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ABSTRACT 
 
 
 
 

 In many instances during the process of data analysis, one faces a 
situation where at least one of the parameters of the model is interacting with 
the other parameters in a nonlinear manner. In such cases as this, one must 
use nonlinear regression in an effort to estimate the values of such 
parameters.  

Nonlinear regression is inherently more difficult than linear 
regression. For this reason a software package is used. There are many 
software packages available which claim to be able to estimate such 
nonlinear parameters. With this in mind, one might well assume that the 
software packages are equal in ability. 

In this study six readily available software packages, which are 
capable of solving such nonlinear regression problems are tested using 
standard test problems. The test problems vary in level of difficulty, as well 
as number of parameters and number of observations. The software 
packages are then compared based upon accuracy, robustness, features, and 
ease of use. 
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I. Introduction: 
 

The goal of this study is to compare the nonlinear regression capabilities of 
several software packages using the nonlinear regression data sets available from the 
National Institute of Standards and Technology (NIST) Statistical Reference Datasets 
(StRD) website located at http://www.itl.nist.gov/div898/strd/ . The software packages 
considered in this study are: 

 
1. MATLAB codes from Hans Bruun Nielsen 
2. Gaussfit 
3. Gnuplot 
4. SAS 
5. Microsoft Excel 
6. Minpack 
 
The Statistical Reference Datasets Project was developed by the Statistical 

Engineering Division and the Computational Sciences Division within the Information 
Technology Laboratory of the National Institute of Standards and Technology. There are 
four areas covered by the StRD: univariate summary statistics, one–way analysis of 
variance, linear regression, and nonlinear regression. Each area includes problems of 
lower, average, and higher difficulty. The difficulty level is determined by the sources of 
inaccuracy: truncation error, cancellation error, and accumulation error. Truncation error 
relates to the inexact binary representation error in storing decimal numbers. Cancellation 
error results from the “stiffness” i.e. the number of constant leading digits in the data sets. 
Since the total number of arithmetic computations is proportional to the size of a data set, 
the accumulation error may increase as the number of observations increase due to the 
accumulation of small errors. [8] 

The nonlinear regression problems were solved by the NIST using quadruple 
precision (128 bits) and two public domain programs with different algorithms and 
different implementations; the convergence criterion was residual sum of squares (RSS) 
and the tolerance was 1E-36. Certified values were obtained by rounding the final 
solutions to 11 significant digits. Each of the two public domain programs, using only 
double precision, could achieve 10 digits of accuracy for every problem. [11] 

 

I.   A. Comparison Criteria 
 

As is the case in any comparison study there must be criteria upon which the 
comparison is based. The criteria we will use in the evaluation of these software packages 
are accuracy, robustness, ease of use, and features.  

Accuracy will be determined using the log relative error (LRE) formula, 
 

                                                
10logq

q c

c
λ

⎡ ⎤−
= − ⎢ ⎥

⎣ ⎦ .                                                 (1) 
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where q is the value of the parameter estimated by the code being tested and c is the 

certified value. In the event that q = c exactly then qλ  is not defined, in which case it 

should be set equal to the number of digits in c. It is possible for an LRE to exceed the 
number of digits in c; for example, it is possible to calculate an LRE of 11.4 even though 
c contains only 11 digits. In part, this is because a double precision computer will “pad” 

the 11 digits with zeros. In such a case, qλ  should be set equal to the number of digits in 

c. Finally, any qλ  less than unity should be set to zero. [11] 

           Robustness is an important characteristic for a software package. In terms of 
accuracy, we are concerned with each specific problem as individuals. Robustness, 
however, is a measure of how the software packages performed on the problems as a set. 
In other words, we want to have a sense of how reliable the software package is so that 
we might have some level of confidence that it will solve a particular nonlinear 
regression problem other than those listed in the NIST StRD. In this sense robustness 
may very well be more important to the user than accuracy. Certainly the user would 
want parameter estimates to be accurate to some level, but accuracy to 11 digits is often 
not particularly useful in practical application. However, the user would want to be 
confident that the software package they are using will generate parameter estimates 
accurate to perhaps 4 or 5 digits on most any problem they attempt to solve. If, on the 
other hand, a software package is extremely accurate on some problems, but returns a 
solution which is not anywhere close to actual values on other problems, certainly the 
user would want to use this software package with extreme caution. 
 Comparing the features of these various software packages is a rather difficult 
comparison to make. It is difficult because some of these software packages are designed 
simply for nonlinear regression problems, whereas some of them are designed for many 
more uses. The packages that are designed for more than simply nonlinear regression 
problems will have more features, but perhaps not more features concerning the linear 
regression problems. It is these features which we are interested in for this study. 
 Admittedly a criterion such as ease of use is somewhat subjective, as each user 
has their own preferences. However, it will undoubtedly be the case that some of the 
software packages will be easier to use than others. Such information might well be 
useful for consideration in determining which package to use for the solving of nonlinear 
regression problems. Such things as amount of programming necessary, data input, and 
whether the package writes over files will be considered. 

 
I.    B.  Literature Search 

  

In their paper, “Assessing the Reliability of Web-Based Statistical Software”,[8] 
A. M. Kitchen, R. Drachenberg, and J. Symanzik used the statistical datasets from the 
National Institute of Standards and Technology to evaluate the accuracy and precision of 
WebStat 2.0 (found at http://www.stat.sc.edu/webstat/) and Statlets (found at 
http://www.statlets.com/statletsindex.htm). In this paper, the two software packages were 
assessed by comparing the results of univariate summary statistics, analysis of variance, 
and linear regression operations with the certified values given in the StRD. Nonlinear 
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regression analysis was not evaluated because these packages were unable to carry out 
nonlinear regression procedures. [8] 

 In addition, K. L. Hiebert has written a paper, “An Evaluation of Mathematical 
Software That Solves Nonlinear Least Squares Problems” [5]. In this paper, Hiebert 
compares 12 FORTRAN codes on 36 separate problems. Twenty-eight of the problems 
used by Hiebert are given by Dennis, J.E., Gay, D.M. and Welch, R.E. [3], with the other 
eight problems given by More, J.J, Garbow, B.S., and Hillstrom, K.E. [12]. 

In their paper, “Testing Unconstrained Optimization Software” [12], More, J.J., 
Garbow, B.S., and Hillstrom, K.E., used FORTRAN subroutines to test 35 problems. 
These 35 problems were a mixture of systems of nonlinear equations, nonlinear least – 
squares, and unconstrained minimization. 

 In this study we will evaluate the ability of the six software packages mentioned 
to accurately estimate the parameters for the nonlinear regression problems provided by 
the National Institute of Standards and Technology Statistical Reference Datasets. 
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II.    Nonlinear Least Squares 
 
 In many areas of the physical, chemical, biological, and engineering sciences, at 
least one of the parameters enters the model in a nonlinear manner. The development of 
the least squares estimators for a nonlinear model brings about complications not 
encountered in the case of a linear model. Let us consider a nonlinear model of the 
general form  
 

                                           ( ; )i i iy g x β ε= +            ( 1,2, , )i m= L                                   (2) 

 
where β  is a vector containing n parameters and m n> . We assume further that f  is 

nonlinear in [ ]1 2, , ,
T

nβ β β β= L . 

