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ABSTRACT

The inverse problem for the recovery of the seismic source moment

tensor is a fundamental problem in seismology. A particular seismic source

phenomenon seen at Mount Erebus, Antarctica is that of explosive decompres-

sion of a gas slug formed beneath the volcano’s lava lake and the subsequent

forces generated as the lava lake recovers from this disruption. The resulting

time series obtained from a number of broadband seismometers placed around

the volcano can be described by the summation of convolutions between the

moment tensor components and their corresponding Green’s functions. In this

thesis, I present a new solution method for this problem that uses the prop-

erties of Toeplitz matrices. In particular, the Toeplitz matrix structure allows

for fast matrix-vector multiplication by means of the Fast Fourier Transform.

By combining the use of Toeplitz matrices, the implicit storage of the Green’s

functions, and an iterative method, it becomes possible to work on large data

sets. Iterative inverse techniques, such as Conjugate Gradient Least Squares

(CGLS) method, are easily adapted to use Fast Toeplitz Multiplication, and

explicit regularization is introduced for extra stability. However, the choice of

a regularization parameter can require the calculation and evaluation of nu-

merous solutions.
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CHAPTER 1

INTRODUCTION

1.1 The Geophysical problem

Mount Erebus, located on Ross Island, Antarctica, is a large strato-

volcano which experiences Strombolian (small-to-medium blasts with relatively

low-viscosity lava) eruptions due to the explosive decompression of large gas

slugs which form beneath its exposed magma (lava) lake [1]. These eruptions

are highly cyclic in nature with each cycle involving the formation of a the gas

slug, explosive decompression, and magmatic recharge of the lava lake. This

persistent volcanic activity has been observed on Mount Erebus for at least 8

years allowing for the fruitful deployment of broadband seismometers on and

around the volcano as seen in figure 1.2. Short-period seismic explosion-related

seismograms superimposed on oscillatory very long period signals related to the

response of the magmatic conduit have been observed by means of near field

broadband seismometers 0.7 to 2.5 km from the lava lake [1].

Broadband seismometers on Erebus have been permanently placed

since 2004 at 6 sites. Each seismometer records data in three components,

(x,y,z) directions which are then rotated into a source radial-coordinate sys-

tem. The transformation for a given displacement vector u emanating from

1
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Figure 1.1: Erebus Station Map. The stations used in the stacked data inver-
sion are CON, E1S, HOO, LEH, NKB, RAY
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the source location center is computed byuR

uT

uZ

 =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

ux

uy

uz

 . (1.1)

This rotation results in the radial, transverse (the direction corresponding to

the angle θ perpendicular to the radial direction) and vertical components for

each station.

Figure 1.2: Rotation of coordinates into a source radial-coordinate system.

The stacked data used in this study was generated in 2005 from these

6 stations by means of summing the seismogram amplitudes aligned along travel

times [1]. Using stacked data significantly helps to increase the signal-to-noise

ratio by effectively reducing the noise observed from the oceanic microseism,

that is, helping to remove the faint tremors measured by seismic equipment

that are completely unrelated to the observed event and corresponding pri-

marily to ocean waves in the nearby Ross Sea. The Green’s functions which

describe the impulse response are calculated by means of a homogeneous half
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space with flat topography [7]. Unfortunately this half space assumption is not

entirely accurate in regards to building Green’s functions which incorporate the

topography of a volcano but instead are more applicable for work in models

where the earth is flat. The source location was determined by McNamara

[9] and adjusted later by Aster [3] with an inferred point-source depth of 400

meters. The seismic moment tensor utilized here is a generalization to the

formulation used to estimate the source parameters of a seismic model where

faulting caused by displacement discontinuity can be instead represented by

equivalent body forces to describe a seismic source [11]. These general source

components correspond to forces acting in particular directions called single

forces and force-couples. A force-couple consists of two forces acting together

along the same axis or acting upon a lever arm as to cause a torque.

The force-couples are typically denoted by subscripts which define

their direction of influence. For example, Myx and Mxy describe single-couples

of forces of magnitude f separated by distance d which act in the (±x) and

a clockwise manner in the xy-plane, respectively. Double couples are simply

the combination of the two opposing single-couples in a plane such as Mxy +

Myx and are especially useful in seismology because they are equivalent force

couples for faulting. The tensor components Mij are therefore considered to be

symmetric in most sources, this arises because internal processes cannot gener-

ate a net torque, and thus eliminates the need for their independent recovery.

The seismic moment tensor therefore represents the equivalent body forces for

seismic sources by the moment tensor M whose components are the nine force
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couples [11]

M =

Mxx Mxy Mxz

Mxy Myy Myz

Mxz Myz Mzz

 . (1.2)

The seismic source can then be represented explicitly as an ordered vector

containing the six independent double couples and three single directional forces

m =
(
Mxx(t), Mxy(t), · · · , Mzz(t), Fx(t), Fy(t), Fz(t)

)T
(1.3)

where Fx, Fy, Fz are single forces acting in the (x,y,z) directions respectively. In

the context of a volcanic eruption, such sources arise from accelerated magma or

gas. A designated ordering of the model shall be used by labeling m1 = Mxx,

m2 = Mxy, . . ., m9 = Fz for a total of nine tensor components. All nine

moment tensor components are not necessary for each assumed model, and

instead attempted recovery for any combination of the tensor components my

be desirable, depending on the source.

The recorded seismogram at the jth seismometer is defined by

dj(t) =
k∑

i=1

gji(t) ∗mi(t), j = 1, 2, . . . , n (1.4)

where k is the number of tensor components and gji are the corresponding

Green’s functions for each tensor component, and mi(t) are the moment tensor

components. Use of the seismic moment tensor simplifies the inversion process

to the solution of the system (1.4) for the moment tensor component vectors

and can be used to describe non-slip seismic sources which generate observable

seismic waves, such as volcanic eruptions [11].
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The seismic moment tensor is used to directly identify the nature of

the seismic source and shall be denoted in the following manner. First a Mogi

source [10] is a symmetric spherical source defined by the moment tensor

M =

Mxx 0 0
0 Mxx 0
0 0 Mxx

 (1.5)

and is generally used to describe a source which radiates outward/inward in

an explosive/implosive manner. A dilitational source is defined by the three

tensor components

M =

Mxx 0 0
0 Myy 0
0 0 Mzz

 (1.6)

and may generally describe a source that radiates in a disk-like manner along

a general spatial orientation. The dilitational plus single vertical force model

builds upon the dilitational model by allowing inertial forces in the source.

Specifically, the dilitational plus three single forces model adds the directional

single forces Fx, Fy, Fz to the general dilitational model. A full model con-

sists dilitational components, the three directional single forces and the ad-

ditional double-couples including Mxy. In general, the addition of the model

components increases the computational complexity due to the increasing ill-

posedness of the problem, while at the same time should allow for better fits to

the data. It is of primary importance to see the relative contributions of each

tensor component and understand its role in the overall fit to the data.

