vec(XĀT (v)Z−1)

= tr(ĀT (v)T XĀT (v)Z−1)

= tr(ĀT (v)X
1
2 X

1
2 ĀT (v)Z− 1

2 Z− 1
2)

= tr(Z− 1
2 ĀT (v)X

1
2 X

1
2 ĀT (v)Z− 1

2)

= (vec(Z− 1
2 ĀT (v)X

1
2))T vec((X

1
2 ĀT (v)Z− 1

2)T)

= (vec(Z− 1
2 ĀT (v)X

1
2))T vec(Z− 1

2 ĀT (v)X
1
2)

= kT k.

Since X and Z−1 are positive definite and the equality constraints are linearly

independent, we have k = vec(Z− 1
2 ĀT X

1
2) = 0 , if and only if v=0. When

v 6= 0, we have N > 0. It follows that the matrix O is positive definite.

34

Because Ai, X, Aj, Z−1 are symmetric, we have

Oij

=tr(AiZ
−1AjX)

=tr((AiZ
−1AjX)T)

=tr(XT AT
j (Z−1)T AT

i)

=tr(XAjZ
−1Ai)

=tr(AjZ
−1AiX)

=Oji.

It follows that matrix O is symmetric. At the same time, κ
τ

+ α1 ≥ 0, α2 ≥ 0

and

M = O +

 0m×m 0m×1 0m×1

01×m
κ
τ

+ α1 0
01×m 0 α2

 (3.136)

Thus M is symmetric and positive definite.

So we can let M = LLT . Then by the last equation, we have ∆y
∆τ
∆θ

 = (M + pqT)−1rh (3.137)

= (LLT + pqT)−1rh (3.138)

= [L[I + (L−1p)(L−1q)T]LT]−1rh. (3.139)

By using the fact that[15]

(I + µvT)−1 = I − µ(I4 + vT µ)−1vT , (3.140)

35

we have ∆y
∆τ
∆θ

 = L−T [I − µ(I4 + vT u)−1vT]w (3.141)

= L−T [wT − µ(I4 + vT µ)−1vT w] (3.142)

where µ = L−1p, v = L−1q, w = L−1rh. Using the FONC and we can now solve

for ∆X, ∆Z and ∆κ. Finally, compute the step length using the eigenvalue

technique stated in the next page.

Corrector Step: After we get the step direction

(∆yp, ∆Xp, ∆τp, ∆θp, ∆Zp, ∆κp) in the predictor step, we solve this following

linear system in the corrector step

A(∆X)− b∆τ +b̄∆θ = 0 (3.143)

− AT (∆y) + C∆τ −C̄∆θ −∆Z = 0 (3.144)

+ bT ∆y −tr(C∆X) +ḡT ∆θ −∆κ = 0 (3.145)

− b̄T ∆y +tr(C̄∆X)− ḡ∆τ = 0 (3.146)

Z∆X + ∆ZX = (ξµI − ZX)−∆Zp∆Xp (3.147)

∆τκ + τ∆κ = ξµ− τκ−∆τp∆κp (3.148)

where

µ =
tr(ZpXp) + τp × κp

n + 1
(3.149)

and ξ = 1. Then we compute the proper step length σ̄ such that Xk + σ̄∆Xc >

0, Zk + σ̄∆Zc > 0, τ k + σ̄∆τc > 0, κk + σ̄∆κc > 0.

We followed the method of SDPHA to compute the step length σ̄[4].

36

Let

X = LLT . (3.150)

Because we need to keep X + σ̄∆X � 0, we need

L−1(X + σ̄∆X)L−T � 0 (3.151)

or

I + σ̄L−1∆XL−T � 0 (3.152)

or

σ̄L−1∆XL−T � −I. (3.153)

i.e.

L−1∆XL−T � −(
1

σ̄
)I (3.154)

i.e.

−min(eig(L−1∆XL−T)) ≤ 1

σ̄
(3.155)

where min eig means to find the minimum eigenvalue of the matrix.

Let σ1 = −min(eig(L−1∆XL−T)) (3.156)

We use the same principle for Z to compute the step length.

Let σ2 = −min(eig(L−1∆ZL−T)). (3.157)

Let σ3 = −∆τ/τ. (3.158)

Let σ4 = −∆κ/κ. (3.159)

Then σ̄ = 1
max(σ1,σ2,σ3,σ4)+100ε

, where ε is the machine epsilon. Finally, update

the variables.

37

3.3.3 Stopping Conditions

When the following conditions are met, we stop computation.

Primal Feasibility:

‖ τb−ATvec(X)
τ

‖
‖b‖+ 1

< tol

Dual Feasibility:
‖ −

∑m
i=1 yiA + Ciτ − Z‖F

‖C‖F + 1
< tol

Duality Gap:
tr(ZX)

max{1, (bT y + tr(CX))}
< tol

In the code, we let tol=1e-8. The solution of the original problem can be

calculated by

Xoriginal = X/τ

yoriginal = y/τ

Zoriginal = Z/τ.

In the case that the original problem is infeasible, τ approaches 0 as the number

of iteration approaches infinity[4].

The infeasibility criterion in our code is :

τ

κ + 1
< infeasibility tol.

This condition should keep τ not too small and κ not too large[4]. We use 1e-5

as the infeasibility tolerance.

The following are the main steps for HSD:

1. Let (X0, y0, Z0, τ , θ, κ) =(I,0,I,1,1,1)

38

2. use a loop until the stopping criterion is satisfied

(a) predictor step

i. compute the Schur complement matrix O by (3.131)

ii. compute the search direction (∆X, ∆y, ∆Z) using HKM method

by (3.142),(3.105),(3.108),(3.109)

iii. compute the step length αp, αd

iv. update the variables

(b) corrector step

i. compute µ using (3.149)

ii. compute the search direction (∆X, ∆y, ∆Z) using the HKM

method by (3.143)-(3.148)

iii. compute the step length αp, αd

iv. update the variables

CHAPTER 4

COMPUTATIONAL RESULTS

4.1 Introduction

In our project, we implement the IIP and HSD algorithms.