 A popular method for estimating the unknown parameters in a nonlinear 
regression function is the method of least squares. According to this method, the 

estimates of 1 2, , , nβ β βL  are obtained by minimizing the quantity 

 

                                                              
2

1

( )
m

i
i

f β
=

∑ ,                                                                       (3) 

 
the sum of the squares of the errors of the predictions, where  
 

                                                       ( ) ( ; )i i if y g xβ β= − .                                                          (4) 
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III.    Nonlinear Regression 
  
 Since we are assuming that the errors are random, we are interested in their 
underlying probability distribution. We generally assume that the errors are normally 

distributed with mean 0 and variance 2σ . This is a reasonable assumption if the data are 
measurements of some type. More importantly than this, however, is that if the errors are 
normally distributed, the maximum likelihood estimate of β  is the estimate obtained 

using the least squares method as we will now show. 
 The maximum likelihood estimate of β is obtained by maximizing the likelihood 

function. If the iε ’s are independently and identically distributed (i.i.d.) with density 

function 1 ( / )hσ ε σ−  so that h is the error distribution for the errors standardized to have 

unit variance, then the likelihood function is  
 

                                     

2

2 1

1

( ; )
( | , )

m
i i

i

y g x
p y h

ββ σ σ
σ

−

=

⎡ ⎤−⎛ ⎞= ⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
∏ .                                  (5) 

 

Since the iε ’s are i.i.d. N(0, 2σ ), (5) becomes 

 

                            
[ ]2

2 2 2
2

1

( ; )1
( | , ) (2 ) exp

2

m m
i i

i

y g x
p y

β
β σ πσ

σ
−

=

⎛ ⎞−
⎜ ⎟= −⎜ ⎟⎝ ⎠

∑ .                       (6) 

 

Ignoring constants, we denote the logarithm of the above likelihood by ),( 2σβL and 

obtain 
 

[ ]22 2

2
1

1
( , ) log ( ; )

2 2

m

i i
i

m
L y g xβ σ σ β

σ =

= − − −∑                                 

 

                                                2

2

1
log ( )

2 2

m
Sσ β

σ
= − −                                                   (7) 

 
where, 
 

[ ]
2

1

( ) ( ; )
m

i i
i

S y g xβ β
=

= −∑ . 

 

Given 2σ , (7) is maximized with respect to β  when )(βS  is minimized, that is when 
^

ββ =  (the least squares estimate). Furthermore, 02 =∂
∂

σ
L  has solution 2 ( )S

m
βσ = , 

which gives a maximum (for given β ) as the second derivative is negative. This suggests 
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that 
^

β  and 

^
^

2 ( )S
m

βσ =  are the maximum likelihood estimates as we now verify 

directly. Since )()(
^

ββ SS ≥  

 

                             ( ) ( )
^ ^^

2 2 2 2, , log ,
2 2

m m
L L Lβ σ β σ σ β σ⎛ ⎞ − = − − −⎜ ⎟

⎝ ⎠
 

 

                              

^ ^
2

2 2

1 ( )
log

2 2 2

m m Sσ β
σ σ

≥ − − +  

 

                        

^ ^
2 2

2 2
log 1

2

m σ σ
σ σ

⎛ ⎞
⎜ ⎟= − + −⎜ ⎟⎜ ⎟⎝ ⎠

 

 
                                                           0≥  , 
 

as 1log −≤ xx  for 0≥x . The m.l.e. of 
^

β  and 
^

2σ  are substituted into equation (6) and 

we obtain 
 

                                        
^ ^^

2 2 / 2
( | , ) (2 ) exp

2

m m
p y β σ π σ − ⎛ ⎞= −⎜ ⎟⎝ ⎠

.                                       (8)  

 
Once we have estimated the parameters using the least square method, we can 

determine some characteristics regarding the estimates. The fitted parameters, 
^

β , are 

approximately normally distributed with mean 
^

β  and variance-covariance matrix given 

by 
 

                                        
1

^ ^

( ) ( )TJ Jβ β
−

⎛ ⎞Σ = ⎜ ⎟⎝ ⎠
.                                                      (9) 

 

Where 
^

( )J β  is the Jacobian of  

 

                                                     

^
^ ( ; )

( ) i i
i

i

y g x
f

ββ
σ

−= .                                                (10) 

 

The (1-α )100% confidence interval for 
^

iβ  is given by  
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^

(1 )
2

iii Z αβ −± Σ ,                                                      (11) 

 

where (1 )
2

Z α−  is obtained from the standard normal table for some α . 

If we know the assumption that the error terms are normally distributed with 

mean 0 and variance 2σ does not hold, then we can manipulate the data so that they are 

reasonable. If, for example, the errors do not have the same variance but rather, each iε  

has a variance 
2

iσ , then instead of solving the problem given by 

 

                                                    ( )2

1

min ( ; )
m

i i
i

y g x β
=

−∑ ,                                              (12) 

 
we solve the problem given by 
 

                                                  

2

1

( ; )
min

m
i i

i i

y g x β
σ=

⎛ ⎞−
⎜ ⎟
⎝ ⎠

∑ .                                              (13) 

 

If the iσ ’s are unknown, then we might assume that all the iσ ’s are equal and 

minimize (12). We can then estimate this value for the variance as  
 

                                                     

( )2

1

( ; )
m

i i
i

y g x
s

m n

β
=

−
=

−

∑
                                           (14) 

 
where m is the number of observations in the model and n is the number of parameters 
estimated in the model. Here the variance-covariance matrix is given by 
 

                                                  
1

^ ^
2 ( ) ( )Ts J Jβ β

−
⎛ ⎞Σ = ⎜ ⎟⎝ ⎠

.                                                  (15)  

 

The (1-α )100% confidence interval for 
^

iβ  is given by  

 

                                                   
^

(1 ),
2

i iim n
t αβ −−

± Σ ,                                                        (16) 

 

where (1 ),
2

m n
t α−−

 is obtained from a t distribution table. 
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III. A.  Why we Use Nonlinear Regression 
 

One of the major advantages in using nonlinear regression is the broad range of 
functions that can be fit. Many scientific or physical processes are inherently nonlinear; 
therefore to attempt a linear fit of such a model would necessarily cause poor results. For 
example, studies in population quite often follow exponential pattern, which cannot be 
modeled in a linear fashion. 

Additionally, we can take advantage of the fairly well developed theory for 
computing confidence, prediction, and calibration intervals. It is true that quite often the 
probabilistic interpretation of the intervals are only approximately correct, but these 
intervals still work very well in practice. 

Nonlinear regression also shares the characteristic with linear regression of having 
very efficient use of the data. That is, nonlinear regression can give good estimates of the 
unknown parameters in the model using relatively small data sets. [4] 
 
 

III.       B.  The Gauss-Newton Method 
 
           Let us consider the Taylor series expansion with the remainder term as follows: 
 

                           
^ ^ ^

21
( ) ( ) ( ) ( )

2

T Tf p f f p p f pβ β β ξ+ = + ∇ + ∇                            (17) 

 

where p is a nonzero vector and ξ  is a point between 
^

β  and
^

pβ + . If 
^

β  is a local 

minimizer, there can be no feasible descent direction at
^

β . Hence, 

 
^

( ) 0Tf pβ∇ ≥  for all feasible directions p. 