1.2 The Mathematical problem

Before addressing the full moment tensor inversion problem, I will

demonstrate the recovery of a single component model. The general convolution
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equation to describe a seismogram is given by Lay and Wallace [8]

d(t) = m(t) ∗ e(t) ∗ i(t) (1.7)

where ∗ denotes convolution, d(t) is the seismogram, m(t) is a single component

moment rate function, e(t) is the Green’s function that represents the Earth

responses to a single-force or force-couple impulses, and i(t) is the instrument

response. We gain the total response g(t) by convolving the instrument and

earth responses (i.e. g(t) = e(t) ∗ i(t)) and then simplify our basic convolution

equation to

d(t) = m(t) ∗ g(t). (1.8)

The inverse problem of deconvolution requires minimal computational effort so

long as you work entirely in the frequency domain. It is sufficient in the simple

deconvolution problem between two time-series to carry out the deconvolution

using the convolution theorem and the Fourier transform. Taking the Fourier

transform of both sides of (1.8) results in the equation D(f) = G(f)M(f),

where we are now concerned with each quantity as a function of frequency,

f . A simple division in the frequency domain (spectral division) recovers the

Fourier transform of the model and then by taking the inverse Fourier transform

the original time domain model is recovered

m(t) = F−1

(
D(f)

G(f)

)
(1.9)

where F−1 is the inverse Fourier transform. In practice the method of spectral

division seldom works well as instability arises from the division by G(f) which

may have components near zero. In particular, the occurrence of noise in a sig-

nal may generally occur over a broad range of frequencies which produce small

non-zero components in D(f) that can become amplified in spectral division.
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Prefiltering of data is a regularization technique which can greatly

improve the stability by eliminating noise in the data before attempting to

recover the model. If knowledge about the data frequency content is known

in advance, then an appropriate high/low/band pass filter. For example, if

the model is assumed to have no high frequency components, then the a low

pass filter can be used on the data to eliminate all frequencies greater than a

theoretical cutoff frequency.

In Tikhonov regularization, we use

mλ(t) = F−1

(
G(f)∗D(f)

G(f)∗G(f) + λ

)
(1.10)

where λ is a small positive constant, and ∗ denotes the complex-conjugate. The

product G(f)∗G(f) ≥ 0 ensures that the denominator will always be positive,

that is, even if G(f) = 0 the addition of λ > 0 prevents division by zero. A

further result is when G(f) is big then the affect of λ is negligible.

To perform any numerical calculations, discretization must be done

by time-sampling the data and Green’s function. Inversion can then be done

on the discrete convolution

d = g ∗m (1.11)

where d, g, m are vectors of length n describing the data, Green’s function, and

model, respectively. The nth component of the truncated linear convolution is

computed by

(m ∗ g)n =
N−1∑
k=0

mkgn−k, n = 0, . . . , N − 1 (1.12)

where the negative indices on gn−k = 0.
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In this thesis we will only need the first n components of the convolu-

tions as the data and the model vectors are to have the same length. Otherwise

convolution between two vectors of length n results in a vector of length 2n−1.

So then the actual data vector obtained by the linear convolution is a trun-

cated convolution representing only the first n elements of the computation.

Alternatively, (1.11) can be expressed as the matrix-vector product d = Gm

where G is a Toeplitz matrix formed from the Green’s function vector as

G =



g1 0 0 · · · 0 0
g2 g1 0 · · · 0 0

g3 g2
. . . . . .

...
...

...
. . . . . . . . . 0 0

gn−1
. . . . . . . . . g1 0

gn gn−1 · · · g3 g2 g1


. (1.13)

The result of Gm is the first n elements obtained by
∑N−1

k=0 mkgn−k, i.e. the

truncated linear convolution.

As in the continuous case, computation of the discrete convolution can

also be expressed by the convolution theorem, however the time series vectors

will need to be zero padded, that is the addition of zeros to pad the time-series

to be length 2n to avoid wrap around effects when taking the Fourier transform.

Thus (1.11) becomes

D = GM (1.14)

where D and M are vectors containing the discrete Fourier transforms of the

zero-padded time-series dn, and mn respectively, and G is a diagonal matrix

whose diagonal is the discrete Fourier transform of the discrete zero-padded

Green’s function. Instability arises from G being nearly singular. The forward
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problem in (1.14) can be simply viewed as the element-wise product of the FFT

of G and M, thus becoming

Dk = GkMk, k = 0, 1, . . . , 2N (1.15)

for k = 0, 1, . . . , 2N , thus M could be recovered quickly by the element-wise

division

Mk =
Dk

Gk

, k = 0, 1, . . . , 2N (1.16)

where clearly if any element Gk is small, and Dk is nonzero, then the resulting

Mk becomes large. Therefore division by zero is an obvious problem and the

main pitfall of this approach.

What is needed is a scheme which filters out near zero elements of Gk

while retaining the larger influential components. One possible fix is to simply

perturb all the complex Gk by a small positive real number λ so that (1.16)

now becomes

Mk =
Dk

Gk + λ
. (1.17)

This addition serves to eliminate the problem of division by very small numbers

by selecting an appropriate λ. Clearly when Gk is much larger than λ, then λ

will have little effect on Mk, therefore selection of an appropriately small sized

λ is desired. This method also has a pitfall if Gk = −λ, which still results in

division by zero.

Another issue is that we want M to be Hermitian, that is, Mk = M∗
N−k

where ∗ denotes complex conjugate. It is a fact that m is real valued if and

only if M is Hermitian [4]. Therefore, M must be Hermitian in order to recover

a real-valued model m.
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Tikhonov regularization addresses these problems by solution of

D = GM

for M by means of the minimization problem

min
(
‖GM−D‖2

2 + λ‖M‖2
2

)
. (1.18)

Here ‖ · ‖2 denotes the Euclidean norm, where for a complex vector x =

(x1, x2, . . . , xn)T , ‖x‖2 =
√

x∗1x1 + x∗2x2 + · · ·+ x∗nxn. The function to be min-

imized can be expanded by means of matrix algebra

f(M) = ‖GM−D‖2
2 + λ‖M‖2

2 = (GM−D)∗(GM−D) + λM∗M (1.19)

where (∗) represents the conjugate transpose. Further simplification yields

f(M) = M∗G∗GM− 2G∗D + D∗D + λM∗M. (1.20)

We compute the gradient

∇f(M) = 2G∗GM− 2G∗D + 2λM (1.21)

and setting ∇f(M) = 0 results in the normal equations

(G∗G + λI)M = G∗D. (1.22)

Solution of this system is also makes use of the element-wise division in the

form

Mk =
G∗

kDk

G∗
kGk + λ

(1.23)

where now the denominator is never zero for positive λ.
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This final result is the discrete form of the Tikhonov regularization

method seen in equation (1.10).

