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ABSTRACT

The Earth’s magnetic field extends into space resembling a dipole, where
it interacts with the solar wind produced by the Sun. The interaction stretches,
compresses, and alters the shape of the magnetic field. Simultaneously, there exist
charged particles traveling through space, which are affected by the magnetic and
electric fields of Earth, that are occasionally trapped in Earth’s magnetosphere.
The Van Allen Probes are two satellites that study the Van Allen radiation belts
around Earth; regions populated with charged particles. We propose that the
observed particle fluxes at the two satellites may reveal information about the
magnetic and electric fields. In order to test this, we employ the International
Geomagnetic Reference Field and Tsyganenko magnetic field models. An electric
field model is obtained by using the magnetic field models in conjunction with
the Sojka model. These models include a parameter Kp, a value that captures
the global magnetic activity. We simulate particles along their guiding centers
through space to compare satellite observations of particle fluxes with modeled
particle fluxes.

The models are tested with various Kp values to ascertain the model sensitiv-
ity to changes in this index, as well as to identify which Kp value best matches the
observational data. In order to validate the method, two days, one of low and one
of medium observed Kp, were selected for simulation. Varying the model’s Kp
indices incurs observable change with respect to the electric field. The resulting
modeled spectra are also reasonably consistent with the data. The best matching
spectrum was produced from the model with Kp equivalent to the observed Kp
in the low-Kp day. The optimal Kp is less discernible for the medium-Kp day. The
simulation results are not yet sufficient to fully resolve Kp but do suggest future
data and modeling approaches for further study.

Keywords: GUIDING CENTER APPROXIMATION; SPACE PHYSICS; RADIA-
TION BELTS; SPACE WEATHER
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CHAPTER 1

INTRODUCTION

1.1 Background

A magnetosphere is the region of space surrounding a magnetized planet or
other space object in which charged particles are affected by that object’s mag-
netic field ([10],[14]). Often times the magnetic field resembles a dipole near the
surface of the planet, for which analytic solutions using L-shells exist. This def-
inition of L-shell is a parameter describing the set of magnetic field lines that
intersect the magnetic equator at L Earth radii ([8], [21]). The more distant field
lines, however, can be greatly influenced by external factors. The Earth’s mag-
netic field is one such example, with a compressed magnetic field on the day-
side, that is, the side facing towards the Sun, and a stretched magnetic field on
the night-side, the side facing away from the Sun. These distortions in the mag-
netic field are in large part due to the interaction with the solar wind. The solar
wind is a supersonic outward flow of ionized gases and magnetic fields from the
sun. Variations in the solar wind speed can produce changes or distortions in the
Earth’s magnetosphere, for example, the initiation of magnetic storms ([8], [21]).
Global changes in the magnetic field can be quantified by the Kp-index, where K
stands for the German word Kennziffer meaning “characteristic digit”, and the
subscript p stands for “planetary”. The Kp-index ranges from zero to nine, with
small values such as one indicating low activity, and large values, beginning with
five, indicating high activity; often a geomagnetic storm [20]. The effects of these
storms on the magnetic field can be dramatic, stretching a nearby field line on
the night-side tens of Earth radii away from its dipolar location. Accordingly,
magnetic field models have been created which parameterize these changes in
the magnetic field in terms of the Kp index.

Moving in accordance with the magnetic and electric fields are populations
of charged particles. The magnetic and electric fields conduct the particles along
intricate paths, causing the particles to undergo small gyratory motion and or-
bital drift (see Figure 1.1). The force produced by the magnetic and electric fields
acting on the particles is described by the Lorentz force equation ([8], [21]). The
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magnitude and direction of this force are dependent on the kinetic energy and
pitch angle of the particle. The pitch angle of a particle is the angle between
the particle’s velocity vector and the local magnetic field ([8], [21]). A particle
with zero pitch angle has a velocity vector parallel to the local magnetic field.
A particle with 90 degree pitch angle is said to be mirroring. A particle mirrors
when it decelerates and reverses direction due to the forces it experiences as it
approaches a region of stronger magnetic field, this concept is discussed in more
detail in Chapter 3 [3]. Magnetic mirroring forces cause the trapping of energetic
charged particles in the dipole-like field lines near Earth. Part of this particle
population is referred to as the Van Allen radiation belts [4].

Figure 1.1: Particle motion in the magnetosphere. Inspired by [16].

Launched on August 30, 2012, the Van Allen Probes (formerly Radiation Belt
Storm Probes, RBSP) are two satellites that study the Van Allen radiation belts
around Earth [5]. The two satellites follow roughly the same nine hour orbit but
with a delay of a few hours. The Van Allen Probes are equipped with a compre-
hensive suite of instrumentation for measuring species, energy, and pitch angle of
charged particles. The data produced by these satellites are freely available and
include orbit locations, spectrograms, Kp indices, and other information recorded
since the commissioning of the satellites in 2012 [6]. In this work we have used
data from the HOPE (Helium, Oxygen, Proton, and Electron) instrument.