 
Since a least–squares problem is an unconstrained problem, all directions are feasible, 

therefore the gradient at *β  must be zero. Thus if *β  is a local minimizer of f, then  

 
^

( ) 0f β∇ = . 

 
A point satisfying this condition is a stationary point of the function f. 
 In order to distinguish whether a stationary point is a local minimizer, a local 
maximizer, or a saddle point (a stationary point that is neither a minimizer or maximizer), 
one must consider the second derivatives. Consider again the Taylor series expansion 

at
^

pβ β= + , but now using the result that
^

( ) 0f β∇ = . 

 

                       
^ ^

21
( ) ( ) ( ) ( )

2

Tf f p f p f pβ β β ξ= + = + ∇                                              (18) 
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If 
^

2 ( )f β∇  is not positive semi-definite then for some υ ,
^

2 ( ) 0T fυ β υ∇ < . Then it is also 

true that 0)(2 <∇ υξυ fT  if 
^

ξ β−  is small, since f2∇  is assumed to be continuous 

at
^

β . If p is chosen as some sufficiently small multiple of  υ , then the point ξ  will be 

close enough to 
^

β  to guarantee (via the Taylor series) that 
^

( ) ( )f fβ β<  which is a 

contradiction. Therefore, 
^

2 ( )f β∇ must be positive semi-definite for 
^

β  to be a local 

minimizer. 
 Newton’s method is an algorithm for finding a zero of a nonlinear function. To 
use Newton’s method for optimization, we apply it to the system of equations given 

by
^

( ) 0f β∇ = . Since the Jacobian of ( )f β∇  is 2 ( )f β∇ , this leads to the formula 

 

                                              2 1

1 [ ( )] ( )k k k kf fβ β β β−
+ = − ∇ ∇ .                                       (19) 

 

Newton’s method is often written as 1k k kpβ β+ = +  where kp  is the solution to the 

Newton equations: 
 

                                        2[ ( )] ( )k kf p fβ β∇ =−∇ .                                                         (20) 

 

This emphasizes that the step kp  is usually obtained by solving a linear system of 

equations rather than by computing the inverse of the Hessian. 
 Newton’s method has been derived by finding a linear approximation to a 
nonlinear function via the Taylor series. The formula for Newton’s method represents a 
step to a zero of this linear approximation. For the nonlinear equation ( ) 0f β∇ =  this 

linear approximation is  
 

                                       2( ) ( ) ( )k k kf p f f pβ β β∇ + ≈ ∇ + ∇ .                                         (21) 

 
The linear approximation is the gradient of the quadratic function 
 

                                   21
( ) ( ) ( ) ( )

2

T T
k k kQ p f f p p f pβ β β≡ + ∇ + ∇ .                             (22) 

 
Q(p) corresponds to the first three terms of a Taylor series expansion for f about the 

point *β . 

 The quadratic function Q provides a new interpretation of Newton’s method for 
minimizing f. At every iteration Newton’s method approximates ( )f β  by Q(p), the first 

three terms of its Taylor series about the point kβ ; minimizes Q as a function of p; and 

then sets 1k k pβ β+ = + . Hence at each iteration we are approximating the nonlinear 

function by a quadratic model. [13] 
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The method of nonlinear least–squares data fitting, as given by nonlinear 
regression, also has a special form for the gradient and Hessian. Let us express the 
problem as  

  

                        2

1

1 1
min ( ) ( ) ( ) ( )

2 2

m
T

i
i

f f F Fβ β β β
=

= =∑                                    (23) 

 
where F is the vector–valued function 
 

                                          1 2( ) ( ( ), ( ), , ( ))T
mF f f fβ β β β= L                                         (24) 

 

Note that the scaling by 
1

2
 is to make the derivatives less cluttered. The components of  

( )f β∇  can be derived as follows: 

 

                                                ( ) ( ) ( )Tf J Fβ β β∇ = .                                                     (25) 

 
where J is the Jacobian matrix with ijth element 
 

                                     
( ; )i

ij
j

g x
J

β
β

∂
=

∂
, 1,2, ,i m= L , and 1,2, ,j n= L .                      (26) 

 
2 ( )f β∇ can be derived by differentiating this formula with respect to the 'j sβ : 

 

                                     2 2

1

( ) ( ) ( ) ( ) ( )
m

T
i i

i

f J J f fβ β β β β
=

∇ = + ∇∑ .                                (27) 

 

Since we expect 
^

( )if β  to be approximately zero, the summation term can be ignored 

as
^

β β→ . Therefore, we can approximate 2 ( )f β∇  as  

 

                                             2 ( ) ( ) ( )Tf J Jβ β β∇ = ,                                                      (28) 

 
 

For the Gauss – Newton method we can use this approximation for the Hessian 
and solve  
 

                                        ( ) ( ) ( ) ( )T T
k k k k kJ J p J Fβ β β β= −                                           (29) 

 

to calculate kp . Then let 1k k kpβ β+ = + . 
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III.       C.  The Levenberg – Marquardt Method 
 

As might be expected, Newton’s method has a quadratic rate of convergence 
except in “degenerate” cases; it can sometimes diverge or fail. For example, if 

( ) ( )TJ Jβ β  is singular, then (29) will have no unique solution. As a result, some 

modifications to Newton’s method have been made. We will now look at one such 
modification – the Levenberg – Marquardt method. [13] 

The method which is now know as the Levenberg -  Marquardt method is a result 
of the work of Donald Marquardt.[9] The insights leading to this method arose from 
Marquardt’s experience with several two – parameter estimation problems. The intuition 
of Marquardt’s chemical engineering colleagues was often sufficient to provide good 
starting parameters for methods such as steepest descent, which iterates to the best 
estimates of the parameters by heading straight down the wall of a valley in the cost 
function surface. With poor initial guesses, however, the methods take many iterations to 
converge, or may not converge at all. 

As Marquardt began to plot the contours of the cost functions, he began to 
observe a generic geometric problem. Methods such as steepest descent, which follow the 
gradient down the function surface move in a direction that is nearly orthogonal to the 
Taylor series methods which linearized the cost function. This geometric conflict was a 
consequence of the long, narrow valleys in the cost function. The ideal method would 
find an angle of descent intermediate between these two extremes. At the same time, the 
step size would require adjustment to prevent stepping across the valley and entirely 
missing the floor where the best parameter values lay. 

Marquardt recognized that these goals could be accomplished by adding a 
properly sized parameter to the diagonal of the system of equations defining the iterates. 
Marquardt did not require finding a local minimum of the cost function at each step. This 
avoided the slow convergence often encountered by the steepest descent method as it 
travels along the narrow path crossing many times the valley in the cost function floor. 
As a result of these modifications to Levenberg’s prior work, the Levenberg – Marquardt 
method has proved to be an effective and popular way to solve nonlinear least squares 
problems. [2] 
 

III.     C. 1. How the Levenberg – Marquardt Method Works 
 

Rather than approximating the Hessian as in (28), Marquardt noted that the 
summation term in (27) can be approximated by Iλ  where 0λ ≥ . Using this we 
approximate the Hessian as  

 

                               2 ( ) ( ) ( )T
k k kf J J Iβ β β λ∇ ≈ + .                                             (30) 

 
Now to find our search direction, p, we solve the equation  

 

                                        [ ( ) ( ) ] ( ) ( )T TJ J I p J Fβ β λ β β+ = − .                                      (31) 
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After finding p , we evaluate ( )f pβ + . If there has been an improvement in our 

function value then we let pβ β= + and 
2

λλ = . We then check our termination criteria. 