We can see IIP and HSD are comparable because they follow the

same procedure, use the same technique to compute the Schur matrix O, use

the same method to compute the step length and they are implemented in the

same environment

In this chapter we will compare these two algorithms in terms of

numerical results. We got the test problems from [2] and [12].

All of the test problems were solved on a computer with a 2.8GHz P4

processor and 4GB of RAM, under Linux.

There are 137 problems in the test pool. The range of problem sizes:

for the number of constraints matrix m, the range is (6,12376); n is the size

of constraints matrix, the range is (13,102606). We didn’t run all of the test

problems from the source [2, 12], because some of them are too large to be

solved on our computer. We set the time limit as 12 hours and memory limit

as 4GB.

Let us discuss the problems which were solved with IIP, HSD, CSDP

and SeDuMi. CSDP and SeDuMi are two successful implementations for

SDP[1, 18].

39

40

The arch set are truss topology design problems[2]. HSD can solve

the first three problems more efficiently compared to IIP. CSDP and SeDuMi

can also solve them taking less time. The iteration count for HSD is around

half of IIP which is consistent with the general rule.

The control set is a series of control theory problems[2]. CSDP can

solve all of them, all the other three methods failed in some of them.

The copos set are for checking a sufficient condition for copositivity

of a matrix[12]. All the four methods can solve them.

The cphil problem is of determining copositivity of the Hilbert matrix[12].

All of them can solve cphil10, but for cphil12 SeDuMi and HSD failed.

The hamming set are the problems which compute the theta function

of Hamming graphs for which the exact value is known[12]. Both HSD and IIP

performed excellently. CSDP and SeDuMi can solve them also.

The mcp set is a series of max cut problems[2]. All the four methods

can solve them very well.

The theta set expresses a group of Lovasz theta problems[2]. From

theta1 to theta6, all four methods can solve them. But for thetaG11, HSD and

IIP failed; for thetaG51, HSD can solve it and IIP failed because of the time

limit.

The torus set is max cut problems from the Ising model of spin

glasses[12]. All four methods could solve torusg3-8 and torusg3-8-50. But only

CSDP can solve torusg3-15 and torusg3-15-50.

The truss problems outline an assortment of truss topology design

41

problems[2].

The yalsdp problem is YALMIP SDP example with n=100[12]. Ex-

cept IIP, all the other three methods can solve it.

CSDP and SeDuMi perform much better than HSD and IIP. CSDP

can handle some huge problems. Generally memory is not a problem. HSD

and IIP couldn’t solve these huge problems because of the memory required.

Some other problems are not very big, but they are very dense. In this case,

HSD and IIP couldn’t solve them because of the time limit.

The performance measures include robustness, iteration counts and

CPU time. A collection of six error measures were adopted for the DIMACS

Challenge on semidefinite programming [13]. We will use the maximum of the

six DIMACS errors as a measure of the accuracy. In our notation:

err1 =
‖A(X)− b‖2

1 + ‖b‖∞

err2 = max

(
0,
−λmin(X)

1 + ‖b‖∞

)
err3 =

‖AT (y)− C − Z‖F

1 + ‖vec(C)‖∞

err4 = max

(
0,

−λmin(Z)

1 + ‖vec(C)‖∞

)
err5 =

bT y − tr(CX)

1 + |tr(CX)|+ |bT y|

err6 =
tr(ZX)

1 + |tr(CX)|+ |bT y|

If all the six error are < 1.0E-6, we can say this problem is solved. We

will count the number of correctly solved problems as a measure of robustness.

42

The test problems can be downloaded from [2] and [12].

4.2 Comparison of Robustness

HSD method solved 67 problems out of 137; IIP solved 57 problems

out of 137; SeDuMi solved 102 problems out of 137; CSDP solved 125 problems

out of 137 when the tolerance was equal to 1E-8.

To compare the robustness between HSD and IIP, we can do the

Fisher’s exact test. The P-value(2-tail) was 0.28 and because it was greater

than 0.05, we can say there is no significant difference between IIP and HSD.

To compare the robustness between SeDuMi and CSDP, we can do

the Fisher’s exact test. The P-value(2-tail) was 0.0003 and because it was less

than 0.05, we can say there is significant difference between SeDuMi and CSDP.

Obviously, CSDP is the best one and SeDuMi is also good and both

perform better than HSD and IIP.

4.3 Comparison of Efficiency, Iteration Counts and CPU time

The following are the main steps to compute the geometric mean and
95% confidence interval:

1. Compute the ratio of the two sets of data.

2. Take the logs (to the base 10) of the ratio.

3. Compute a conventional mean and 95% confidence interval based on X̄±
s√
n

for the logs. Call the mean M, the lower limit LL, and the upper limit
UL.

4. Raise 10 to the powers LL, M, and UL to get a 95% CI around the
geometric mean. Due to the laws of logarithms, 10M will be the geometric
mean of the original data.