1.2 Statement of the Problem

One of the National Aeronautics and Space Agency’s (NASA) four general
scientific objectives for the Van Allen Probes Mission is to ”Understand how the
radiation belts change in the context of geomagnetic storms” [5]. Aligned with
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this objective, this thesis constructs a model for tracing particles in Earth’s mag-
netosphere, which in conjunction with satellite data, will be used to examine the
extent to which the magnetic field can be constrained by multi-point particle ob-
servations. Specifically, we determine the extent to which the Kp parameter, as a
proxy for electric and magnetic fields, can be determined.

1.3 Purpose and Significance

This thesis introduces a method for estimating the Earth’s magnetic activ-
ity index, Kp, as a proxy for the magnetic and electric fields from satellite data
and particle tracing simulations. The results of the method will contain informa-
tion regarding the accuracy of the models, as well as implicate to some extent
the changes in the magnetic field with respect to changing activity levels. Con-
sequentially, the significance of this thesis aligns with the goals of the Van Allen
Probes mission. Furthermore, understanding the radiation belt environment and
its variability has important practical applications in the areas of spacecraft oper-
ations, spacecraft system design, mission planning, and astronaut safety [5].

1.4 Assumptions, Limitations, and Scope

These models are operated under the assumption that the magnetic field is
time-stationary. The magnetic and electric fields of Earth change with the tilt an-
gle of Earth’s magnetic axis. Although this is accounted for in the Tsyganenko
and IGRF models, we use the models at a fixed time for simplicity. It should be
noted that a dynamic value for time would be incredibly computationally expen-
sive. The justification is that the simulations will not proceed through enough
real-time for Earth’s magnetic axis to have significantly rotated. This is supple-
mented by starting at a trailing satellite and integrating to the leading satellite, in
which the difference in time of measurement at the starting and ending locations
is restricted to a small time interval of less than 9 hours. Additionally, the fixed
date and time that is selected corresponds to a period of observed, unchanging
Kp, which implies that little change is occurring in the magnetic field.

We also assume that both electric potential and flux are constant along mag-
netic field lines. The assumption of constant electric potential is because the
charged particles move freely along magnetic field lines, hence any field-aligned
potential difference is quickly canceled by particle motion. The assumption of
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constant flux along magnetic field lines derives from the idea that there are equiv-
alent populations of identical particles distributed up and down magnetic field
lines; the simulations we perform model one representative particle. Assuming
electric potential is constant along field lines, we will employ models of the elec-
tric potential on the Earth’s surface to estimate the electric field. These models
integrate back to Earth’s surface where they compute the potential.

Otherwise, usage of the models is limited by the computational require-
ments. Whilst adaptations were made to increase efficiency at the cost of accu-
racy, the run-time is still sufficiently large to prevent extensive simulation, even
with the exceptional computer resources available. To be specific, simulations are
performed on a cluster of ten blades with twelve cores each.

Finally, this thesis is concerned with the primary contributors to particle mo-
tion; the magnetic and electric fields. There are additional, outside forces that
may have small impacts, such as iron artifacts on Earth [2], but they are out of the
scope of consideration.

1.5 Research Design

This thesis considers particles with varying pitch angles, energies, and ini-
tial positions. The pitch angles will vary over eleven values, matching the reso-
lution of the observed data. The energies and locations will be selected around
distinct features of the observed spectrograms, which intuitively are subject to
change between Kp indices. That is, distinct features are easily identifiable, while
it’s difficult to observe change inside regions of constant or similar flux. Addi-
tionally, features covering all observed energies will be selected to observe the
particle motion under dominant contribution from both components, meaning
the electric field E and magnetic field B, of the Lorentz force (the Lorentz force is
discussed in detail in Chapter 2),

F = qE + qv× B (1.1)

that is, the E and v× B components, in addition to observing motion dictated by
both components equally. The E component dominates at lower energies, which
simulation data suggests is below a few keV, while the v× B term dominates at
higher energies. In order to capture major contribution by the magnetic and elec-
tric fields, we selectively use the HOPE satellite data, which has an energy range
between zero eV and 52 keV. The initial positions will be selected to be coincident
with orbital locations of the satellites; our intention is to trace particles in order
to obtain connections between the trailing and leading satellite, at which points
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the observational data measured by both satellites is expected to be comparable
(Figure 1.2).

Figure 1.2: Simulated connections between trailing and leading satellite.