If the termination criteria are not met, then we proceed with another iteration. If, 
however, the evaluation of ( )f pβ +  does not give us an improvement in our function 

value, then we let 2λ λ=  but do not change β . We then solve the above system of 

equations for p  and once again check ( )f pβ + . 

In essence, the Levenberg – Marquardt method takes on a search direction similar 

to the steepest descent method when β  is “far” from
^

β . However, as β  gets closer 

to
^

β , it takes on a search direction like that of Newton’s method. [4] 

 
III.     C. 2. Why We Use the Levenberg – Marquardt Method 
 

As stated above the Levenberg – Marquardt method has proved to be a popular 
tool for solving nonlinear least squares problems. The reasons for this popularity are 
essentially threefold.  

First of all, there is a consideration of storage space. Like other methods for 
nonlinear least squares problems there is an approximation to the Hessian matrix. Since 
we are able to approximate the Hessian matrix we do not have to store this nxn matrix. 
The particular approximation of the Hessian used by the Levenberg – Marquardt method 
is given by Iλ , where 0λ ≥ . The benefit of this is that the search direction is calculated 
by solving the linear system given in (31). Note that this system only involves the 
original vector function and the gradient. 
 The second reason is an issue of computational effectiveness. If on an 
intermediate step it is determined that there has not been an improvement in the value of 
the cost function, then it is not necessary to recalculate the gradient at that point. Rather 
we would simply adjust λ and continue through the algorithm. In addition to this, we 
have no need for calculating the Hessian, which may be very costly to calculate. 
 Thirdly, the Levenberg – Marquardt method allows for movement along the 
contour of the cost function, which allows the algorithm to solve the problem quicker 
than many other algorithms.  
 The combination of storage space, computational effectiveness, and iteration 
efficiency make the Levenberg – Marquardt a powerful tool for the nonlinear least 
squares problems that are so common in the engineering and scientific disciplines. 
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IV.    The Software Packages 
 
 We will now take a closer look at the various software packages that we have 
chosen for this comparative study. Some of the packages are simply parts of a larger 
package, such as Microsoft Excel and SAS. In this case, we will simply consider the parts 
of the larger package which were used in the completion of this study. Others in the set of 
packages used are designed exclusively for solving nonlinear least – squares problems. 
 

IV.   A. HBN Matlab Code 
 
 The first software package used in this study is the Matlab code written by Hans 
Bruun Nielson. Nielsen has written several codes to solve nonlinear least – squares 
problems. Using the Levenberg  - Marquardt method, he has written code for which the 
Jacobian is approximated. Additionally he has written code for which the Jacobian is 
calculated analytically. For the purpose of this study the Jacobian was calculated 
analytically. 
 The Marquardt program has four input arguments. The first input argument is a 

function that calculates the function values, )(xf i  mi ,,2,1 K=  and the Jacobian matrix. 

While combining the calculations of the function values and Jacobian matrix into one 
function reduces the number of input parameters, it also causes the program to perform 
some unnecessary calculations. For example, if after taking a step it is determined that the 
functional value has not improved, calculating the Jacobian at the new point is not 

necessary. Rather one ought to adjust the damping parameter, λ  , and calculate a new x. 
When the calculations of the function values and the Jacobian are combined in this 
manner, the Jacobian will automatically be calculated even in those instances when it is 
not necessary. 
 The second of the input arguments is for an array with the coordinates of the data 
points, or it may be a dummy variable. For this study I kept this variable as a dummy 
variable. 
 The third input argument is the starting guess for the values of the parameters. For 
each problem, this would be a column vector with p elements. There are also two starting 
values for the parameters, so the program was run twice for each problem. 
 The final input argument is a four - element vector used as parameters for the 

program. The first element is used as the starting value for the damping parameter, λ . 
The rest of the elements are used as stopping criteria for the program. The program 

terminates if either ≤
∞

TF  opts(2), or ≤Δ
2

x  opts(3), or if the number of iterations 

exceeds opts(4).  
 In addition to the four input arguments, Nielsen’s Marquardt code has three 
output arguments. The first is a vector consisting of the optimal value for the parameters 
found by the code. By setting the Matlab format to “long e” I was able to output more 
than 11 significant digits in order to properly compare the optimal values returned to the 
certified values. 
 The second output argument is a six element vector which gives data regarding 

the performance of the code. The first four elements are the final values of ( )F x , TF
∞

, 
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2
xΔ , and 

max( ( , ))A i i
λ . The fifth element of this vector is the number of iterations the 

code performed before stopping. The sixth element reports which of the termination 
criteria was active to terminate the code. If this sixth element is a “1”, then the code 
terminated due to a small gradient. If it is a “2”, then the code terminated due to a small 
change in the parameter values. If it is a “3”, then the code terminated due to the number 
of iterations exceeding the maximum. If this sixth element is a “4”, then the code has 
calculated a singular matrix. The user is then to restart with the current parameter 
estimates as the initial guess with a larger value for λ .  
 Nielsen also included an auxiliary function which checks the function call 
statement to ensure that the input arguments are given as expected by the main program. 
For example, in this function he checks to make sure that the initial guess is given as a 
vector. He also checks that the sizes for the vector which gives the function values and 
the Jacobian matrix are compatible.  

 
IV.  B. GaussFit 
 
 In this study version 3.53 of Gaussfit was used using Linux as the operating 
system. 

GaussFit was designed for astrometric data reduction with data from the NASA 
Hubble Space Telescope. It was designed to be a flexible least squares package so that 
astrometric models could easily and quickly be written, tested and modified. 
 A unique feature of GaussFit is that although it is a special purpose system 
designed for estimation problems, it includes a full-featured programming language 
which has all the power of traditional languages such as C, Pascal, and FORTRAN. This 
language possesses a complete set of looping and conditional statements as well as a 
modern nested statement structure. Variables and arrays may be freely created and used 
by the programmer. There is therefore no theoretical limit to the complexity of model that 
can be expressed in the GaussFit programming language. [6] 
 One of the onerous tasks that faces the implementer of a least squares problem, 
particularly if the problem is nonlinear, is the calculation of the partial derivatives with 
respect to the parameters and observations that are required in order to form the equations 
of condition and the constraint equations. GaussFit solves this problem automatically 
using a built-in algebraic manipulator to calculate all of the required partial derivatives. 
Every expression that the user’s model computes will carry all of the required derivative 
information along with it. 
 This is very convenient, especially when a condition or a constraint equation 
involves a complex calculation. For example, if the calculation can only be expressed 
algorithmically, GaussFit will automatically carry along all derivative information at each 
step of the calculation. The derivatives are calculated analytically at each step. No 
numerical approximations are used. [6] 
 In order to run GaussFit for the estimation of the unknown parameters in a 
nonlinear least squares problem the user must provide four files. These four files are: 

1. model file 
2. parameter file 
3. data file 
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4. environment file. 
The model file is made up of three sections. In the first section the names of the 

parameters that are used in the function and are being estimated. The second section 
involves the data. The observation statement declares that the data associated with that 
variable contains errors. If no errors are to be assumed for the values of the data 
associated with a variable, then the data command is used. In this study there are assumed 
to be errors in the ‘y’ data due to the inherent errors in the model, while the ‘x’ data are 
assumed to be without errors. The third section of the model file then is the main 
program. It is in this section that the function is defined and calculated. In this study, a 
while loop was used to calculate the function values for each of the pairs of data. The 
model file, unlike the parameter and environment and data files, is not changed after 
running the GaussFit program. 