43

problem SEDUMI CSDP HSD IIP

tol 1E-8 1E-8 1E-8 1E-8
arch0 4.60E-10 1.63E-09 4.42E-08 3.98E-09
arch2 1.02E-10 6.75E-09 1.84E-08 1.07E-09
arch4 1.89E-09 5.12E-09 6.27E-08 5.76E-09
arch8 3.72E-10 2.83E-09 4.37E-08 8.80E-09
BH2 r14 3.37E-09 3.82E-09 3.17E-06* 2.21E-07
biggs 3.72E-07 7.10E-08 3.31E-09 1.16E+05*
bm1 2.52E-08 9.06E-07 1.37E-05* 9.69E-01*
buck3 6.50E-08 8.30E-07 6.36E-06* 9.45E-07
buck4 9.93E-10 5.78E-07 1.60E-05* 8.93E-04*
buck5 M 3.30E-06* T T
butcher M 1.74E-07 M M
C. 1.r14 M 2.14E-09 5.94E-07 5.60E-01*
C. 3.r14 1.24E-08 3.98E-09 1.69E-06* 1.30E+01*
cancer 100 M 3.62E-07 M M
checker 1.5 M 9.43E-09 M M
cnhil10 1.07E-08 2.54E-08 1.04E-07 9.53E-01*
cnhil8 1.41E-08 1.97E-08 1.16E-07 2.66E-01*
control1 2.41E-09 1.66E-09 1.66E-07 5.36E-09
control10 3.26E-06* 1.35E-07 1.28E-06* 1.40E-06*
control11 3.11E-06* 8.64E-08 2.16E-06* 2.18E-06*
control2 3.61E-09 2.89E-09 9.99E-07 1.82E-07
control3 5.54E-08 1.93E-08 5.43E-06* 2.15E-07
control4 3.21E-08 6.58E-09 4.59E-07 1.37E-07
control5 1.07E-06* 3.77E-08 2.81E-06* 1.27E-06*
control6 2.58E-06* 1.05E-07 1.59E-06* 1.41E-06*
control7 9.10E-07 6.81E-08 7.69E-07 5.40E-07
control8 2.07E-06* 3.34E-08 1.20E-05* 5.10E-07
control9 6.00E-07 4.47E-08 1.23E-05* 8.67E-07
copo14 5.93E-09 3.37E-08 1.53E-08 7.54E-09
copo23 2.75E-08 5.62E-07 1.05E-08 5.93E+01*
cphil10 5.40E-15 5.78E-10 2.66E-09 2.81E-10
cphil12 M 6.32E-10 T 4.67E-10
EqualG11 3.10E-11 1.03E-07 7.63E-06* 1.41E-07
EqualG51 9.11E-11 1.46E-07 1.86E-05* 9.74E-09
ex2 1 5 M 1.85E-08 T T

Table 4.1: Accuracy (maximum error)

44

problem SEDUMI CSDP HSD IIP

tol 1E-8 1E-8 1E-8 1E-8
filter48 socp 2.29E-09 6.92E-09 7.71E-07 8.24E-04*
foot 2.11E-02* 2.98E-07 T M
G40 mb M 9.13E-09 4.01E+02* M
G40mc 8.46E-10 8.32E-09 1.77E+00* M
gpp100 2.80E-08 3.68E-08 2.20E-07 3.41E-03*
gpp124-1 6.24E-08 2.57E-08 1.93E-06* 2.28E-01*
gpp124-2 1.85E-08 2.00E-08 9.19E-06* 1.09E-02*
gpp124-3 1.89E-08 2.89E-08 2.02E-06* 8.48E-04*
gpp124-4 2.00E-08 2.16E-08 5.12E-07 1.02E-03*
gpp250-1 4.73E-08 3.61E-08 3.26E-06* 1.87E-01*
gpp250-2 6.02E-08 7.80E-08 1.22E-06* 8.56E-03*
gpp250-3 3.93E-07 6.42E-08 2.83E-06* 7.52E-04*
gpp250-4 7.93E-08 7.59E-08 2.21E-06* 2.83E-04*
gpp500-1 7.66E-08 1.65E-08 1.02E-06* 3.70E-01*
gpp500-2 6.95E-08 1.03E-07 3.38E-06* 4.81E-02*
gpp500-3 2.48E-08 5.09E-08 1.02E-05* 2.83E-03*
gpp500-4 5.98E-08 9.78E-08 7.10E-06* 1.84E-03*
H2O r14g M 6.49E-09 1.34E-07 1.48E-05*
H2O+ r14 M 3.68E-09 9.22E-08 M
H3O+ r16 1.88E-08 1.36E-09 3.30E-02 M
hamming 7 5 6 5.58E-11 1.76E-07 2.77E-09 4.88E-09
hamming 9 8 9.36E-09 8.87E-07 6.22E-09 2.38E-09
hand 3.38E-07 2.47E-08 3.03E-03* M
inc 1200 M 5.67E-03* 1.86E+02* M
inc 600 2.35E-08 2.79E-04* 1.08E-04* 9.99E-01*
mater 3 3.66E-09 3.75E-09 6.59E-02* 8.92E-09
mater 4 4.52E-09 1.12E-08 T M
mater 5 3.14E-09 3.00E-09 T M
maxG11 9.29E-10 2.02E-09 M 5.07E-09
maxG32 4.36E-10 1.23E-08 3.36E-01* M
maxG51 7.32E-10 2.32E-09 T M
mcp100 4.13E-10 1.05E-08 1.45E-08 7.75E-09
mcp124-1 1.42E-09 6.12E-09 7.26E-09 5.88E-09
mcp124-2 1.10E-09 4.69E-08 2.53E-09 1.03E-09
mcp124-3 1.21E-09 8.00E-09 5.45E-09 1.52E-09

Table 4.2: Accuracy (maximum error)