In order to trace particles in Earth’s magnetosphere, we use parameterized
models of the magnetic and electric fields. Models of varying accuracy and com-
plexity exist to approximate the magnetic and electric fields surrounding Earth.
Regarding these fields, three sets of models are considered. The first set of mod-
els use a dipole approximation of both fields in conjunction with the Sojka model
[18] of electric potentials at the Earth’s surface. Referred to as the full gyration
model, this employs the aforementioned field models to obtain the necessary
field vectors for use in the Lorentz force calculation, which drives the particle
motion. The resultant path of the particle should display all expected motions:
small gyration, orbital drift, and mirroring. However, the full gyration model is
both inaccurate and inefficient, as the dipole model is overly simplistic, and inte-
grating along small gyrations is computationally infeasible for an eventual large
number of simulations.

Consequentially, the second model, aimed at improving efficiency, main-
tains the use of the dipole approximations, but traces the guiding center of the
particle rather than the particle itself. The guiding center is essentially the line
about which the particle spirals (the guiding center is discussed in greater detail
in Chapter 3) [11]. By tracing the guiding center rather than the gyrating particle,
the integration becomes much simpler and the model is many times faster, with
little error introduced.

The third superlative model aims to accurately reproduce particle motion by
utilizing advanced models of the magnetic field, which in turn redefines the trac-
ing in computation of the electric field. The magnetic field will be modeled by
the standard International Geomagnetic Reference Field (IGRF) [22] in combina-
tion with a Tsyganenko model (T89c) [23]. The electric field will be modeled by
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the interaction between the advanced magnetic field and the Sojka model for the
surface potential. The overall model contains adjustable parameters, such as the
Kp magnetospheric activity index for both the electric and magnetic fields. Al-
though physically there is only one Kp, the Kp input to the magnetic and electric
fields are treated as different parameters in our experiments.

Using the third model, particles can be traced through the magnetosphere,
provided an initial pitch angle, energy, and position. By spawning an ensem-
ble of particle populations along the orbital path of the trailing satellite (along
features in the spectrogram), and tracing them to an intersection later in the lead-
ing satellite’s orbit, predicted and observed pairs of flux values can be obtained.
Inherently, such an intersection is improbable; however, as these particles are rep-
resentatives of a stream of identical particles, an intersection occurs if the simu-
lated particle crosses any magnetic field line which also crosses the satellite orbit,
which can then be mapped back to the satellite’s exact location at the correspond-
ing point in the orbit. This works assuming flux is constant along magnetic field
lines, so by mapping it back to the satellite’s location, the flux prediction or esti-
mate should remain the same. Ideally a full spectrogram could be reconstructed,
but such a task would require an immense amount of computation. The Kp pa-
rameter allows for the adjustment of the magnetic field in a crude way to test
which geometry, of the ones that can be created with the single parameters, best
matches the particle fluxes. This allows for flux pairs to be formed for varying
magnetospheric activity levels. These pairings will be analyzed against Van Allen
Probe data to determine if inverse estimation of the Kp parameter is possible.
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CHAPTER 2

DATA QUALITY AND CAVEATS

Before proceeding to the modeling and results sections of this thesis, the
quality of the data must be addressed upfront. In particular, the satellite data
is difficult to statistically analyze, due to the low count regime in which it oper-
ates, alongside a lack of information regarding conversion factors. Both of these
will be expanded upon in the upcoming sections.

2.1 Satellite Particle Counts

According to the HOPE project website, one data caveat is that the HOPE
satellite data (which is the instrument of interest in this thesis) operates in a low
count regime [19]. A majority of the fluxes are computed from a measurement
of fewer than ten particle counts. Furthermore, if no particles are observed, that
is, a count of zero, then the flux of such particles in that region is estimated to
be zero. This is additionally complicated by an undocumented conversion fac-
tor that produces fluxes of multiple orders of magnitude from singular counts.
Therefore, normal Chi-squared statistics cannot be applied to this data given the
low counts underneath the flux values. Beyond this, Poisson statistics are also
infeasible due to the undocumented counts to flux conversion factor. When con-
tacted regarding this conversion, the scientists in charge of the data explained
that the conversion factor is based off energy, time, as well as other variables [15].
This time dependence is highly variable, changing on the order of seconds.

2.2 Satellite Data Visualization

In order to fully understand the data and the logic behind some approaches
taken in this thesis, some depictions of the flux data are presented. First consider
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the standard, spin-averaged spectrogram for one orbit. Note that this spectro-
gram is roughly representative of all spectrograms for all days and times.

Figure 2.1: Spin-averaged spectrogram of a single orbit. Note that the left and
right sides of the spectrogram correspond to the day-side orbit, while the center
of the spectrogram corresponds to the night-side, more distant orbit.