The parameter file defines the parameters being estimated. The first line names 
the parameters, while the second line declares the type of variable the parameters are. In 
this study, all of the parameters were declared to be double precision. The third line of the 
parameter file states the initial values for the parameters. Running the GaussFit program 
will change the parameter file. GaussFit will write into the parameter file the change in 
each parameter during the last performed iteration. It will also write the calculated 
standard deviation for the parameters. 

The data file used by GaussFit has one column for each observed quantity. The 
first line of each column is the variable for which that data is assigned. The variables are 
then declared as to their type. Again, in this study all data was declared to be double 
precision. Weights and variances may also be included in the data file. After running the 
GaussFit program another column will be added to the data file. This column will contain 
the residuals calculated by the program for the most recent iteration. The actual 
observation values will not be changed.  

The environment file contains information required for the reduction. This file is 
composed of setting certain keywords to appropriate values in order that the program will 
perform as desired. I will briefly describe the keywords used in this study. The keywords 
results, data, and Params , give the names of the files which are to be used by the 
program to output the results, contain the data, and find the definitions of the parameters 
respectively. The keyword tol gives the value of the relative tolerance (e.g., the 
maximum change in computed values from one iteration to the next). The maximum 
number of iterations is set using the iters  keyword. The prmat keyword specifies that 
certain intermediate matrices will be printed. In this case prmat was set to 0 in order that 
none of the intermediate matrices were printed. The prvar keyword controls the printing 
of the variance – covariance matrix. The keywords lambda and factor are specific to 
using the Lenvenberg – Marquardt method. The lambda keyword sets the initial damping 
factor, while the factor keyword sets the value whereby the damping factor is reduced. 
After running the GaussFit program the current scale factor and current sigma value will 
be added into the environment file. [6] 
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IV.   C.  Gnuplot 
 
 Gnuplot is a command-driven interactive function plotting program capable of a 
variety of tasks. Included among these tasks are plotting both two- or three-dimensional 
functions in a variety of formats, computations in integer, floating point, and complex 
arithmetic, and support for a variety of operating systems. [1] 
 For this study gnuplot version 3.7 patchlevel 3 was used. Initially gnuplot 
displayed only approximately 6 digits in its solutions to the estimation of the parameters. 
I e-mailed the technical service mailing list and was essentially told that the additional 
digits were not statistically significant. While this is certainly true, by the nature of this 
study it is essential that we have at least 11 significant digits for the estimation in order 
that we may compare the estimates to the certified values provided in the NIST StRD 
datasets. Dr. Brian Borchers edited the underlying code changing the display command 
from “%g” to “%.20e” which allowed the program to display 20 digits.  
 The “fit” command can fit a user-defined function to a set of data points (x,y) or 
(x,y,z), using an implementation of the nonlinear least-squares Marquardt – Levenberg 
algorithm. Any user-defined variable occurring in the function body may serve as a fit 
parameter, but the return type of the function must be real.  
 After each iteration step, detailed information about the current state of the fit is 
written to the display. The same information about the initial and final states is written to 
a log file, “fit.log”. This file is always appended to, so as to not lose any previous fit 
history. After each problem I renamed the .log file in order to have quick access to the 
results for each individual problem. 
 Adjustable parameters can be specified by a comma separated list of variable 
names using the via keyword. Any variable that is not already defined will be created 
with an initial value of 1.0. However it is best to define the variables before the fit 
command with appropriate starting values. 
 Rather than determine confidence intervals, fit reports parameter error estimates 
which are readily obtained from the variance-covariance matrix after the final iteration. 
By convention, these estimates are called “standard errors” or “asymptotic standard 
errors”, since they are calculated in the same way as the standard errors (standard 
deviation of each parameter) of a linear least squares problem, even though the statistical 
conditions for designating the quantity calculated to be a standard deviation are not 
generally valid for the nonlinear least squares problem. The asymptotic standard errors 
are generally over-optimistic and should not used for determining confidence intervals, 
but are useful for qualitative purposes. 
 The final solution also produces a correlation matrix, which gives an indication of 
the correlation of parameters in the region of the solution. The main diagonal elements, 
autocorrelations, are all 1.0; if all parameters were independent, all other elements would 
be nearly zero. Two variables which completely compensate each other would have an 
off-diagonal element of unit magnitude, with a sign depending on whether the relation is 
proportional or inversely proportional. The smaller the magnitudes of the off-diagonal 
elements, the closer the estimates of the standard deviation of each parameter would be to 
the asymptotic standard error. [1] 
 The user has the ability to set various program parameters with gnuplot. The 
command “FIT_LIMIT” will set the tolerance for the program. The default tolerance is 
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set equal to 1.0e-5. When the sum of the squared residuals changes between two iteration 
steps by a factor less than this tolerance the fit is considered to have converged. 
Additionally the maximum number of iterations may be set by the command 
“FIT_MAXITER”. The default value is set at no limit to the number of iterations. The 

initial values for the Levenberg-Marquardt damping parameter, λ , as well as the factor 
by which λ  is increased or decreased can be set by the user with the commands 
“FIT_START_LAMBDA” and “FIT_LAMBDA_FACTOR” respectively. The default 

initial value of λ  is calculated within the program, while the default initial value for the 
λ - factor is set to 10.0. For the purposes of this study FIT_LIMIT was set  to 1.0e-15, 
with the default values for the other program parameters. [1] 

 
IV.   D.  SAS 
 
 For this study SAS Release 8.02.02 for use with Linux was used. 

SAS is a multi-purpose commercial statistical software package. It is far beyond 
the scope of this paper to cover the many procedures found within the SAS package. 
Instead, we will concern ourselves only with the NLIN procedure which computes least 
squares or weighted least squares estimates of the parameters of a nonlinear model. 
Additionally, we will only consider the program parameters which were used in this 
study and direct the reader to the listed resources for additional information. 
 PROC NLIN fits nonlinear regression models using the least squares method. The 
user must supply the regression expression, declare parameter names, supply starting 
values for the parameters, and supply derivatives of the model with respect to the 
parameters. The NLIN procedure is capable of use any of the following five iterative 
methods: 

• Steepest descent or gradient method 

• Newton method 
• Modified Gauss-Newton method 

• Levenberg-Marquardt method 

• Multivariate secant or false position (DUD) method 
 
The Gauss-Newton and Levenberg-Marquardt iterative methods regress the 

residuals unto partial derivatives of the model with respect to the parameters until the 
estimates converge or the set maximum number of iterations is achieved. The Newton 
iterative method regresses the residuals onto a function of the first and second partial 
derivatives of the model with respect to the parameters until the estimates converge or the 
set maximum number of iterations is achieved. 