A more complicated problem is to look at a summation of convolu-

tions as seen in the recovery of the seismic moment tensor model components

associated with Strombolian eruptions observed at Mount Erebus in Antarc-

tica. The general inverse problem is to solve for the moment rate function

which itself consists of moment tensor force couples. Since each Green’s func-

tion corresponds to a different moment tensor and the wave equation describing

the seismic wave is linear, by Lay and Wallace [8] our equation is now described

by the system,

dn(t) =
k∑

i=1

mi(t) ∗ gni(t) (1.24)

where n specifics the station and the radial, transverse, or vertical component,

and gin is the Green’s function corresponding to the i-th moment tensor for

each component.

The signals are discretized and truncated to ensure full coverage of

the event (and part of its coda). Regularization by discretization is imposed

whenever numerical calculations are performed. The sampling rate or level of

discritization has a direct effect on the stability of the inversion. Increasing

the sampling rate improves the residual fit, but decreases stability due to the

inclusion of small singular values of G [2].

Since we have multiple seismic stations, n more generally represents

the radial, transverse, and vertical components for each station (i.e. n = 3×
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the number of stations).

dj =
k∑

i=1

gji ∗mi, j = 1, 2, . . . , n (1.25)

or more explicitly

d1 = g11 ∗m1 + g12 ∗m2 + · · ·+ g1k ∗mk,
d2 = g21 ∗m1 + g22 ∗m2 + · · ·+ g2k ∗mk,

...
dn = gn1 ∗m1 + gn2 ∗m2 + · · ·+ gnk ∗mk,

We want to solve for the moment tensor components m1, m2, etc. Alternatively,

we can represent the convolution between two vectors using a matrix-vector

product using the Toeplitz matrix formulation seen in (1.13). So then (1.25)

now can be represented by

d1 = G11m1 + G12m2 + · · ·+ G1kmk,
d2 = G22m1 + G22m2 + · · ·+ G2kmk,

...
dn = Gn1m1 + Gn2m2 + · · ·+ Gnkmk,

or equivalently by the blocked matrix system
d1

d2
...

dn

 =


G11 G12 · · · G1k

G21
. . . . . .

...
...

. . . . . .
...

Gn1 · · · · · · Gnk



m1

m2
...

mk

 (1.26)

The signals obtained are 200 seconds in duration with a sampling

rate of 40 samples per second. A data vector is therefore 8000 samples long

while the concatenation of data recorded from 18 channels results in 144000

element vector requiring approximately 1.1 megabytes of storage. Each model

component is also 8000 elements long and a full model vector consists of up to 9
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model components resulting in a vector of 72000 elements and 0.55 megabytes

of storage. The full G is therefore 144000 by 72000 in size and requires 77

gigabytes for full storage. The resulting data sets are therefore large enough to

require the need for large dense matrices which describe the convolutions and

subsequently impacts inverse methods which require explicit storage of large

matrices. This limitation requires large amounts of computer memory as seen

in the method used by Sara McNamara [9], and often prompts the need to

work on down-sampled data sets. To simplify this problem, we would like to

do as many frequency-domain convolutions as possible in order to use the speed

of the FFT as well as avoid explicitly storing the G matrices. Because of the

storage requirements, methods such as singular value decomposition (SVD) are

impossible on current computers, but iterative methods which use only matrix

vector multiplications are much better suited to low storage computational

algorithms.

In this instance, recovery of a series of model vectors would be more

tedious and not readily available (but still attainable) by means of the con-

volution theorem. To do the inversion on this system, we must consider the

larger system D = GM. Here D is a concatenated vector of the Fourier trans-

formed data vectors D = (D1,D2, . . . ,Dn)T , M is a concatenated vector of

the Fourier transformed model vectors M = (M1,M2, . . . ,Mk)
T , and G is an

blocked matrix of n × k diagonalized Fourier transformed Green’s functions

each appropriately matching the data channel and the model vector. Insta-

bility arises once again from G being nearly singular while naively attempting

spectral division by inversion of the G matrix. Instead, we seek to use an al-

ternative method which uses the speed of the Fast Fourier Transform to tackle
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this inverse problem by first representing this system of equations in a more

concise form.

Circulant matrices, which make possible “Fast Toeplitz Multiplica-

tion”, seem perfect for use in converting the problem to use only matrix-vector

multiplications which are ideal for low-memory iterative techniques such as con-

jugate gradient least squares (CGLS). Additionally, Tikhonov regularization

can be explicitly applied, thus allowing for better control over regularization.

In Chapter 2, I will introduce the important properties of circulant matrices

along with the CGLS method which will be used for carrying out the moment

tensor inversion.

1.3 What has been done before

In her 2004 thesis, Sara McNamara worked on the Mount Erebus data

inverse problem. For her inversion, McNamara used an iterative inverse method

presented by Lay and Wallace [8]. Starting again with the basic continuous

forward problem,

dn(t) =
k∑

i=1

mi(t) ∗ gin(t) (1.27)

Lay and Wallace proposed a parameterization method consisting of a series of

overlapping triangles (i.e. triangle basis functions) as seen in figure 1.3. The

parameterization represents the model as

mi(t) =
M∑

j=1

Bijb(t− τj), i = 1, . . . , k. (1.28)

The forward problem with the inclusion of triangle basis functions becomes:

dn(t) =
M∑

j=1

k∑
i=1

Bij[b(t− τj) ∗ gin(t)] (1.29)
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where M is the total number of triangle functions, Bij the height of the jth

triangle, and b(t − τj) is triangle centered at time τj. In this system we must

Figure 1.3: Parameterization of an arbitrarily shaped source function using
triangle basis functions.

solve for, Bij the triangle heights which will be used to estimate the moment

tensor mi [8].

Computationally, we consider the discrete approximation and begin

the actual inversion computation from a generic initial triangle heights Bij =

0. Iterations which revise these heights are carried out by minimizing the

residual from the difference of the observed and synthetic seismograms, i.e.

∆d = dobs−dsyn. The height Bij is then updated each iteration by solving the

equation ∆d = A∆P, Where A is a Jacobian matrix (where Aij = ∂di/∂Pj).

By adding the resulting ∆P to Bij, the triangle heights are adjusted and then

used generate a new dsyn to repeat the process until convergence. The final

model is then obtained by using equation (1.28).

For solving the actual inverse problem, McNamara used a singular

value decomposition which was slow and suffered from needing large amounts

of storage. In 2006, Aster [3] continued work on the Mount Erebus problem
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by using the Lay and Wallace method but allowing for the inverse problem to

solved by means of the CGLS algorithm. This adjustment helped to improve

the speed of the algorithm dramatically and eliminate the need for storing the

SVD matrices. For comparison, the algorithm using the SVD typically took a

couple of hours and was reduced to about 20 minutes by using CGLS. Aster

began by prefiltering the data to remove high frequency components which are

not expected to be included in the recovered model. This also helps to reduce

computational effort by reducing the computational effort to attempt to fit

high frequency noise in the data..