The dark blue corresponds to flux values of zero (one was added before tak-
ing the log). Notice how there is a scattering of zero fluxes amongst these regions
of otherwise 105 cm−2sr−1s−1eV−1 flux. This is the variability in flux due to the
difference between zero and one counts. Furthermore, this spectrogram is spin-
averaged while the thesis considers pitch angles individually. Consequently, the
actual data used in simulation has a lower signal-to-noise ratio (SNR). For exam-
ple, consider the two following spectrograms: the first is the spectrogram corre-
sponding to a pitch angle of 90 degrees, the second corresponds to a pitch angle
of 4.5 degrees.
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Figure 2.2: Spectrograms of a single orbit for pitch angles α = 90◦ and α = 4.5◦,
respectively.

We consider 11 pitch angles spaced between 0 and 180 degrees. The most
field-aligned pitch angles (4.5 and 175.5 degrees) have less useful data, while the
pitch angles closer to 90 degrees typically yield higher SNR data. Even in the
case of α = 90◦, one can still see far more zero fluxes, as opposed to the spin-
averaged spectrogram. Otherwise, there are regions that maintain themselves
better across the individual pitch angles. Namely the yellow, high-flux regions at
the lower sides (plasmasphere), and the medium flux area at the upper middle.
As it turns out, the high-flux yellow regions in the plasmasphere do not provide
much insight as to the underlying Kp parameter. This is likely because these
occur at radially close positions on the day-side of Earth, where the dipole-like
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field is dominant. Similarly, the upper region does not have obvious, rigidly
defined features that would be expected to shift, thus it does not greatly assist in
identifying the Kp.

2.3 Basic Statistics of the Satellite Data

Over 75% of the flux values measured by the satellite are either invalid or
zero: roughly 65% zero, 10% invalid from one sample day. In an attempt to jus-
tify the assigned flux values, which are computed from counts, one can delve into
the counts data. Although it was mentioned before, it is worth reiterating the fol-
lowing information before proceeding to the next chapter. According to the Data
Quality and Caveats, HOPE satellite data experiences “Frequent periods when
counting rates are near 1-count level. When the fluxes are low, counting statistics
can produce significant errors and uncertainties” [19]. Furthermore, the method
by which counts are converted to fluxes has not been disclosed at this time, but
has been revealed to be a function of at least time, position, pitch angle, and en-
ergy [15]. The only known conversion is that zero count equates to zero flux,
which leads to the high proportion of zeros. In the data there are small count
observations converted to huge flux estimates neighboring zero count observa-
tions converted to zero flux estimates. Thus the data must be approached with
caution. In an attempt to overcome these local disparities, the spectrograms were
smoothed with different kernels, optimized for each simulation; this idea will be
expanded on later. One such smoothed spectrogram is shown in Figure 2.3.

Figure 2.3: Example of a spectrogram with and without smoothing.

Note that the smoothing occurs on each spectrogram for each pitch angle.
Figure 2.3 shows a spin-averaged spectrogram with its smoothed version.
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CHAPTER 3

EQUATION DEVELOPMENT AND IMPLEMENTATION

3.1 Full Gyration Model

There are numerous forces acting on particles in the magnetosphere of Earth.
Four such characteristics of particle motion will be considered:

(1) The first is the general orbital motion. Charged particles move along the mag-
netic field lines of Earth, resulting in an orbit of Earth ([8], [21]). These par-
ticles are confined to this precise orbit by stabilizing forces produced by the
magnetic field.

(2) The second characteristic is the gyratory motion caused by the Lorentz force.
If a particle of charge q moves through a magnetic field B and an electric field
E with velocity v, it experiences a force known as the Lorentz force,

F = qE + qv× B, (3.1)

This force causes the charged particle to undergo a gyratory motion ([8], [21]).

(3) The third characteristic is the mirroring of particles along their magnetic field
paths. A charged particle moving within a region of magnetic field experi-
ences a Lorentz force that causes it to move in a helical (corkscrew) path along
a magnetic field line. The radius of the circle that the particle path sweeps out
is called the radius of gyration or gyroradius. If it enters a region of denser
magnetic field lines, a field gradient, the combination of the radial compo-
nent of the fields and the azimuthal motion of the particle results in a force
pointed against the gradient, in the direction of the lower magnetic field. It
is this force that can reflect the particle, causing it to decelerate and reverse
direction ([8], [21]).

(4) The final characteristic is the effects of the magnetic and electric fields by their
interaction with the charged particles, which determines the direction of the
motion/orbit.
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The full gyration model guides a charged particle in accordance with mod-
eled magnetic and electric fields using the Lorentz force. This equation (3.1) nat-
urally accounts for each of the above characteristics, given particle charge and
separately computed magnetic and electric fields.