45

problem SEDUMI CSDP HSD IIP

tol 1E-8 1E-8 1E-8 1E-8
mcp124-4 5.33E-10 6.35E-09 4.84E-09 8.87E-09
mcp250-1 5.87E-10 1.09E-08 3.38E-09 9.22E-09
mcp250-2 9.24E-10 1.10E-08 7.58E-09 2.69E-09
mcp250-3 9.78E-10 1.17E-08 1.01E-08 9.41E-09
mcp250-4 1.33E-09 3.27E-08 6.76E-09 4.65E-09
mcp500-1 4.04E-10 3.24E-09 3.39E-08 1.35E-09
mcp500-2 5.83E-10 2.21E-09 1.10E-08 7.52E-09
mcp500-3 5.35E-10 7.70E-09 1.02E-08 4.19E-09
mcp500-4 9.69E-10 2.82E-08 7.20E-08 3.25E-09
neosfbr20 M 4.87E-09 4.63E-08 T
neu1 9.71E-05* 9.20E-04* 1.67E-06 1.69E+04*
neu1g 3.43E-08 5.32E-08 7.79E-09 1.55E-05*
neu2 3.47E-06* 8.34E-10 2.65E-09 2.04E+04*
neu2c 2.22E-06* 9.16E-05* 1.92E-06* 1.22E+03*
neu2g 9.00E-07 7.20E-09 1.20E-08 7.65E-08
neu3 2.76E-08 6.30E-04* 6.97E-07 1.85E+08*
neu3g M 6.87E-09 1.87E-07 1.00E+00*
NH2 r14 M 4.72E-09 6.63E-08 1.24E+01*
NH3 1-r16 2.45E-08 1.74E-09 4.98E-02* 9.93E-01*
qap10 1.47E-05* 5.18E-08 4.96E-05* 8.92E-07
qap5 6.55E-09 2.08E-08 9.35E-10 1.34E-09
qap6 1.53E-05* 6.92E-09 1.93E-06* 1.59E-06*
qap7 1.71E-05* 9.96E-09 3.50E-06* 2.85E-07
qap8 1.01E-05* 3.84E-08 6.55E-06* 1.54E-06*
qap9 9.87E-06* 4.15E-08 1.25E-05* 3.90E-07
qpG11 2.32E-09 4.09E-08 1.81E-07 7.34E-09
qpG51 5.66E-10 1.82E-08 2.76E-08 4.48E-01*
rabmo 2.67E-10 8.92E-09 T T
reimer5 M 9.53E-08 T T
rendl1 600 0 1.08E-09 1.12E-07 3.82E-05* 1.62E-04*
rose13 2.28E-06* 3.76E-07 6.07E-07 1.05E-03*
rose15 4.54E-05* 7.59E-07 1.03E-07 1.00E+00*
shmup3 4.05E-11 2.54E-08 8.40E-07 5.82E-02*
shmup4 1.12E-09 7.75E-07 M 2.23E+06*
shmup5 M 2.05E-05* M M

Table 4.3: Accuracy (maximum error)

46

problem SEDUMI CSDP HSD IIP

tol 1E-8 1E-8 1E-8 1E-8
ss30 3.47E-08 6.65E-09 7.19E-06* 5.17E-09
st jcbpaf2 5.18E-10 3.42E-08 M M
swissroll 2.43E-02* 2.69E-02* 8.83E-02* 1.13E+01*
taha1a 1.08E-09 9.43E-09 1.20E-08 2.14E+02*
taha1b M 7.47E-09 4.53E-09 M
theta1 1.01E-09 1.00E-07 1.89E-09 5.83E-09
theta2 1.46E-09 7.15E-09 1.01E-08 5.55E-09
theta3 3.51E-09 1.72E-08 3.88E-09 2.98E-09
theta4 1.06E-09 8.13E-09 6.80E-09 7.21E-10
theta5 3.13E-09 2.75E-08 2.00E-09 9.54E-09
theta6 4.18E-09 2.30E-07 3.12E-08 5.82E-09
thetaG11 1.37E-10 7.35E-09 9.10E+00* 2.94E-02*
thetaG51 M 4.87E-09 9.34E-08 T
torusg3 15 M 3.19E-08 M T
torusg3 8 7.63E-10 2.39E-08 9.34E-08 1.68E-09
toruspm3 15 50 M 1.44E-09 M T
toruspm3 8 50 4.70E-10 1.86E-08 6.34E-09 2.64E-09
trto3 1.10E-09 1.19E-07 5.50E-06* 1.49E-06*
trto4 1.98E-08 6.58E-06* 3.31E-05* 2.24E+04*
trto5 1.99E-05* 1.08E-05* 4.44E+03* T
truss1 3.71E-09 5.16E-10 8.95E-10 5.45E-09
truss2 2.49E-09 6.06E-10 2.44E-07 8.10E-09
truss3 2.38E-09 9.34E-10 7.17E-09 1.10E-09
truss4 5.69E-09 5.76E-10 5.75E-09 9.32E-10
truss5 2.97E-09 2.00E-09 6.52E-09 3.05E-09
truss6 5.84E-09 1.01E-08 8.33E-07 4.04E-07
truss7 6.00E-09 2.46E-08 8.64E-07 3.50E-07
truss8 2.22E-09 1.73E-09 2.16E-09 2.99E-09
vibra3 1.47E-09 1.89E-06* 4.66E-06* 1.38E-06*
vibra4 1.80E-09 1.35E-06* 1.61E-06* 2.43E-01*
vibra5 2.31E+00* 5.57E-06* 3.78E+03* 1.52E+06*
yalsdp 1.72E-08 1.87E-08 6.51E-09 1.57E+00*

Table 4.4: Accuracy (maximum error)

*:the max error > 1e-6
M: run out of memory

T: run out of time

47

solved failed
IIP 57 80
HSD 67 70

Table 4.5: Contingency Table for HSD and IIP

solved failed
SeDuMi 102 35
CSDP 125 12

Table 4.6: Contingency Table for SeDuMi and CSDP

HSD vs IIP:

In terms of time per iteration: The geometric mean of HSD/IIP is
1.54 and the confidence interval is (1.33,1.78). There is statistically significant
difference between them.

In terms of iteration counts (these results were computed only for
problems solved by both HSD and IIP): The geometric mean of HSD/IIP is
0.55 and the confidence interval is (0.50,0.61). Obviously, HSD used fewer
iterations.

In terms of total computation time (these results were computed only
for problems solved by both HSD and IIP): The geometric mean of HSD/IIP is
0.82 and the confidence interval is (0.64,0.96). HSD is a little faster than IIP.

Now let us look at the efficiency. We compare all the others to CSDP.
(CSDP is written in C language; SeDuMi, HSD and IIP are both written in
Matlab and C).