One major problem with this regularization scheme is that it is not

possible to obtain a measure of the regularization effect, nor is it possible to

accurately control its level of influence during the inversion. It is therefore

not clear whether regularization by means of discretization from triangle basis

functions has any real benefits over other methods of regularization and it

unclear what negative affects might result.

The main storage requirement for the method of parameterization by

discretization using triangle basis functions is the dense Jacobian matrix A.

Given the number of seismic station n, the data sample length s, the number

of model components c, and the number of triangles used in the discretiza-

tion p, then the storage is as follows, the # of rows of A = (3 × n × s), and

the # of columns of A = (c× p). Thus the final storage of A is 3nscp.



CHAPTER 2

THEORETICAL FRAMEWORK

Numerical computations of convolutions of the form a ∗ b are expen-

sive except when using the well established Convolution Theorem (CT) which

invokes the Fast Fourier Transform (FFT). Discrete convolutions can be carried

out in O(n2) time on n length vectors by computing (a ∗ b)m =
∑n

k=0 akbm−k.

Using the convolution theorem and the FFT reduces the convolution of two

vectors, a,b to an element-wise product between the FFT of a and the com-

plex vector from the FFT of b, i.e. a∗b = FFT(a) ·FFT(b) in only O(n ln(n))

time.

When dealing with the fast Fourier transform it must be noted that

there are unexpected effects when applying the convolution theorem directly.

The discrete convolution of two sequences, one of length m and the other n,

results in a n + m− 1 length sequence. When using the FFT (and its inverse)

it is assumed that these sequences are periodic in the time domain. The period

assumed by the FFT, say size l, must then be longer than n + m− 1 to allow

room for the entire n + m− 1 length convolution to fit in an l-periodic result.

Otherwise if l < n+m−1, undesirable wraparound effects give a result different

than the expected linear convolution computation. These wraparound effects

correspond to cyclic, or circular convolution and can be avoided by padding the

sequences with zeros (zero padding) so that the number of significant terms is

18
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less than the period of the FFT.

For the convolution between two n length sequences, zero padding

each sequence by n zeros is sufficient to contain the 2n − 1-element convolu-

tion. It should be noted that this product is still computed in O(n ln(n)) time.

When convolving two n length vectors to produce the first n elements of the

convolution, the FFT with zero padding is still used. The final result is simply

truncated to include the first n elements from the convolution theorem.

2.1 Fast Toeplitz Multiplication

The general convolution operation can be greatly simplified to a sim-

ple matrix-vector multiplication by means of a convolution matrix. For exam-

ple, the convolution of vectors a, and b, results in the following system:

a ∗ b =


a1 0 · · · 0 0
a2 a1 0 · · · 0

a3 a2
. . . . . . 0

...
...

. . . . . .

an an−1 · · · a2 a1




b1

b2

b3
...
bn

 (2.1)

This method of computing the convolution only returns the first n elements

of the convolution. This convolution matrix is a structured matrix known as

a Toeplitz matrix. In general a Toeplitz matrix is a matrix whose entries are

constant along each diagonal, which allows Toeplitz matrices to be formed

implicitly by only knowing the first column and first row. Therefore a general
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Toeplitz matrix is well structured and easily defined by its unique structure

T =



T1 T0 T−1 · · · T−n+1 T−n+2

T2 T1 T0
. . . . . . T−n+1

T3 T2 T1
. . . . . .

...
...

. . . . . . . . . T0 T−1
...

. . . T2 T1 T0

Tn Tn−1 · · · T3 T2 T1


. (2.2)

However when using a convolution matrix, where the first row has only one

nonzero entry, all that is ultimately needed is the first column to precisely

describe the entire matrix.

This matrix-vector multiplication itself can be carried out more quickly

by using another structured matrix called a circulant matrix. A circulant ma-

trix shown in (2.3) is a Toeplitz matrix where each column is a “circular-shifted”

version of its predecessor [5].

C =


c1 cn · · · c3 c2

c2 c1 · · · c4 c3
...

...
. . . . . .

...
cn cn−1 · · · c2 c1

 (2.3)

Circulant matrices have a very useful property [12]:

Cx = F−1(Fc · Fx) (2.4)

where c is the first column of the circulant matrix C. Here F and F−1 refer to

the Fourier and the inverse Fourier transform matrix operators, respectively.

The notation “·” in this instance describes an element-wise product of the

vectors not a dot product. A proof of (2.4) is as follows:
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The circulant matrix C can be obtained from the use of permutation

matrices acting upon the descriptive vector c = (c1, c2, . . . , cn)T . Specifically,

C can be formed from the polynomial equation

C = c1I + c2P + c3P
2 + · · ·+ cnP

n−1 (2.5)

where P is a permutation matrix of the form

P =


0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . . . . .

...

0
...

. . . 0 1
1 0 · · · 0 0

 . (2.6)

The fast Fourier computation and its inverse are equivalent to the

product of the Fourier matrix and a vector, i.e. fft(x) = Fx and ifft(y) = F−1y.

Where the Fourier matrix F of order n is

F =


1 1 · · · 1
1 ω · · · ωn−1

...
...

. . .
...

1 ωn−1 · · · ω(n−1)2


and ω = e2πi/n is the primitive nth root of unity. Using the Fourier matrix

notation, we can rearrange the operators from equation (2.4) as

FCF−1 = diag(Fc) (2.7)

and work to show the equivalence of both sides. Starting from the left hand

side

F

(
n∑

k=1

ckP
k−1

)
F−1 =

n∑
k=1

ck(FPk−1F−1) =
n∑

k=1

ck(FPF−1)k−1. (2.8)
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This result is the same as (FPF−1)k−1 since clearly (FPF−1)2 = FPF−1FPF−1 =

FP2F−1, and thus inductively (FPF−1)k−1 = FPk−1F−1.

Note the effect of the general product FPk−1F−1. Multiplication by

the permutation matrix P cycles through the columns of F therefore the result

of FPk−1F−1 = diag[col(k) mod (n)(F)]. Therefore, the product of FPF−1 =

diag(1, w, . . . , wn−1) and thus (2.8) becomes

n∑
k=1

ck(FPF−1)k−1 =
n∑

k=1

ck

(
diag(1, w, . . . , ωn−1)

)k−1
(2.9)

Thus the left hand side of (2.7) is

FCF−1 = diag


c1 + · · ·+ cn

c1 + c2w + · · ·+ cnw
n−1

c1 + c2w
2 + · · ·+ cnw

2(n−1)

· · ·
c1 + c2w

n−1 + · · ·+ cnw
(n−1)2

 (2.10)

.