The charge is known based on which particle is considered (electron or pro-
ton), and both the magnetic and electric field vectors will be computed using
existing models. The 3D velocity and the 3D position together compose the state
vector in the integration. In order to integrate over the velocity vector, an accel-
eration vector (the derivative of the velocity vector) must be calculated at each
step. Integrating over position requires its derivative, velocity, which is already
known, and does not require any computation. The formula for the acceleration
vector is trivially obtained by manipulating the Lorentz force equation,

F = ma = qE + qv× B (3.2)

where m is the mass of the particle.

a =
qE + qv× B

m
. (3.3)

With the above equation as the underlying trace-mechanism, particles can
be simulated through Earth’s magnetosphere, given magnetic and electric field
models, by the following system of equations,

ṙ = v (3.4)

v̇ =
qE + qv× B

m
. (3.5)

3.1.1 Magnetic Field

Although there are more complex magnetic field models, some of which are
addressed later in this thesis, only a simple dipole will be considered for the full
gyration model. This selection primarily serves to reduce computational costs,
as the full gyration model is not an objective of this research, but rather a funda-
mental step towards a more efficient and comprehensive model. Furthermore, a
dipole model of Earth’s magnetic field is a useful and reasonable approximation
at low L shells, albeit not the case at high L shells ([8], [21]). Utilizing this, com-
parisons can be made to some more extensive models with meaningful results.
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Magnetic dipoles are a well understood concept, and the magnetic dipole
moment generates a magnetic field that can be formulated as ([8], [21]),

B(r) =
µ0

4π

(
3r(µ · r)

r5 − µ

r3

)
(3.6)

where r is the position vector of the particle, µ0 is the vacuum permeability, µ is
the magnetic moment vector, and r is the radial distance of the particle from the
origin of the dipole.

The implementation of a dipole magnetic field is simple and efficient. The
function to compute the field only requires a vector containing the position of the
particle, and along with some known constants, the field is explicitly calculated
using the above formula (3.6).

3.1.2 Electric Field

The electric field in consideration is a combination of two factors: an elec-
tric field derived from the negative potential gradient, and the corotation electric
field. The corotation electric field is simply the electric field due to the rotation
of Earth, and it can be computed directly. The gradient of the electric potential is
a more complicated matter, and requires a model of the electric potential. In the
full gyration model, two potential models will be considered: a simple dipole-
approximation model, and the more advanced Sojka model. In order to employ
these potential models, the particle must be traced back to the Earth along the
magnetic field lines to obtain a location on the surface, which can be computa-
tionally expensive. Such integration back to Earth’s surface is viable since we
assume that the electric potential is constant along magnetic field lines. This lo-
cation on the surface serves as an input parameter to both the dipole and Sojka
models, with which the electric potential is computed. These electric potentials
are used to obtain the electric field vector, which is described in greater detail in
the implementation section. Otherwise, the corotation electric field is explicitly
computed throughout this thesis with a formula, which will be presented shortly.

The first component of the electric field is obtained by finding the gradient
of the electric potentials. In the simple dipole-approximation model of the po-
tentials, the tracing of the particles to the surface of Earth can be analytically
determined. The analytic process for the trace is as follows ([8], [21]),

λ = tan−1
(

z
||rxy||

)
, (3.7)
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L =
||r||

cos2(λ)
, (3.8)

θ = sin−1

(√
RE

L

)
, (3.9)

and
φ = atan(y, x) (3.10)

where x, y, z are the three components of the position vector r, and RE = 6371000
m is an Earth radii. The potential can be computed given spherical coordinates
θ and φ (given r = 1). Furthermore, the potential at this point on Earth is the
same as the potential of the original point in space since magnetic field lines are
assumed to be equipotentials.

If a more complex magnetic field model is used, the above dipole-approximation
analytic trace is no longer valid, and the particle must be numerically traced
along magnetic field lines to the Earth’s surface to obtain the θ and φ coordinates.

The corotation can be computed by ([8], [21]),

Ecor = −
((

2πz
24 · 3600

× r
)
× B

)
(3.11)

where z is a unit vector in the +z direction. Only the internal component of
the magnetic field, computed by the IGRF, is involved in this computation. In-
tuitively, the corotation electric field can be thought of as the electric field due
to the rotation of Earth. That is, as Earth rotates, its magnetic axis rotates, and
thus the fields also rotate. To be clear, imagine that the internal component of the
magnetic field is a physical extension of the Earth. When the Earth rotates, the
magnetic field will follow suit, with more distant points moving faster to main-
tain their relative position. This motion produces an Earthward electric field in a
“stationary” (non-corotating) frame, this is the corotation electric field.

The overall electric field is the sum of the negative gradient of the potentials
with the corotation electric field vector.