IIP vs CSDP (these results were computed only for problems solved
by both IIP and CSDP): The geometric mean of IIP(time)/CSDP(time) is 23.9
and the confidence interval is (16.89,33.81).

HSD vs CSDP (these results were computed only for problems solved
by both HSD and CSDP): The geometric mean of HSD(time)/CSDP(time) is
16.07 and the confidence interval is (11.93,21.64).

SeDuMi vs CSDP (these results were computed only for problems
solved by both SeDuMi and CSDP): The geometric mean of SeDuMi(time)/CSDP(time)
is 4.00 and the confidence interval is (3.24,4.95).

48

problem SEDUMI CSDP HSD IIP

arch0 0.54 0.15 2.49 2.32
arch2 0.38 0.17 2.47 2.36
arch4 0.40 0.29 2.47 2.36
arch8 0.38 0.17 2.47 2.36
BH2 r14 75.20 78.75 1007.74 747.64
biggs 10.10 1.70 47.95 29.21
bm1 151.72 19.67 671.00 437.20
buck3 9.37 2.03 71.09 47.59
buck4 93.68 12.59 887.16 663.96
buck5 T 135.06 T T
butcher M 101.19 M M
C. 1.r14 M 74.44 1240.05 1203.79
C. 3.r14 61.50 75.56 777.06 204.75
cancer 100 M 153.81 M M
checker 1.5 M 419.23 M M
cnhil10 214.00 23.67 66.01 1.48
cnhil8 9.88 1.52 3.17 0.25
control1 0.01 0.00 0.01 0.01
control10 8.12 8.00 43.30 31.60
control11 13.30 12.27 76.01 49.43
control2 0.02 0.01 0.05 0.04
control3 0.09 0.03 0.20 0.18
control4 0.13 0.09 0.64 0.57
control5 0.33 0.32 1.88 1.45
control6 0.82 0.76 4.29 3.20
control7 1.69 1.58 7.40 6.49
control8 3.12 2.40 16.24 11.50
control9 5.19 1.90 36.51 19.82
copo14 0.57 0.39 11.05 4.68
copo23 50.56 26.52 2178.45 1988.77
cphil10 237.00 25.40 68.42 1.52
cphil12 M 282.00 T 14.04
equalG11 87.50 6.65 448.62 392.65
equalG51 248.00 13.21 844.83 747.99
ex2 1 5 M 81.14 T T

Table 4.7: Time per iteration

49

problem SEDUMI CSDP HSD IIP

filter48 socp 18.19 2.96 94.46 37.22
foot 1470.00 165.20 T T
G40 mb M 98.67 14793.66 T
G40mc 930.00 31.68 9255.60 5776.82
gpp100 0.21 0.04 0.74 0.57
gpp124-1 0.27 0.01 1.25 1.02
gpp124-2 0.36 0.08 0.94 1.00
gpp124-3 0.41 0.08 1.00 1.08
gpp124-4 0.35 0.10 1.02 1.09
gpp250-1 3.48 0.41 10.80 7.96
gpp250-2 3.12 0.36 11.30 8.30
gpp250-3 3.47 0.40 9.43 7.89
gpp250-4 3.28 0.42 8.10 7.86
gpp500-1 32.70 3.65 92.32 73.67
gpp500-2 33.30 2.35 94.17 25.03
gpp500-3 32.10 2.44 93.41 51.87
gpp500-4 33.40 2.26 103.56 52.71
H2O r14g M 75.86 1519.38 290.09
H2O+ r14 M 76.76 1225.31 281.75
H3O+ r16 253.00 693.75 6190.25 7949.22
hamming 7 5 6 9.73 1.08 35.02 40.18
hamming 9 8 39.86 4.54 366.33 439.15
hand 383.00 27.11 2101.53 2093.20
inc 1200 M 57.38 59617.80 31738.87
inc 600 782.45 8.69 1272.13 1211.54
mater 3 0.50 0.66 2842.04 2420.13
mater 4 2.89 13.63 T T
mater 5 10.00 114.48 T T
maxG11 77.70 2.99 T 486.97
maxG32 1090.00 28.65 7924.72 5988.07
maxG51 123.00 8.18 T 684.95
mcp100 0.09 0.03 0.684444444 0.41
mcp124-1 0.16 0.05 0.77 0.57
mcp124-2 0.15 0.06 1.05 0.75
mcp124-3 0.15 0.05 0.98 0.82

Table 4.8: Time per iteration

50

problem SEDUMI CSDP HSD IIP

mcp124-4 0.17 0.06 1.79 0.80
mcp250-1 1.19 0.24 6.76 4.43
mcp250-2 1.24 0.24 7.69 5.62
mcp250-3 1.21 0.24 7.19 5.99
mcp250-4 1.22 0.24 7.43 6.02
mcp500-1 15.30 0.92 38.13 32.97
mcp500-2 15.40 1.39 84.62 72.85
mcp500-3 15.30 1.38 91.91 87.84
mcp500-4 15.50 1.38 101.83 77.77
neosfbr20 M 82.80 1443.62 T
neu1 48.30 18.85 270.27 164.92
neu1g 48.60 16.51 301.65 265.65
neu2 48.00 13.88 244.99 181.63
neu2c 63.10 39.00 679.75 140.44
neu2g 52.40 14.31 258.70 205.08
neu3 727.00 165.45 358.28 30.58
neu3g M 187.69 327.06 10.12
NH2 r14 M 100.20 1008.44 253.10
NH3 1-r16 311.00 937.50 6877.82 5821.56
qap10 2.12 0.56 11.45 15.47
qap5 0.02 0.01 0.10 0.08
qap6 0.06 0.02 0.33 0.30
qap7 0.13 0.06 1.02 1.45
qap8 0.41 0.11 2.06 4.04
qap9 0.86 0.22 4.85 9.53
qpG11 491.00 26.18 389.24 307.75
qpG51 945.00 1290.00 711.81 869.39
rabmo 207.00 31.21 T T
reimer5 M 13.04 T T
rendl1 600 0 M 5.27 214.67 131.71
rose13 22.70 3.60 72.30 65.84
rose15 93.30 20.82 261.83 235.79
shmup3 213.00 32.97 659.27 699.73
shmup4 M 83.66 T 8433.34
shmup5 M 0.00 T M