After declaring the data (either listing data in the program itself or giving a file 
where the data is located), the proc nlin statement invokes the procedure. Several options 
are available for use in this statement. The “DATA” statement names the SAS data set 
containing the data to be analyzed by PROC NLIN. The “METHOD” statement specifies 
the iterative method NLIN uses. For this study METHOD=Marquardt. The “MAXITER” 
option sets the maximum number of iterations performed by PROC NLIN. For this study 
MAXITER was set equal to 500.   
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The “CONVERGE” statement uses the change in the LOSS function as the 
convergence criterion. The iterations are said to have converged for CONVERGE=c if  
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where iLOSS  is the LOSS for the ith iteration. The default LOSS function is the sum of 

squared errors (SSE). For this study CONVERGE was set equal to 1.0e-15. 
The model statement defines the prediction equation by declaring the dependent 

variable and defining an expression that evaluates predicted values. The expression can 
be any valid SAS expression yielding a numerical result. The expression can include 
parameter names, variables in the data set, and variables created by program statements 
in the NLIN procedure. A model statement must appear in the NLIN procedure. 

SAS requires the partial derivatives of the parameters to be estimated (with the 
exception being when using the secant method). The derivatives are stated using a 
statement such as “der.b0=<expression>”. This statement defines the first partial 
derivative of the function with respect to the parameter b0. This derivative now can be 
used as a variable in statements which follow. 

The data set produced by the OUTEST option in the PROC NLIN statement 
contains the parameter estimates for each iteration. The variable _ITER_ contains the 
iteration number. The variable _TYPE_ denotes whether the observation contains 
iteration parameter estimates (ITER), final parameter estimates (FINAL), or covariance 
estimates (COVB ). The variable _NAME_ contains the parameter name for covariances, 
and the variable _SSE_ contains the objective function value for the parameter estimates.  

In addition to the output data sets, NLIN also produces the estimates of the 
parameters and the residual Sums of Squares determined at each iteration. If the 
convergence criterion is met, NLIN prints an analysis of variance table including as 
sources of variation Regression, Residual, Uncorrected Total, and Corrected Total. Also 
printed are an asymptotically valid standard error of the estimate, an asymptotic 95% 
Confidence Interval for the estimate of the parameter, and an asymptotic Correlation 
Matrix of the parameters. 

The default settings for SAS to output the estimates of the parameters display 
approximately six significant digits. Again, for comparison purposes it is desirable to 
have at least 11 significant digits. By running a print procedure I was able to format the 
output in a manner consistent with the purpose of this study. [14] 

 
IV.   E.  Microsoft Excel 
 
 Just as is the case with SAS, Microsoft Excel 2000 is a multi-purpose software 
package. As only a small part of its capabilities were used during the process of this 
study, we will limit our discussion of Excel to its Solver capabilities. 
 The Excel Solver function is a self-contained function in that all of the data must 
be located somewhere on the spreadsheet. The Solver allows the user to find a solution to 
a function that contains up to 200 variables and up to 100 constraints on those variables.  
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 For the Solver function to be configured properly the user must lay out the 
spreadsheet. In addition to the data and the function to be minimized the starting values 
for the parameters must be located on the worksheet. A target cell contains the value of 
the function to be minimized. When the Solver function is selected from the Tools menu, 
a dialog box will appear. In this dialog box the user is given the opportunity to set the 
function to a specific value, minimize the function, or maximize the function. The user 
must place the location of the target cell. Additionally, the user can list any constraints 
upon the parameters. 

Within the options menu the user can adjust the parameters of the Solver program. 
The user can set the maximum amount of time or the maximum number of iterations that 
Solver will take to solve the problem. The user can also set the precision level of the 
solutions and the tolerance level for the program. The option to see results after each 
iteration is given. Solver calculates numerical approximations to the derivatives based 
upon either forward or central derivatives depending on the choice of the user. The user 
also chooses between a Quasi-Newton or a Conjugate Gradient method. Automatic 
scaling is yet another option for the user to select. 

Solver generates three reports at the conclusion of the program. The Answer 
Report gives the original values for the target cell as well as the adjustable cells 
(parameters). Listed also are the final values for these cells. The Sensitivity Report also 
lists the final value for the parameters as well as the final value of the reduced gradient. 
The Limits Report is essentially used when setting the function to a specific value. [15] 
 For the problems in this study, I listed the data in separate columns and listed the 
parameters to be estimated with their starting values. I then placed the function values for 
each data pair minus the observed value in a separate column. In another column I placed 
the square of the difference found. The target cell then was the sum of the squares of the 
differences. It was this cell that Solver was to minimize by changing the values of the 
parameters. A Quasi-Newton search direction was used with automatic scaling and a 
tolerance of 1.0e-15. [10] 

 
IV.   F.  MINPACK 
 
 Minpack is a library of FORTRAN codes which consists of software for solving 
nonlinear equations and nonlinear least squares problems. Minpack is freely distributed 
via the Netlib web site and other sources. Five algorithmic paths each include a core 
subroutine and driver. The algorithms proceed either from an analytic specification of the 
Jacobian matrix or directly from the problem functions. The paths include facilities for 
systems of equations with a banded Jacobian matrix, for least squares problems with a 
large amount of data, and for checking the consistency of the Jacobian matrix with the 
functions. 
 Minpack does return an integer variable which supplies the user with information 
regarding the termination of the program. If this variable, which is called ‘info’, is set 
equal to 0, then the user has supplied improper input parameters. For info equal to 1, the 
algorithm has determined that the relative error in the sum of squares is at most the 
quantity specified in the tolerance. If the algorithm estimates that the relative error 
between the current estimated values of the parameters and the actual values of the 
parameters is at most equal to the tolerance, then info is set equal to 2. For info equal to 
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3, both of the two previous conditions hold. For info equal to 4 the vector of function 
values is orthogonal to the Jacobian matrix to machine precision. In this case, when the 
linear equations in (29) are solved p = 0, and the algorithm cannot proceed any further. If 
info is set equal to 5, then the functional values have been calculated 100*(n + 1) times 
where n is the number of parameters. When info is equal to 6, no further reduction in the 
sum of squares is possible. If no further improvement in the estimated parameters is 
possible, then info is set equal to 7. 

For the problems involved in this study a program and a subroutine had to be 
written. In the main program the parameters are declared and initialized. This program 
then calls the lmder1 routine. The lmder1 routine calls the subroutine written for the 
problem. This routine contains the data for the problem. The function values are also 
computed as well as the values of the partial derivatives for each data entry. The partial 
derivatives are calculated analytically using the supplied equations from the user. The 
output is printed according to the format statements given in the main program. 
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V.   Results 
 
 The problems given in the NIST StRD dataset are provided with two separate 
initial starting positions for the estimated parameters. The first position, Start 1, is 
considered to be the more difficult as the initial values for the parameters are farther from 
the certified values than are the initial values given by Start 2. For this reason, one might  
expect that the solutions generated from Start 2 to be more accurate, or perhaps for the 
algorithm to take fewer iterations. It is quite interesting to note that in several cases the 
results from Start 2 are not more accurate based upon the minimum LRE recorded. 

The critical parameter used in the comparison of these software packages is the 
LRE as calculated in (1). The number of estimated parameters for these problems range 
from two to nine. We felt it would be beneficial for the results table to be as concise as 
possible, yet remain useful. As a result, after running a particular package from both 
starting values, the LRE for each estimated parameter was calculated using Matlab 6.5. 
The minimum LRE for the estimated parameters from each starting position was then 
entered into the results table. For example, Microsoft Excel for the Gauss1 problem has 
an LRE given on the table of 4.7 from start position 1, and an LRE of 4.6 from start 
position 2. Since the Gauss1 problem has eight parameters to be estimated, the other 
seven parameters from each start position had a higher calculated LRE, and hence were 
closer to the certified values. 