Using the dipole-approximation, the implementation is straightforward given
the above formulas to determine θ and φ, as it only requires the position of the
particle. The resulting θ and φ are plugged into a simple routine translated from
Fortran code [12] to determine the potential. In order to acquire the gradient vec-
tor; however, the location in question must be axially perturbed, and the θ and φ
recalculated. The purpose of this recalculation is to obtain the necessary values
to apply finite difference methods to compute the derivative. Finite difference
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methods are numerical implementations of the limit definition of the derivative,

f ′(x) = lim
h→0

f (x + h)− f (x)
h

where we insert an appropriately small value for h such that a reasonable es-
timate of the derivative can be computed. Simple in concept, finite difference
methods have proved effective in many numerical applications [9].

This perturb and recalculate process, in conjunction with finite difference
methods, produces the electric field vector of the first component,

Epotx = −
P(r + hx)− P(r)

h
(3.12)

where P is the potential and hx = hi is the small perturbation value in the x
direction; this must be done for each of x, y, and z individually.

The second factor, the corotation electric field, is similarly simple to imple-
ment, requiring the position of the particle, and the magnetic field vector corre-
sponding to the position, which was described above (3.11).

For the more advanced magnetic field models, the analytic tracing is re-
placed by a numerical tracing. This tracing can be implemented by solving the
differential equation,

ṙ = ±B(r) (3.13)

that is, tracing along the magnetic field lines to the surface of Earth. The sign
of the magnetic field vector depends on the position of the particle, as the hemi-
spherical symmetry of the Sojka model yields the same result tracing up or down
the field lines. Using the z component of the particle position, we efficiently trace
to the nearest hemisphere.

This method of integrating along the field lines must be performed four
times per particle location to obtain the necessary values for finite differences,
which yield the gradient. The numerous integrations occasionally result in unde-
sirably long run-times, dependent on the initial particle location - which dictates
how far the particle must be traced. The solution to overcome this, at the cost of
some accuracy, is to construct a grid from which the electric field can be interpo-
lated. The creation of the grid is computationally expensive, but does not add
time to simulation once complete. Overall this leads to a reduction in run-time,
assuming there are a sufficiently large number of simulations per grid. It is im-
portant to note that the 3D grid contains three values per point, the component-
wise electric field values. This was found to best preserve accuracy, as opposed to
storing the potential at each point. To provide an idea of the cost of constructing
these grids, a 1001×1001×1001 grid requires roughly 1920-2400 hours of process-

15



ing time.

Finally, the overall electric field E is obtained as the sum of the negative gra-
dient of the electric potentials with the corotation electric field,

E = Epot + Ecor. (3.14)

3.1.3 Overall Implementation

All models operate in the Geocentric Solar Magnetospheric coordinate sys-
tem (GSM). The full gyration model accepts 3D velocity and position as the ini-
tializing input parameters. The model proceeds with a six-element state vector
containing the position and velocity. The velocity is used to update the posi-
tion, and the acceleration obtained from the Lorentz force equation (3.3) is used
to update the velocity. Evaluations of the magnetic and electric fields in order to
find the acceleration via the Lorentz force are the only computations that happen
within the tracing function.

This model was first programmed in MATLAB. MATLAB has a variety of
built-in integrators that are suitable for handling stiff and non-stiff problems. Al-
though the built-in Dormand-Prince pair (explicit Runge-Kutta (4,5)), one-step
solver ODE45 is the standard choice, the integration found improvement with
the variable order Adams-Bashforth-Moulton PECE solver ODE113 [17]. An ex-
ample simulation using the simple dipole-approximation is shown in Figure 3.1.
Notice the gyrations, mirroring effect, and orbit of the particle.

3.2 Guiding Center Model

Tracing the gyrations is computationally expensive. Fortunately, the motion
of the particle can be considered as the superposition of a relatively fast circular
motion around a point called the guiding center and a relatively slow drift of
this point. This idea was introduced in 1961 by Theodore Northrop [11]. By
tracking the guiding center approximation as opposed to tracing the entirety of
the particle’s motion, we can achieve a significant reduction in computational
cost.
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Figure 3.1: High energy proton orbiting Earth at three Earth radii (run time: 64.7
seconds, MATLAB).

In order to derive the guiding center equations, we begin by considering the
Lorentz Force equation (note that we used [13] as a guide in these derivations),

F = qE + qv× B. (3.15)

This can be rewritten as,
ma = qE + qv× B. (3.16)

Dividing through by mass,

a =
qE
m

+
q
m

v× B. (3.17)

Now, consider the motion of the particle in the plane perpendicular to the mag-
netic field; the equation for the perpendicular motion is

dv⊥
dt

=
qE⊥
m

+
q
m

v× B. (3.18)

Note that the acceleration a has been replaced by its equivalent definition, the
derivative of velocity dv⊥

dt (with respect to time). Also note that we can leave the
velocity v alone in v× B since the parallel components will be eliminated by the
cross product.