Table 4.9: Time per iteration

51

problem SEDUMI CSDP HSD IIP

ss30 4.26 0.88 12.18 9.05
st jcbpaf2 63.60 82.80 T M
swissroll 159.00 23.94 2116.508571 1807.04
taha1a M 44.88 826.14 942.31
taha1b M 115.53 0.15 M
theta1 0.03 0.01 2.13 0.20
theta2 0.32 0.09 17.59 3.02
theta3 2.81 0.61 63.93 25.54
theta4 13.70 2.17 177.84 65.25
theta5 46.80 6.18 452.80 184.61
theta6 137.00 13.88 995.94 499.25
thetaG11 86.00 8.04 8414.08 1007.92
thetaG51 85.14 76.66 T
torusg3 15 M 322.78 T T
torusg3 8 18.57 3.13 73.65 96.53
toruspm3 15 50 M 229.41 T T
toruspm3 8 50 19.86 2.86 70.87 109.17
trto3 4.05 0.95 31.24 39.49
trto4 53.61 7.93 436.44 447.14
trto5 M 62.17 22897.77 T
truss1 0.01 0.01 0.02 0.02
truss2 0.02 0.01 0.06 0.05
truss3 0.01 0.00 0.02 0.02
truss4 0.01 0.00 0.03 0.03
truss5 0.04 0.04 0.52 0.46
truss6 0.04 0.02 0.40 0.41
truss7 0.03 0.02 0.18 0.20
truss8 0.31 0.28 3.69 3.64
vibra3 10.29 2.91 76.09 62.83
vibra4 115.79 17.68 659.88 803.90
vibra5 T 151.90 43353.68 31268.31
yalsdp 267.00 106.88 772.73 852.33

Table 4.10: Time per iteration

52

problem SEDUMI CSDP HSD IIP

arch0 29 27 26 51
arch2 27 25 24 46
arch4 26 25 23 44
arch8 28 25 26 48
BH2 r14 31 40 * 58
biggs 30 66 34 *
bm1 87 61 * *
buck3 75 61 * 114
buck4 76 49 * *
buck5 * * * *
butcher * 59 * *
C. 1.r14 * 36 31 *
C. 3.r14 26 36 * *
cancer 100 * 21 * *
checker 1.5 * 26 * *
cnhil10 18 21 18 *
cnhil8 17 19 17 *
control1 26 19 28 25
control10 * 29 * *
control11 * 26 * *
control2 30 24 32 33
control3 33 24 * 34
control4 33 24 36 43
control5 * 25 * *
control6 * 29 * *
control7 41 26 39 38
control8 * 29 * 37
control9 36 77 * 38
copo14 15 20 12 28
copo23 16 23 15 *
cphil10 6 5 7 12
cphil12 * 5 * 12
equalG11 16 20 * 28
equalG51 42 24 * 28
ex2 1 5 * 44 * *

Table 4.11: Iteration counts

53

problem SEDUMI CSDP HSD IIP

filter48 socp 31 49 35 *
foot * 25 * *
G40 mb * 30 * *
G40mc 20 19 * *
gpp100 56 19 29 *
gpp124-1 63 19 * *
gpp124-2 54 18 * *
gpp124-3 33 17 * *
gpp124-4 55 19 31 *
gpp250-1 33 23 * *
gpp250-2 29 18 * *
gpp250-3 43 22 * *
gpp250-4 40 22 * *
gpp500-1 44 37 * *
gpp500-2 43 26 * *
gpp500-3 33 26 * *
gpp500-4 24 21 * *
H2O r14g * 29 22 *
H2O+ r14 * 34 32 *
H3O+ r16 26 32 * *
hamming 7 5 6 6 13 8 11
hamming 9 8 7 16 10 10
hand 30 27 * *
inc 1200 * * * *
inc 600 57 * * *
mater 3 27 23 * *
mater 4 30 27 * *
mater 5 33 29 * *
maxG11 13 16 * 26
maxG32 14 17 * *
maxG51 16 17 * 31
mcp100 13 13 9 19
mcp124-1 13 14 10 22
mcp124-2 13 13 10 21
mcp124-3 13 14 10 20

Table 4.12: Iteration counts

54

problem SEDUMI CSDP HSD IIP

mcp124-4 14 14 10 19
mcp250-1 15 15 11 23
mcp250-2 14 14 10 22
mcp250-3 14 14 10 21
mcp250-4 14 14 11 23
mcp500-1 16 16 11 26
mcp500-2 15 16 12 25
mcp500-3 15 15 11 24
mcp500-4 14 15 11 25
neosfbr20 * 25 30 *
neu1 * * * *
neu1g 22 63 21 *
neu2 * 25 20 *
neu2c * * * *
neu2g 29 36 29 138
neu3 22 * 19 *
neu3g * 65 19 *
NH2 r14 * 34 29 *
NH3 1-r16 25 32 * *
qap10 * 16 * 22
qap5 12 13 12 17
qap6 * 17 * *
qap7 * 17 * 104
qap8 * 16 * *
qap9 * 17 * 29
qpG11 14 17 13 26
qpG51 22 20 17 *
rabmo 21 28 * *
reimer5 * 67 * *
rendl1 600 0 83 22 * *
rose13 * 52 24 *
rose15 * 49 26 *
shmup3 61 91 55 *
shmup4 * 82 * *
shmup5 * * * *