The right hand side of (2.8) is a far quicker calculation as the matrix-

vector product Fc can be expressed as

Fc =


1 1

... 1

1 w
... wn−1

· · · · · · ... · · ·
1 wn−1 · · · w(n−1)2




c1

c2
...
cn

 = c1


1
1
...
1

+ · · ·+ cn


1

wn−1

...

w(n−1)2

 (2.11)

Summing up the vectors gives

Fc =


c1 + · · ·+ cn

c1 + c2w + · · ·+ cnw
n−1

c1 + c2w
2 + · · ·+ cnw

2(n−1)

...

c1 + c2w
n−1 + · · ·+ cnw

(n−1)2

 . (2.12)
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We finally see that (2.7) holds.

The Toeplitz matrix described in the convolution in (2.1) is not a

circulant matrix, instead we must reform the product by imbedding the Toeplitz

matrix in a larger proper circulant matrix. Each row and column in a circulant

matrix must be cyclic, so each column and row must be continued so that each

possess the same information as the next just shifted. To extend each column

we simply add n zeros the same procedure done before taking the FFT which

helped us to avoid wrap-around problems from circular convolution. So from

the original Toeplitz matrix,

A =



a1 a0 a−1 · · · a−n+2 a−n+1

a2 a1 a0
. . . . . . a−n+2

a3 a2 a1
. . . . . .

...
...

. . . . . . . . . a0 a−1
...

. . . a2 a1 a0

an an−1 · · · a3 a2 a1


. (2.13)

a circulant Toeplitz matrix is easily determined

C =



a1 a0 · · · a−n+2 a−n+1 0 an · · · a3 a2

a2 a1
. . . . . . a−n+2 a−n+1 0

. . . a4 a3

a3 a2
. . . . . .

...
...

...
. . . . . .

...
...

. . . a1 a0 a−1
. . . 0 an

an an−1 · · · a2 a1 a0 a−1 · · · a−n+1 0

0 an · · · a3 a2 a1 a0 · · · a−n+2 a−n+1

a−n+1 0
. . . a4 a3 a2 a1

. . . . . . a−n+2
...

...
. . . . . .

... a3 a2
. . . . . .

...

a−1
. . . 0 an

...
. . . a1 a0

a0 a−1 · · · a−n+1 0 an an−1 · · · a2 a1


(2.14)
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To compute the product Ax we imbed A within a circulant matrix

C, and pad x with n zeros[5].

C

[
x
0

]
=

[
A B
B A

] [
x
0

]
=

[
Tx
Bx

]
(2.15)

The blocked matrix B is an n × n matrix encompassing the column elements

of A that are needed to perform a proper circular-shift of the first column and

first row of A. More specifically,

B =


0 an · · · a3 a2

a−n+1 0
. . . a4 a3

...
...

. . . . . .
...

a−1
. . . 0 an

a0 a−1 · · · a−n+1 0

 (2.16)

The B matrix never needs to be formed explicitly as C is simply a Toeplitz

matrix with columns described by the circular-shift of vector

c = (a1, a2, . . . , an, 0, a−n+1, . . . , a−1, a0)
T .

Once in this form, we can use the FFT property to calculate

y = C

[
x
0

]
= F−1

(
Fc · F

[
x
0

])
(2.17)

in 2n ln(2n) or O(n ln(n)) time, i.e. “FFT time”. The actual solution is

y(1 : n) = Ax corresponding to the original n × n Toeplitz matrix prod-

uct. The circulant matrix C does not contain any additional information that

is not already present in the original Toeplitz matrix A, thus there is no need

for any additional storage beyond that of the first column of A. To do the

actual computations, routines have been written that never actually form the
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circulant matrices explicitly, but instead carry forth the fast Toeplitz multi-

plication on the length n vectors a, and x by zero padding, then carrying out

the computation in (2.17) and finally storing the first n elements of the result.

Therefore we can achieve fast Toeplitz multiplication of a convolution matrix

with FFT speeds and through implicit storage of the matrix.

Recalling the seismic moment tensor inversion problem

dj =
k∑

i=1

gji ∗mi, j = 1, 2, . . . , n (2.18)

we can represent our problem instead by using Toeplitz matrices:
d1

d2
...

dn

 =


G11 G12 · · · G1k

G21
. . .

...
...

Gn1 · · · Gnk




m1

m2
...

mk

 (2.19)

Here Gi,j are Toeplitz matrices which encompass the Green’s functions de-

scribing the total response for each model component i at each channel j. Now

we have the linear system d = Gm which can be solved using a number of

techniques.

Obviously for this particular system, we want to exploit the efficiency

of the method of fast Toeplitz matrix-vector multiplication. Implicit storage

and calculation with this method allows for minimal computational cost and

can be be utilized through use of iterative techniques. However, if we explicitly

tried to store this G matrix, we would quickly run into storage issues as G has

tens of thousands of rows and columns also making SVD-based pseudo-inverse

and Tikhonov regularization solutions impractical [2]. In general, to store a

double precision matrix, we need 8 bytes of memory per matrix element. Thus
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a 12000 element vector requires approximately 0.09 Megabytes of storage. By

contrast, a 12000 by 12000 element matrix needs more than 1.07 Gigabytes

to store explicitly. Therefore implicit storage of Toeplitz matrices offers an

amazing storage advantage for each Gij matrix. In the next two chapters,

I will be considering systems with up to 9 model components and 18 data

channels, which would require over 173 Gigabytes if explicit storage was used,

but all that is really needed is less than 20 Megabytes for the entire G matrix

using the implicit storage scheme!

2.2 Inversion with Conjugate Gradient Least Squares (CGLS)

Some inverse methods such as singular value decomposition (SVD)

become impractical as the number of parameters increases. In particular to

store the SVD result for an n×n matrix, three n×n matrices are needed. Aside

from the one diagonal matrix, the SVD does not produce sparse matrices, nor

are they well structured. There is also no effective scheme for computing the

SVD from the implicitly stored matrices that are required to store all of G

matrix, nor any way to store the resulting matrices sparsely.

Many iterative methods are well suited to use the fast Toeplitz multi-

plication since they may only require the resulting vector from a matrix-vector

multiplication. The method of conjugate gradient least squares (CGLS) is an

iterative method that is particularly effective in the solution of linear inverse

problems. As the name implies, CGLS is the method of conjugate gradients

applied to the solution of the general least squares problem min‖Gm − d‖2
2.
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By expanding the function to be minimized

‖Gm− d‖2
2 = (Gm− d)T (Gm− d) = mTGTGm− 2GTd + dTd

and then setting the gradient with respect to m to zero results in the normal

equations GTGm = GTd. We see that GTG is positive semidefinite, that is

mTGTGm ≥ 0 for all m since mTGTGm = ‖Gm‖2. GTG is singular in the

case where G is rank deficient.