Next, we define v⊥ = u + w with a time-constant component w, where u
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represents the circular motion. The equation becomes,

d(u + w)

dt
=

qE⊥
m

+
q
m
(u + w)× B. (3.19)

Splitting the cross product and letting the time derivative of w disappear (since
it’s time-constant),

du
dt

=
qE⊥
m

+
q
m

w× B +
q
m

u× B. (3.20)

Choosing the velocity w such that qE⊥
m + q

mw× B = 0 reduces the equation for u

to the case with no electric force
(

du
dt = q

m u× B
)

.

Solving for w = vE,
qE⊥
m

+
q
m

vE × B = 0, (3.21)

E⊥ + vE × B = 0. (3.22)

If we let vE = E× B, then we can apply the vector triple product and use the
anticommutativity of cross products,

E⊥ + (E× B)× B = 0, (3.23)

E⊥ − (B · B)E⊥ + (E⊥ · B)B = 0. (3.24)

Note that the parallel components of E are discarded by the cross product (E‖ ×
B = 0), thus we can replace E with E⊥.

To deal with the magnitude being introduced let B = ‖B‖, and we redefine
vE = 1

B2 E× B. The equation becomes,

E⊥ −
1

B2 (B · B)E⊥ +
1

B2 (E⊥ · B)B = 0. (3.25)

Using the properties of dot products,

E⊥ − E⊥ +
1

B2 (E⊥ · B)B = 0. (3.26)

Finally, the electric and magnetic fields are orthogonal, thus their dot product is
zero,

E⊥ − E⊥ = 0. (3.27)

Thus, the definition for vE satisfies the equation, and we have derived the first
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guiding center equation; the equation for the electric field drift,

vE =
1

B2 E× B. (3.28)

In order to derive the remaining two guiding center equations of interest, we
first must define and derive a few supplementary ideas and equations. We begin
by deriving the equation for a general force.

For a general force in the Lorentz equation, we can substitute F = qE, where
F is a general constant force term.

dv
dt

=
1
m

F +
q
m

v× B. (3.29)

Following a similar route as when deriving the first guiding center equation, we
define v = u + w with a time-constant component w , and component u repre-
senting the circular motion. The equation becomes,

d(u + w)

dt
=

1
m

F +
q
m
(u + w)× B. (3.30)

Splitting the cross product and letting the derivative of w disappear,

du
dt

=
1
m

F +
q
m

w× B +
q
m

u× B. (3.31)

Choosing the velocity w such that 1
m F + q

m w× B = 0 reduces the equation for u

to the case with no electric force
(

du
dt = q

m u× B
)

.

Solving for w = vF,
1
m

F +
q
m

vF × B = 0, (3.32)

F + qvF × B = 0. (3.33)

Based on the previous derivation, we let vF = 1
qB2 F× B, then we can apply the

vector triple product and use the anticommutativity of cross products to check if
the equation is satisfied,

F + q
(

1
qB2 F× B

)
× B = 0, (3.34)

F +
1

B2 (F× B)× B = 0, (3.35)
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F− 1
B2 (B · B)F +

1
B2 (F · B)B = 0. (3.36)

Using the properties of dot products,

F− F +
1

B2 (F · B)B = 0. (3.37)

Finally, by definition the general force term F and the magnetic field are orthogo-
nal, thus their dot product is zero,

F− F = 0. (3.38)

Thus, the definition for vF satisfies the equation, and we have derived the drift
produced by a general force term,

vF =
1

qB2 F× B. (3.39)

Having acquired an equation for the drift produced by a general force term, we
need to derive a few more things.

Let’s begin by considering a particle moving through a uniform magnetic
field, it will experience a force given by the Lorentz equation,

F = qv× B. (3.40)

Since this force is the cross product of the velocity and the magnetic field, it will
act in the direction orthogonal to the motion of the particle and magnetic field,
causing a circular gyration. The radius of this gyration rg can be computed by
equating the centripetal force with the magnitude of the Lorentz force,

Fc =
mv2
⊥

rg
= |qv× B| = |q|v⊥B (3.41)

where v⊥ is the magnitude of the perpendicular velocity.

Solving for rg yields an expression for the gyroradius,

rg =
mv⊥
|q|B . (3.42)

Given the gyroradius, we can compute the period Tg as the gyration’s circumfer-
ence divided by the speed,

Tg =
2πrg

v⊥
. (3.43)
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Furthermore, we can compute the frequency ωg from the period,

ωg =
2π

Tg
=
|q|B
m

. (3.44)

With these at hand, we seek to derive the magnetic moment, and the force pro-
duced by the magnetic moment.