An entry of 0.0 in the results table is given if a software package generated 
estimates for the parameters but the minimum LRE was less than 1.0. For example if the 
minimum LRE was calculated to be 8.0e-1, rather than entering this, a 0.0 was entered. 
This practice was followed in an effort to be consistent with established practices. [11] 

If a software package did not generate a numerical estimate for the parameters, 
then an entry of “NS” is entered into the results table. For example, Gnuplot on the 
MGH17 problem from Start 1 returned the message “BREAK Undefined value during 
function evaluation”. Minpack returned estimates for the parameters in the Hahn1 
problem as “NAN”. GaussFit also returned parameter estimates for several problems as 
“NAN”. In these instances “NS” is entered into the results table to show the reader that 
no numerical estimates were generated. Microsoft Excel, Nielsen’s Matlab code, and 
SAS all generated numerical estimates for all of the problems at both starting positions. 
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VI.  Conclusions 
 
 The author is well aware that the conclusions reached in a study such as this are 
somewhat subjective in many instances. Therefore, it is with some trepidation that I state 
the conclusions. Certainly in the areas of accuracy and robustness the results speak for 
themselves. The LRE according to (1) was calculated based upon the estimates of the 
parameters from the various packages. This is entirely objective – yet even in this I am 
somewhat concerned with the implications of these results. 

I can well imagine a scenario where a particular package may not be able to solve 
certain types of nonlinear least squares problems yet solve other types extremely well. On 
the other hand, as a user, such information could be extremely valuable. One would most 
certainly desire to have the confidence that the software package which is chosen for 
nonlinear least squares problems is capable of solving a variety of problems to some 
acceptable level of accuracy. 

It is with this consideration that I write these conclusions. 

 
VI.   A.  Accuracy 
 
 As stated in the introduction, we will evaluate the accuracy of the software 
packages in terms of the log relative error (LRE) using equation (1). Essentially the LRE 
will give us the number of leading digits in the estimated parameter values which 
correspond to the leading digits of the certified values. Again, it ought to be noted that the 
values given in the results table are the minimum LRE values for those problems. This is 
in effort to adequately evaluate the accuracy of the software package’s ability to solve the 
problem. In other words, if a problem has five parameters to be estimated and four of the 
parameters are estimated accurately to seven digits, but the fifth is only accurate to one 
digit, it is reasonable to say that the problem was not accurately solved. On the other 
hand, if all five parameters were estimated to at least five digits accurately, then one 
could feel confident that the package had indeed solved the problem. 
 Nielsen’s Matlab code had an average LRE score of 6.8 for the problems. For the 
problems this package was able to solve the starting position did not seem to be of much 
importance. In fact, it is quite interesting that for several problems the LRE generated 
using the first set of initial values is larger than the LRE generated using the second set of 
initial values. This is interesting because the second set of initial values is closer to the 
certified values of the parameter estimates. Of the twenty-three problems that the 
parameters were estimated correctly to at least two digits, the average LRE was 7.96. 
This shows us that the accuracy of the estimated parameters was very high on those 
problems which this package effectively solved. 
 GaussFit has an average LRE score of 4.9. Also, unlike Nielsen’s Matlab code, 
GaussFit is very dependent upon the initial values given to the parameters. On eight of 
the problems GaussFit was unable to estimate all of the parameters to even one digit from 
the first starting position. From the second starting position GaussFit was able to estimate 
all of the parameters to over six digits correctly. This seemingly high dependence upon 
the starting values is a potential problem when using GaussFit for solving these nonlinear 
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regression problems. There is no guarantee that one can find a starting value which is 
sufficiently close to the solution for GaussFit to effectively solve the problem. 
 Gnuplot has an average LRE score of 4.6. While this is actually lower than the 
average LRE score for GaussFit, gnuplot is not so heavily dependent upon the starting 
position in order to solve the problem. Rather, much like Nielsen’s code, gnuplot seems 
quite capable of accurately estimating the parameter values to four digits whether the 
starting position is close or far from the certified values. 
 The average LRE score for SAS is 6.46. This is quite surprising to me as I 
expected that SAS would be considerably more accurate. There were two problems 
(Nelson, and Roszman1) which SAS failed to estimate the parameters to even one digit 
correctly. Also surprising was the fact that on five of the problems there were rather large 
differences in the accuracy depending upon whether the first or second starting values 
were given. Again, this could be a serious problem in establishing the fact that a starting 
value is close enough for the package to solve the problem.  
 Microsoft Excel did not solve these problems well at all. The average LRE score 
for Excel is 2.32. Excel did perform reasonably well on the problems with a lower level 
of difficulty. For the eight problems with a lower level of difficulty the average LRE was 
4.18. While these are probably reasonable results for these problems, we can see that for 
the problems with a moderate or high level of difficulty Excel did very poorly. Such 
results as this would cause one to have serious questions as to Excel being able to solve 
any particular least squares regression problem. 
 The Minpack library of FORTRAN codes did not perform all that well on these 
particular problems. The average LRE for the twenty-six problems that Minpack did 
solve is 4.51. Minpack was significantly less accurate than the other packages on four of 
the problems, Misra1b, ENSO, Thurber, and Eckerle4. On the other hand, Minpack was 
considerably more accurate on the MGH10 problem. Minpack does not seem to be overly 
dependent upon starting position as in only two of the problems was there a significant 
difference in the minimum LRE for the different starting positions. 

 
VI.   B.  Robustness 
 
 While certainly the accuracy to which a particular software package is able to 
estimate the parameters is an important characteristic of the package, the ability for the 
package to solve a variety of nonlinear regression problems to an acceptable level of 
accuracy is perhaps more important to the user. This is due to fact that the user is going to 
have to estimate parameters from a wide range of problems. The user would certainly 
desire to have a level of confidence that the particular software package in use is likely to 
estimate those parameters to an acceptable level of accuracy. 
 All of this, then leads on to ask the obvious question, What is an acceptable level 
of accuracy? Such a question as this might elicit a variety of responses simply depending 
upon the nature of the study, the data, the relative size of the parameters, and many other 
variables which may need to be considered. For the purposes of this study we will 
consider an acceptable level of accuracy to be three digits. 
 In the chart below we will compare the various software packages by the number 
(and percentage) of the problems which they were able to estimate the parameters 
accurately to at least three digits from either starting position. 
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Comparison of Robustness  
 

 
Package 

 
N 

 
P 

Nielsen’s  
Matlab code 

 
23 

 
85.19 

 
GaussFit 

 
17 

 
62.96 

 
Gnuplot 

 
24 

 
88.89 

 
SAS 

 
23 

 
85.19 

 
Excel 

 
15 

 
55.56 

 
Minpack 

 
17 

 
62.96 

 
 

Here N is the number of problems which the package accurately estimated the 
parameters to at least three digits. P is the percentage of the problems which the package 
accurately estimated the parameters to at least three digits. 