Within the CGLS algorithm, multiplications involving the G matrix

are needed as well as multiplications involving the transpose of G. The GT

matrix consists of the transpose of the blocked Gi,j matrices as well as the

elements within each of these sub-matrices.

GT =


GT

11 GT
12 · · · GT

1k

GT
21

. . .
...

...
GT

n1 · · · GT
nk

 (2.20)

The resulting GT matrix is also a Toeplitz matrix since the transpose of a

Toeplitz matrix is also a Toeplitz matrix. Therefore all multiplications involv-

ing GT can also be done using the fast multiplication technique.

The main feature of CGLS (and in fact CG) is the construction of

mutually conjugate basis vectors pi in which we iteratively approach the so-

lution x∗ as a summation of these basis vectors x =
∑n−1

i=0 αipi. During each

iteration, each basis vector is a correction in the form of a search direction and

step of appropriate length toward the final solution x∗.

The CGLS algorithm outlined by [2] is as follows: Given a system of

equations Gm = d, let k = 0, x0 = 0, p−1 = 0, β0 = 0, s0 = d, and r0 = GT s0.

Repeat the following steps until convergence,
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1. If k > 0, let βk =
rT

k rk

rT
k−1rk−1

.

2. Let pk = rk + βkpk−1.

3. Let wk = Gpk.

4. Let αk =
rT

k rk

wT
k wk

.

5. Let xk+1 = xk + αkpk.

6. Let sk+1 = sk − αkwk.

7. Let rk+1 = GT sk+1.

8. Let k = k + 1.

CGLS starts with a beginning model x = 0 then, in each iteration

step, the model increases from the addition of basis vectors x =
∑n−1

i=0 αipi.

Stopping the CGLS algorithm early results in a short solution which has a

regularization effect referred to as implicit regularization [6].

Initially for the Mount Erebus data, CGLS with early termination was

used. This works by observing the iteration history plot of ‖Gmk − d‖ versus

‖mk‖. The resulting plot resembles an “L” shaped curve. We then choose to

terminate the algorithm when a distinct corner on the L appears. This corner

represents a point of appropriate trade-off between the misfit ‖Gmk − d‖ and

‖mk‖. This approach however does not impose enough of a regularization effect

by itself as the noise levels still have significant influence on the recovered model.

Therefore extra regularization must be used with CGLS to adequately recover

the model.
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2.3 CGLS with Explicit Regularization

Tikhonov regularization attempts to obtain stability by solving the

damped least squares problem

min ‖Gm− d‖2
2 + α2‖m‖2

2 (2.21)

which uses an adjustable regularization parameter α > 0. The solution to

the damped least squares problem ensures minimization of the model m which

is the primary regularization effect. There may be many valid models which

satisfy the least squares solution, but by introducing this new criterion the

solution the model will be of minimal length. This is known as Zeroth-order

Tikhonov regularization.

In general, Tikhonov regularization imposes a filter factor on the term

α2‖Lm‖ where L is a roughening matrix which incorporates a particular filter

on the model m, in Zeroth-order problem (2.21) L = I. An alternative view of

the damped least squares problem is viewing the problem as an ordinary least

squares problem obtained by augmenting the least squares problem

min‖Gm− d‖2 + α2‖Lm‖2

as

min

∥∥∥∥[G
αL

]
m−

[
d
0

]∥∥∥∥2

2

. (2.22)

The function to be minimized with respect to m can be simplified

using matrix algebra

f(m) =

∥∥∥∥[G
αL

]
m−

[
d
0

]∥∥∥∥2

2

=

([
G
αL

]
m−

[
d
0

])T ([
G
αL

]
m−

[
d
0

])
(2.23)
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or equivalently

f(m) = mT
[
GT αLT

] [G
αL

]
m− 2mT

[
GT αLT

] [d
0

]
+
[
dT 0T

] [d
0

]
.

(2.24)

The gradient with respect to m is needed for minimization, which by expansion

becomes

∇f(m) = 2
(
GTG + α2LTL

)
m− 2GTd. (2.25)

and thereby setting the gradient to zero and solving for m gives the new normal

equations (GTG + α2LTL)m = GTd [2]. Therefore, if LTL is nonsingular,

then the addition of α2LTL to GTG is also nonsingular, resulting in the desired

stability. Filter factors of all types can be used generally based upon preference

of the desired regularization effects. The level of influence can be directly

controlled by adjusting the regularization parameter α.

The choice for the values of α to use is not arbitrary, instead, CGLS is

run with a variety of α values. A log-log plot of the of the final misfit ‖Gm−d‖

versus the semi-norm ‖Lm‖ for each value of α used in the CGLS algorithm pro-

duces a L-shaped curved called an “L-curve” plot [6]. The L-curve is produced

because the misfit and semi-norm are functions of the regularization parameter

α, reducing α increases the semi-norm ‖Lm‖ and decreases the misfit. Explicit

regularization is a means of choosing the value of α which helps best stabilize

the solution while not over influencing the recovered model. Selection of α is

based upon the L-curve criterion (although there are alternative selection

criteria that can be used), which selects that α which gives the solution closest

to the corner of the L-curve [2].
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Explicit regularization is needed for the moment tensor inversion as-

sociated with the Mount Erebus data. The nature of the noise present in the

seismogram, which contains background noise from the oceanic microseism, re-

quires the use of an additional filter. Thus the K filter is a Toeplitz matrix

which houses a high-pass FIR filter which filters out signals with periods less

than or equal to 5 seconds. The K-filter is identical to the dimensions of G

and is therefore able to use fast Toeplitz multiplication.

2.4 Storage Requirements

CGLS with fast Multiplication requires the storage of the large G

matrix. The fast Toeplitz multiplication method allows for implicit storage of

each of the sub-matrices as vectors each the length of a data channel vector. In

the most efficient form of the algorithm, the precomputed FFT of G and GT

are stored instead of G. Given a the number of seismic stations n, the length of

a data channel vector s, and the number of model components c. The storage of

G is thus (3×n×s×c) = 3×(# of stations)×(length of data channel vector)×

(# of model components). The storage requirement for the FFT of G is then

four times that of storing G alone since the FFT is on the zero padded vectors

gij and the result is complex. Thus the storage for both the FFT of G and

GT is 24nsc. Using Tikhonov regularization requires the additional storage of

the FFT of both L and LT bringing the storage total to 48nsc. This is an

improvement over the parameterization method which had a storage need of

3nscp. The two algorithms would be identical in the case where p = 12, but

this small number of triangles is probably insufficient in most moment tensor

inversions. Therefore the CGLS algorithm with fast Toeplitz multiplication
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and Tikhonov regularization has an advantage when it comes to storage.