Table 4.13: Iteration counts

55

problem SEDUMI CSDP HSD IIP

ss30 27 22 * 48
st jcbpaf2 25 50 * *
swissroll * * * *
taha1a 18 43 19 *
taha1b * 47 11 *
theta1 14 14 13 21
theta2 15 16 12 22
theta3 15 16 13 23
theta4 16 17 13 23
theta5 16 17 14 22
theta6 16 17 14 21
thetaG11 15 23 * *
thetaG51 * 35 14 *
torusg3 15 * 18.00 * *
torusg3 8 14 15 14 64
toruspm3 15 50 * 17 * *
toruspm3 8 50 14 15 11 22
trto3 59 33 * *
trto4 72 * * *
trto5 * * * *
truss1 11 12 8 14
truss2 18 15 14 16
truss3 14 16 12 20
truss4 12 13 8 16
truss5 20 18 17 23
truss6 28 23 22 46
truss7 25 23 19 41
truss8 23 20 19 26
vibra3 69 * * *
vibra4 95 * * *
vibra5 * * * *
yalsdp 17 16 15 *

Table 4.14: Iteration counts

56

problem SEDUMI CSDP HSD IIP

arch0 15.70 4.09 64.74 118.57
arch2 10.30 4.15 59.35 108.52
arch4 10.50 7.34 56.88 103.69
arch8 10.70 4.27 64.27 113.15
BH2 r14 2330.00 3150.00 * 43362.95
biggs 303.00 112.00 1630.25 *
bm1 13200.00 1200.00 * *
buck3 703.00 124.00 * 5425.3
buck4 7120.00 617.00 * *
buck5 * 10400.00 * *
butcher * 5970.00 * *
C. 1.r14 * 2680.00 38441.52 *
C. 3.r14 1600.00 2720.00 * *
cancer 100 * 3230.00 * *
checker 1.5 * 10900.00 * *
cnhil10 3860.00 497.00 1188.10 *
cnhil8 168.00 28.90 53.88 *
control1 0.36 0.04 0.41 0.29
control10 * 232.00 * *
control11 * 319.00 * *
control2 0.50 0.12 1.53 1.45
control3 3.02 0.72 * 6.1
control4 4.13 2.15 23.15 24.56
control5 * 7.98 * *
control6 * 22.00 * *
control7 69.20 41.10 288.63 246.48
control8 128.00 69.60 * 425.6
control9 187.00 146.00 * 753.04
copo14 8.57 7.85 132.63 131.05
copo23 809.00 610.00 32676.72 *
cphil10 1420.00 127.00 478.97 18.24
cphil12 * 1410.00 * 168.53
equalG11 1400.00 133.00 * 10994.24
equalG51 10400.00 317.00 * 20943.85
ex2 1 5 * 3570.00 * *

Table 4.15: CPU time, seconds

57

problem SEDUMI CSDP HSD IIP

filter48 socp 564.00 145.00 3306.18 *
foot * 4130.00 * *
G40 mb * 2960.00 * *
G40mc 18600.00 602.00 * *
gpp100 11.80 0.78 21.35 *
gpp124-1 16.90 4.17 * *
gpp124-2 19.40 1.38 * *
gpp124-3 13.60 1.39 * *
gpp124-4 19.10 1.81 31.73 *
gpp250-1 115.00 9.37 * *
gpp250-2 90.60 6.52 * *
gpp250-3 149.00 8.79 * *
gpp250-4 131.00 9.13 * *
gpp500-1 1440.00 135.00 * *
gpp500-2 1430.00 61.00 * *
gpp500-3 1060.00 63.50 * *
gpp500-4 802.00 47.50 * *
H2O r14g M 2200.00 33426.33 *
H2O+ r14 M 2610.00 39209.81 *
H3O+ r16 6590.00 22200.00 * *
hamming 7 5 6 58.40 14.00 280.12 442.03
hamming 9 8 279.00 72.70 3663.30 4391.47
hand 11500.00 732.00 * *
inc 1200 * * * *
inc 600 4460.00 * * *
mater 3 13.60 15.20 * *
mater 4 86.70 368.00 * *
mater 5 330.00 3320.00 * *
maxG11 1010.00 47.80 * 12661.26
maxG32 15200.00 487.00 * *
maxG51 1970.00 139.00 * 21233.39
mcp100 1.18 0.40 6.16 7.76
mcp124-1 2.02 0.76 7.68 12.43
mcp124-2 2.00 0.73 10.51 15.8
mcp124-3 1.91 0.75 9.81 16.36

Table 4.16: CPU time, seconds

58

problem SEDUMI CSDP HSD IIP

mcp124-4 2.31 0.78 17.85 15.23
mcp250-1 17.80 3.56 74.36 101.81
mcp250-2 17.30 3.32 76.94 123.74
mcp250-3 17.00 3.42 71.90 125.69
mcp250-4 17.10 3.34 81.69 138.53
mcp500-1 244.00 14.70 419.43 857.13
mcp500-2 231.00 22.20 1015.40 1821.13
mcp500-3 229.00 20.70 1011.03 2108.25
mcp500-4 217.00 20.70 1120.11 1944.2
neosfbr20 * 2070.00 * *
neu1 * 1150.00 * *
neu1g 1070.00 1040.00 6334.56 *
neu2 * 347.00 4899.81 *
neu2c * 3900.00 * *
neu2g 1520.00 515.00 7502.42 28300.38
neu3 16000.00 * 6807.29 *
neu3g * 12200.00 6214.10 *
NH2 r14 * 3410.00 29244.74 *
NH3 1-r16 7770.00 30000.00 * *
qap10 * 8.98 * 340.28
qap5 0.26 0.08 1.24 1.41
qap6 * 0.29 * *
qap7 * 1.05 * 151.03
qap8 * 1.79 * *
qap9 * 3.67 * 276.3
qpG11 6870.00 445.00 5060.17 8001.57
qpG51 20800.00 25800.00 12100.82 *
rabmo * 874.00 * *
reimer5 * 874.00 * *
rendl1 600 0 3630.00 116.00 * *
rose13 * 187.00 1735.27 *
rose15 * 1020.00 6807.55 *
shmup3 13000.00 3000.00 36260.03 *
shmup4 * 6860.00 * *
shmup5 * * * *