It can easily be seen here that as far as the robustness of the packages is concerned 
there are two distinct divisions. Nielsen’s Matlab code, Gnuplot, and SAS all were able to 
attain the 3 digit level of accuracy for over 80% of the problems. GaussFit, Excel, and 
Minpack, on the other hand were able to attain that level of accuracy on less than 65% of 
the problems. 

 
VI.   C.  Features 
 
 A discussion of the features of these software packages is a rather ominous task 
for one to undertake. It must be remembered that some of these packages are capable of 
performing many more tasks than nonlinear least squares parameter estimation. On the 
other hand, some of these packages are designed exclusively for this. 
 The Matlab code written by Han Bruun Nielsen was written solely for parameter 
estimation of a nonlinear least squares problem. Certainly information on the actual 
behavior of the program in the solving of the problem is available to the user, however 
other statistical analysis of the estimates of the parameters is not available. This code as 
written is very specific to the task of estimating the parameters. 
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 GaussFit is also designed specifically for the solution of least squares and robust 
estimation problems. Unlike Nielsen’s Matlab code, however, GaussFit has many more 
features available to the user. GaussFit provides two different methods for iteration. The 
user can choose between Newton’s method or the method of Iteratively Reweighted Least 
Squares by a slight change in the environment file. Two different styles of iterations 
through the equations are also available. The user can choose a single iteration through 
the forming of the equations of condition and solving the matrix, or a double iteration 
through the equations of condition before solving the matrix. Again, this option is 
available through the inclusion of a keyword in the environment file. Certainly the 
automatic calculations of the derivative enables the user to solve some problems that 
otherwise might be prohibitive. The results given by GaussFit are quite extensive as the 
output includes a partial triangularization of the matrix (optional); certain results of the 
iteration; the changes in the parameters, iteration by iteration; and the correlation matrix 
of reduction including a covariance column. [6] 
 Gnuplot is designed as a plotting package with the fit command incorporated into 
it. The fit command uses the Levenberg-Marquardt method with no other options 
available. Gnuplot does allow the user to express the standard deviation of the data and 
thereby change the weight of the data for use in a weighted least squares problem where 
the residuals are weighted before being squared. As stated above, gnuplot reports the 
parameter error estimates obtained from the variance-covariance matrix. The correlation 
matrix is also given in the output. [1] 
 The features of SAS are tremendous not only in number but also in potential 
usefulness. The PROC NLIN is but a small part of the capability of SAS. Many of the 
features, that is those features that were used in this study, for the NLIN procedure were 
covered above. Of great benefit in the SAS environment is that once the estimates of the 
parameters have been given the user can through the use of other procedures manipulate 
those estimates in virtually any number of ways. SAS has very thorough basic statistics 
package as well as a more than adequate plotting procedure. [14] 
 Excel, like SAS, is much more than a tool to solve nonlinear least squares 
problems. In like manner then, an added benefit of this is the potential capability to 
manipulate the parameter estimates within the Excel environment. Excel does not allow 
for many iterative methods for the solution of the nonlinear least squares problem. The 
user must choose either a Quasi-Newton method or the Conjugant Gradient method. [10] 
 Minpack, much like Nielsen’s Matlab code, is very specific to what it is designed 
to do. As a result of this there are not many features and options available to the user. The 
necessity of user defined functions and particularly user defined partial derivatives may 
inhibit the use of Minpack in some instances, but many of the other packages would 
suffer from those same considerations. 
 Again, we must realize that comparing the features of these packages is a difficult 
process to carry out. These particular packages vary in design and capability 
substantially. In addition they vary in cost from free to quite expensive. Having said all of 
this, however, it is clear that the features available in the SAS package are far beyond the 
features available in any of the rest of the packages. The SAS environment allows the 
user to perform a multitude of tasks on any particular data set, of which the estimated 
parameters may be one. 
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VI.   D.  Ease of Use 
 
 Of the comparison criteria we are considering in this study the ease of use for the 
software packages is clearly the most subjective. One particular problem is that it is 
impossible to separate the package from the environment in which it is used. Just as any 
particular user has a preference in the operating system which they prefer, so too they 
will have a preference in the packages which they prefer to use. Just as clearly, however, 
there are certain items in these packages that are either user-friendly or not. 
 I found Nielsen’s Matlab code very easy to work with. It is true that it was 
necessary to write separate Matlab functions to find both the function values and the 
Jacobian and this process was rather lengthy. (In reality, with Nielsen’s code it would 
have been possible to simply have one function calculate both the function values and the 
Jacobian.) Matlab has a very easy to use ‘paste special’ option that allows one to copy the 
data from the dataset on the NIST StRD website and turn the data into vectors without 
having to retype all of the data. In addition to this I was able to write another Matlab 
function which automatically set the necessary parameters and solved all of the problems 
with only one running. In addition to this, since I used Matlab to calculate the LRE, I was 
able to have that same function calculate the LRE immediately after solving each 
problem. It is true that perhaps the reason I found Nielsen’s code so easy to work with is 
more because of Matlab than the particular code, but this was an easy package with 
which to work. 
 GaussFit requires four separate files to solve each problem. The files are not 
difficult to write. The rather frustrating thing about the GaussFit environment is the fact 
that GaussFit writes over the files during the process of running the program. For this 
reason it was necessary to keep the files in two separate directories in order for the 
editing process to be easier. The program had to be run two times due to the use of two 
starting points. Once a few of the problems were solved with GaussFit they seemed to be 
rather routine for the problems that GaussFit solved. 
 Just like with GaussFit, once I was able to solve a few of the problems using 
gnuplot they were fairly routine. The data was copied into a file from the NIST website. 
Then the function was defined and the parameters were initialized to their starting values. 
The fit command was then given and the program solved the problem. As was stated 
earlier, the results are put into a .log file at the end of the last iteration. After gnuplot was 
ran for both stating values, I renamed the .log file and continued to the next problem. 
 SAS requires a separate program to be written for each problem. The programs 
varied in length depending on the number of parameters to be estimated. The program 
editor that is used by the SAS environment is quite unforgiving. That is, if a line was 
forgotten it would not allow me to insert the line in the proper position. As a result, I had 
to rewrite several of the programs. Another problem I ran into was that when the program 
is submitted (run) the program editor clears, as the output is placed in a different window. 
Several times I simply began writing the next program but when I submitted it the old 
program ran. Again, here I was forced to rewrite the program for that problem. It is true 
that these are things which one must learn, but they do not make for a very user-friendly 
package. 
 Excel is extremely easy to use. The only potential problem that I ran across was 
entering the data. Excel does not have the same ‘paste special’ option to express the data 
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as vectors as does Matlab. As a result, I cut and pasted the data from my Matlab files into 
the Excel worksheet. After initializing the parameters and defining the function, the rest 
was simply clicking with the mouse. 
 Minpack is written in FORTRAN, which I have not used in approximately 13 
years so this takes some getting used to again. The most difficult thing about Minpack is 
that the data have to be hand entered into the file. With several of the problems having 
more than 200 data points, this is quite a tedious, time-consuming job. 
 Several of these packages were what I would consider to be easy to use. Certainly 
Excel, gnuplot and Nielsen’s Matlab codes were the easiest with GaussFit close behind. 
SAS is rather programming intensive and with certain keywords which must be used in a 
certain order. Additionally, the program editor in SAS is difficult to use until one is 
familiar with it. The entering of the data for the Minpack programs was the one item 
which made it rather a challenge to use. 
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