2.5 Model Fit

To evaluate the quality of the recovered model obtained from any in-

verse method, we must evaluate the goodness of the fit of the synthetic data

generated by computing the forward problem and compare this result to ob-

served data. A simple quantitative measure of the goodness of fit is computed

by ‖Gm − d‖. Another measure of fit used by seismologists is the variance

reduction (VR), computed by

Variance Reduction =

(
1− ‖Gm− d)‖2

‖d‖2

)
× 100%. (2.26)



CHAPTER 3

SYNTHETIC MODELS

In this chapter I will present synthetic models for 3 seismic moment

tensor configurations. These include the following models: Mogi, Dilitational,

and the Dilitational plus three Single Forces. The nature of these synthetics

are to be very general time-series which may not necessarily represent seismic

moment tensor time functions, but rather any mathematical tensor function of

interest.

3.1 Synthetic Mogi Model

The Mogi model is the most basic system represented by a single

moment tensor component. A generic synthetic model was created and used

in the forward problem to produce data. A clean data channel seen in figure

3.2 needs a level of noise added which may serve to represent what it seen by

an actual instrument. The nature of the noise is that of white noise mixed

with an oscillatory signal which represents what may be seen from the oceanic

microseism.

The CGLS algorithm with Tikhonov regularization does a nice job of

recovering the model from the noisy data. The fit to the data is quite good

with a variance reduction of 99.85 %.
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Figure 3.5: Synthetic Mogi Model E1S Data Fit
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Figure 3.7: Synthetic Mogi Model LEH Data Fit
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3.2 Synthetic Dilitational Model

The Dilitational model is the next step up in complexity as the mo-

ment tensor has three components to recover and additional Green’s functions.

In figure 3.10 there are three unique synthetic models used to generate the

synthetic data. The recovered models are smooth and free of noise. A variance

reduction of 99.94% further illustrates an excellent fit to the data.
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Figure 3.10: Synthetic Dilitational Original M Components
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0 50 100 150 200 250 300

0

10

20
x 10

−3 E1S−data R component and fit

0 50 100 150 200 250 300

0

10

20
x 10

−3 E1S−data T component and fit

di
sp

la
ce

m
en

t [
m

ic
ro

ns
]

0 50 100 150 200 250 300

0

10

20
x 10

−3 E1S−data Z component and fit

time (seconds)

Figure 3.13: Synthetic Dilitational Model E1S Data Fit
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Figure 3.14: Synthetic Dilitational Model HOO Data Fit
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Figure 3.15: Synthetic Dilitational Model LEH Data Fit
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Figure 3.16: Synthetic Dilitational Model NKB Data Fit
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Figure 3.17: Synthetic Dilitational Model RAY Data Fit
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3.3 Synthetic Dilitational Plus Three Directional Single Forces Model

The synthetic dilitational plus three directional single forces model

has six model components. In the previous two synthetic examples the re-

covered models were smooth and free of high frequency noise. This example

illustrates a problem that will be seen in working with real data. The three

components describing the single forces are pretty well recovered but the dili-

tational components have several problems. First the dilitational components

seem to contain lots of high frequency noise. Secondly, the models seem to

contain the periodical noise from the simulated oceanic microseism. Finally,

while models do have some resemblance to the original dilitational components,

the magnitudes are not equivalent.

This model has a variance reduction of 98.72% which would suggest a

very good fit to the data, but also suggests over-fitting of the data. The presence

of high frequency noise and mismatched magnitudes suggests problems with the

level of regularization.
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Figure 3.20: Synthetic Dilitational Plus Three Directional Single Forces Re-
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Figure 3.22: Synthetic Dilitational Plus Three Directional Single Forces Model
CON Data Fit
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Figure 3.23: Synthetic Dilitational Plus Three Directional Single Forces Model
E1S Data Fit
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Figure 3.24: Synthetic Dilitational Plus Three Directional Single Forces Model
HOO Data Fit
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Figure 3.25: Synthetic Dilitational Plus Three Directional Single Forces Model
LEH Data Fit
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Figure 3.26: Synthetic Dilitational Plus Three Directional Single Forces Model
NKB Data Fit
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Figure 3.27: Synthetic Dilitational Plus Three Directional Single Forces Model
RAY Data Fit



CHAPTER 4

STACKED DATA

The stacked data was run using CGLS with explicit regularization

describing the least squares problem in (??). Six model configurations were

considered for inversion each consisting of a Green’s function matrix describing

the according Green’s function for each double couple (or single force) at the

desired depth.

The Green’s functions are computed by Fortran code based upon the

methods outlined by Johnson [7] for the source location determined by Aster

[3] at depths of 200, 400, 800, and 1200 meters. The following inversions are

all done using the 400 meter depth Green’s functions.

4.1 The Mogi Model

The inversion process requires running the CGLS algorithm with reg-

ularization for a series of trials to find the appropriate regularization parameter

by using the L-curve criterion. The associated L-curve in figure 4.1 shows a

distinct corner solution with regularization parameter α = 5× 10−19. The as-

sociated recovered Mogi model appears well behaved and free of high frequency

noise.

The data fits illustrate a few interesting results. Some stations are

very well fit, while others exhibit a slight anomaly. This anomaly is a slight

52
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misalignment of signal amplitudes and is mostly explained by the CGLS algo-

rithm itself. The CGLS algorithm favors the signals with larger amplitudes and

will generally do its best to fit those associated signals. These signals generally

correspond to stations closer to the volcano source. The stations further away,

with their smaller amplitudes, and therefore have much less influence on the

data fits resulting in a recovered model which best fits the closer stations. The

stations E1S, NKB, and RAY show good fits to the data in both amplitude

and frequency. However for the overall data fit the variance reduction is only

61.69%.
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Figure 4.1: Mogi Model Stacked 2005 Data L-curve



54

0 50 100 150 200 250 300
−4

−2

0

2

4

6
x 10

11 Mogi model, 1223 iterations, alpha=5e−19

N
−

m
/s

time (seconds)

Figure 4.2: The Recovered Mogi Model on Stacked 2005 Data
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Figure 4.3: Stacked 2005 Data Mogi Model CON Data Fit
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Figure 4.4: Stacked 2005 Data Mogi Model E1S Data Fit
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Figure 4.5: Stacked 2005 Data Mogi Model HOO Data Fit
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Figure 4.6: Stacked 2005 Data Mogi Model LEH Data Fit
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Figure 4.7: Stacked 2005 Data Mogi Model NKB Data Fit
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Figure 4.8: Stacked 2005 Data Mogi Model RAY Data Fit
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4.2 Dilitational Plus Three Directional Single Forces Model