Table 4.17: CPU time, seconds

59

problem SEDUMI CSDP HSD IIP

ss30 115.00 19.40 * 434.17
st jcbpaf2 1590.00 4140.00 * *
swissroll * * * *
taha1a 1090.00 1930.00 15696.65 *
taha1b * 5430.00 1.67 *
theta1 0.41 0.18 27.71 4.29
theta2 4.82 1.36 211.06 66.35
theta3 42.10 9.82 831.07 587.38
theta4 219.00 36.90 2311.96 1500.78
theta5 749.00 105.00 6339.16 4061.39
theta6 2190.00 236.00 13943.17 10484.34
thetaG11 1290.00 185.00 * *
thetaG51 * 2980.00 1073.22 *
torusg3 15 * 5810.00 * *
torusg3 8 260.00 47.00 1031.11 6177.97
toruspm3 15 50 * 3900.00 * *
toruspm3 8 50 278.00 42.90 779.56 2401.75
trto3 239.00 31.30 * *
trto4 3860.00 * * *
trto5 * * * *
truss1 0.10 0.08 0.19 0.21
truss2 0.30 0.10 0.80 0.77
truss3 0.14 0.02 0.29 0.42
truss4 0.10 0.03 0.20 0.51
truss5 0.83 0.66 8.87 10.62
truss6 1.22 0.36 8.73 18.73
truss7 0.86 0.39 3.45 8.31
truss8 7.04 5.66 70.10 94.73
vibra3 710.00 * * *
vibra4 11000.00 * * *
vibra5 * * * *
yalsdp 4539.00 1710.00 11590.97 *

Table 4.18: CPU time, seconds

60

Obviously, CSDP is much faster than all the others.

CHAPTER 5

CONCLUSIONS

In terms of robustness, HSD and IIP are comparable; in terms of

efficiency, HSD is faster than IIP. Generally, HSD takes more time than IIP in

each iteration, but HSD uses fewer iterations than IIP. This leads to an overall

decrease in CPU time for HSD compared to IIP.

CSDP is significantly faster than all the other three methods, so we

can see the computer language and implementation details play a great role in

the computation performance.

61

Bibliography

[1] Brian Borchers. CSDP, A C library for semidefinite programming. Opti-

mization Methods and Software, 11:613–623, 1999.

[2] Brian Borchers. SDPLIB 1.2 a library of semidefinite programming

test problems. Optimization Methods and Software, 11-2:683–690, 1999.

http://infohost.nmt.edu/∼sdplib.

[3] Brian Borchers and Joseph Young. Implementation of a primal-dual

method for SDP on a parallel architecture. 2005.

[4] N. Brixius, Florian A. Potra, and Rongqin Sheng. SDPHA a MATLAB

implementation of homogeneous interior-point algorithms for semidefinite

programming. Optimization Methods and Software, 11-2:583–596, 1999.

[5] Vasek Chvatal. Linear Programming. W.H. Freeman, New York, 1983.

[6] Etienne de Klerk. Aspects of semidifinite programming : interior point

algorithms and selected applications, volume 65 of Applied Optimization.

Kluwer Academic Publishers, 2002.

[7] Etienne de Klerk, C. Roos, and T. Terlaky. Initialization in semidefinite

programming via a self-dual skew-symmetric embedding. Operations Re-

search Letters, 20:213–221, 1997.

[8] D. Goldfarb and K. Scheinberg. Interior point trajectories in semidefinite

programming. SIAM Journal on Optimization, 8:871–886, 1998.

62

63

[9] C. Helmberg, F. Rendl, R.J. Vanderbei, and H. Wolkowicz. An interior

point method for semidefinite programming. SIAM Journal on Optimiza-

tion, 6:342–361, 1996.

[10] M. Kojima, S. Shindoh, and S. Hara. Interior-point methods for the mono-

tone semidefinite linear complementarity problem in symmetric matrices.

SIAM Journal on Optimization, 7:86–125, 1997.

[11] M.Halicka, E. de Klerk, and C. Roos. On the convergence of the cen-

tral path in semidefinite optimization. SIAM Journal on Optimization,

12:1090–1099, 2002.

[12] Hans D. Mitellmann. Several sdp-codes on sparse and other sdp problems.

ftp://plato.asu.edu/pub.

[13] H. D. Mittelmann. An independent benchmarking of SDP and SOCP

solvers. Mathematical Programming, 95:407–430, 2003.

[14] R.D.C. Monteiro. Primal-dual path-following algorithms for semidefinite

programming. SIAM Journal on Optimization, 7:663–678, 1997.

[15] Stephen G. Nash and Ariela Softer. Linear and Nonlinear Programming.

McGraw-Hill, New York, 1996.

[16] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer

Verlag, New York, 1999.

[17] Florian A. Potra and Rongqin Sheng. On homogeneous interior-point algo-

rithms for semidefinite programming. Optimization Methods and Software,

9:161–184, 1998.

64

[18] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over

symmetric cones. Optimization Methods and Software, 11:625–653, 1999.

[19] K. C. Toh, M. J. Todd, and R. H. Tutuncu. SDPT3- A MATLAB software

package for semidefinite programming, version 1.3. Optimization Methods

and Software, 11:545–581, 1999.

[20] Lieven Vandenberghe and Stephen Boyd. Semidefinite programmming.

SIAM Review, 38:49 – 95, 1996.

[21] Henry Wolkowicz, Romesh Saigal, and Lieven Vandenberghe, editors.

Handbook of Semidefinite Programming. Kluwer Academic Publishers,

2000.

[22] Stephen J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadel-

phia, 1997.

[23] Y. Ye and M.Todd. An O(
√

nl)-iteration homogeneous and self-dual linear

programming algorithm. Mathematics of Operations Research, 19:53–67,

1994.