The dilitational plus three directional single forces model is presented

for a regularization parameter α = 3 × 10−19 and a filter matrix with a 5

second cutoff period. Note that in this instance, the CGLS algorithm has

not converged, but was instead stopped at 24,000 iterations. The recovered

dilitational components for the dilitational plus three directional single forces

seem sufficiently regularized and of appropriate amplitude. The single force

components do contain a level of high frequency noise. This is most likely due

to the CGLS algorithm not fully converging. The variance reduction for this

model is 90.24% which suggests a very good fit to the data.
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Figure 4.9: The Recovered 3m3f Model m1, m2, m3 components on Stacked
2005 Data
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Figure 4.10: The Recovered 3m3f Model f1, f2, f3 components on Stacked 2005
Data
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Figure 4.11: Stacked 2005 Data 3m3f Model CON Data Fit
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Figure 4.12: Stacked 2005 Data 3m3f Model E1S Data Fit
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Figure 4.13: Stacked 2005 Data 3m3f Model HOO Data Fit
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Figure 4.14: Stacked 2005 Data 3m3f Model LEH Data Fit
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Figure 4.15: Stacked 2005 Data 3m3f Model NKB Data Fit
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Figure 4.16: Stacked 2005 Data 3m3f Model RAY Data Fit
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4.3 Comparison of Methods

The method of parameterization by discretization using triangle basis

functions was implemented by Aster [3]. The best fit to the data was with a

dilitational model with three directional single forces which obtained a variance

reduction of 90.23%.

Below are plots of the recovered model for the method parameteriza-

tion by discretization using triangle basis functions.
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Figure 4.17: Recovered Dilitational Components For Parameterization Method
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Figure 4.18: Recovered Single Force Components For Parameterization Method
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The results show that both methods do obtain the same general mod-

els, but CGLS with Tikhonov regularization still contains some high frequency

components. This shows that both methods give agreeable results. For a direct

comparison, the recovered model from both methods are overlayed below:
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Figure 4.19: Comparison Recovered Dilitational Components For Parameteri-
zation Method
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Figure 4.20: Comparison of Recovered Single Force Components For Parame-
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CHAPTER 5

CONCLUSIONS

This thesis presents the idea of using fast Toeplitz multiplication as a

technique for inverse problems involving sums of convolutions. This technique is

then applied to the study of the strombolian eruption events observed at Mount

Erebus, Antarctica. The main conclusions can be summarized as follows:

Fast Toeplitz multiplication can be adapted for use in the conjugate

gradient least squares algorithm and other iterative inverse techniques. The

ability to store large matrices implicitly as vectors and use low memory matrix-

vector multiplication techniques makes the handling of large data sets possible

whereas explicit storage would be impossible without the use of supercomput-

ers. Fast Toeplitz multiplication also reduces computational effort by carrying

out multiplication by means of the Fast Fourier Transform in O(n ln(n)) time

versus the traditional O(n2) time for typical matrix vector multiplications. This

means that work can be done on full length data sets without the need to down

sample.

The CGLS method which works to find the least squares solution

is easily adapted to incorporate increased levels of regularization. By itself,

CGLS implicitly regularizes the solution by means of early termination of the

algorithm when an appropriate balance of the model misfit ‖Gm − d‖ and

the model norm ‖m‖ has been achieved. This implicit regularization was not

68
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sufficient enough in practice on the Mount Erebus problem sets as it failed

to eliminate enough of the noise within the data and produce a sufficiently

smooth recovered model. Implicit regularization also requires an unpredictable

amount of iterations to meet our conditions which causes too much wasted

computational effort.

Tikhonov regularization is well suited for use within the CGLS algo-

rithm and has the ability to use different filters which together have combined

effects for regularization. Identification of the nature of the noise helps in

the construction of these filters and can greatly help to speed up the CGLS

algorithm. The filter chosen was a roughening matrix designed from a FIR

filter to help remove noise from the oceanic microseism. CGLS with Tikhonov

regularization requires finding an optimal regularization parameter α which

we selected by means of the L-curve criterion. This meant multiple runs of

CGLS for various α values were needed. This lead to considerable computa-

tional effort, including wasted effort, since there is no prior knowledge about

the choice of values of α to use. This process is easily parallelized by running

the algorithm upon multiple processors for different values of α.

To test the effectiveness of CGLS with Tikhonov regularization, syn-

thetic examples similar to the system which describes the Mount Erebus prob-

lem are needed. Synthetic moment tensor models were used to then compute

data by using the Green’s functions from the Mount Erebus problem. Noise

was then added by combining a waveform describing the oceanic microseism

with Gaussian white noise. CGLS with Tikhonov regularization was used to

recover the model. The resulting fit to the noisy data is determined by the vari-
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ance reduction to be 99.85% for a Mogi model. It was noted that the channels

which describe seismic stations farther from the source are most susceptible to

interference from noise due to small displacement amplitudes.

The CGLS algorithm with Tikhonov regularization was run on the

Mount Erebus data for four different possible model specifications which de-

scribe the nature of the source. The model which assumes a dilitational source

with three single force directional forces had the best fit to the data with a

variance reduction of 90.24%. This result compares well with the parameteri-

zation by discretization with triangle basis functions implemented by Aster [3],

who obtained a variance reduction of 90.23% for the same model configuration.

The CGLS algorithm was not allowed to run until convergence, which

may mean that more of the high frequency components will be removed over

time. Also, slight modifications to the filtering matrix may help to filter these

components more easily and thus speed up convergence.

The two methods give very similar results. The parameterization

method is quicker and should be thought of to be generally superior for quick

calculations on smaller problems that have either shorter data sets or fewer

triangle basis functions. The parameterization method is not ideal to use on

larger data sets or when using a greater number of triangles as the storage

requirements can be tremendous. The largest model for comparison in this

thesis used about 600 Megabytes to implement this method. Another drawback

is that when using this parameterization it is not possible to invert for any high

frequency components which may be of interest. It works well in this example,

as seismologists are generally interested in the lower frequency elements of this
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particular seismic source.

The CGLS with Tikhonov regularization is a more all-purpose mo-

ment tensor inversion scheme which has the potential to obtain any frequency

of interest within a signal. The problem is the computational effort when find-

ing an appropriate regularization parameter. The memory requirements are

feasible on current hardware and for the largest model in this thesis only used

200 Megabytes. Implicit storage of the matrices therefore makes a significant

difference in the ability to work with much larger data sets.

In comparison, Aster’s implementation of the Lay and Wallace method

uses much more storage. If we consider scaling the problem to 100 seismic sta-

tions, then this requires approximately 5 times the current storage or 2.93

Gigabytes of storage for the parameterization method and 0.98 Gigabytes for

CGLS. On current notebook machines, 1 Gigabyte of memory is typical, and

up to 4 Gigabytes is feasible. Every parameter scales accordingly in both

methods except the number of triangles. Increasing the number of triangles

will help to improve recovery of higher frequency components in the model

at the additional cost of storage, however the CGLS method will recover any

range of the frequency at no additional storage cost. If attempting to recover

higher model frequencies for largest model, the parameterization method would

run out memory, while the CGLS method would require the only original 200

Megabytes.
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