The magnetic moment of a closed current loop is given by,

µ =
1
2

I
∮

C
r× dl (3.45)

with the current I, position vector r, and closed contour C. The current is the
charge divided by the gyro-period,

I =
|q|
Tg

=
|q|ωg

2π
. (3.46)

The line integral 1
2

∮
C r× dl is the area of the circle enclosed by the gyro motion,

A =
1
2

∮
C

r× dl = πr2
g. (3.47)

Combining these yields a result for the magnetic moment,

µ = IA =

( |q|ωg

2π

)(
πr2

g

)
. (3.48)

Using the definition of the gyro radius rg and the frequency ωg,

µ =

(
|q|2B
2πm

)(
π

m2v2
⊥

|q|2B2

)
. (3.49)

Simplifying we obtain our final expression for the magnetic moment,

µ =
1
2

mv2
⊥

B
. (3.50)

In vector form, the magnetic moment is anti-aligned with the magnetic field (by
right-hand rule),

µ =
1
2

mv2
⊥

B

(
−B

B

)
= −

mv2
⊥

2B
B
B

. (3.51)

To compute the force produced by the magnetic moment, we begin by consider-
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ing the Lorentz force on a current loop,

Fµ = ∇(µ · B). (3.52)

Substituting our definition of the magnetic moment,

Fµ = ∇
(
−

mv2
⊥

2B
B
B
· B

)
. (3.53)

Using the definition of the dot product,

Fµ = ∇
(∣∣∣∣− mv2

⊥
2B

B
B

∣∣∣∣|B| cos θ

)
(3.54)

where θ is the angle between the two vectors, which is θ = π due to the anti-
alignment. Evaluating the cosine and moving the constants to the front,

Fµ = ∇
(
−
∣∣∣∣− mv2

⊥
2B

∣∣∣∣∣∣∣∣BB
∣∣∣∣|B|

)
, (3.55)

Fµ = −
mv2
⊥

2B
∇
(∣∣∣∣BB

∣∣∣∣|B|) . (3.56)

Note that the constant term in question is the magnetic moment, which is con-
served. It will always be constant regardless of changes to the magnetic field or
perpendicular velocity (the perpendicular velocity will change corresponding to
the change in the magnetic field such that the magnetic moment is conserved, and
vice-versa), this allows the constant to be pulled out of the gradient operation.

Since B
B is a unit vector, its magnitude is one (also recall |B| = B),

Fµ = −
mv2
⊥

2B
∇ (B) . (3.57)

Taking the gradient, we acquire the force produced by the magnetic moment,

Fµ = −
mv2
⊥

2B
∇B. (3.58)

With these equations we proceed to derive the magnetic gradient drift.

In the presence of a magnetic gradient, the force in the Lorentz equation is
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the force due to the magnetic moment on the guiding center,

Fµ = −
mv2
⊥

2B
∇B (3.59)

Recall the general force drift,

vF =
1

qB2 F× B. (3.60)

Substituting the force due to the magnetic moment, we obtain the formula,

vG =
1

qB2

(
−

mv2
⊥

2B
∇B

)
× B. (3.61)

Simplifying, and canceling the negative using the anti commutativity of cross
products, we obtain the final expression for the magnetic gradient drift,

vG =
mv2
⊥

2qB3 (B×∇B) . (3.62)

The third guiding center equation we seek to derive accounts for the drift
velocity produced by the curvature force. Consider the centrifugal force,

Fc =
mv2
‖

rc
(3.63)

where rc is the magnitude of the radius of curvature vector rc. In vector form,

Fc = mv2
‖

rc

r2
c

. (3.64)

With this in mind, we define a local coordinate system with components (see
Figure 3.2),

e1 =
B
B

, (3.65)

e2 = − rc

rc
. (3.66)

By these definitions, e1 is the tangent vector to B, and e2 is the normal vector to
B passing through the guiding center. It follows from calculus that the derivative
of the tangent vector is the normal vector (including a normalizing factor, in this
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Figure 3.2: Visualization of the defined local coordinate system.

case, the radius of the circle),
∂e1

∂s
=

e2

rc
(3.67)

where s is the line element along the field line.

Using the definitions of the coordinate system,

∂

∂s

(
B
B

)
= − rc

r2
c

. (3.68)

We solve to obtain an expression for the rc
r2

c
term,

rc

r2
c
= − ∂

∂s

(
B
B

)
. (3.69)

Using the quotient rule and simplifying,

rc

r2
c
= −

(
B ∂B

∂s − B ∂B
∂s

B2

)
, (3.70)

rc

r2
c
=

B
B2

∂B
∂s
− 1

B
∂B
∂s

. (3.71)

This yields a new expression for the rc
r2

c
term that will eventually be used in the

centrifugal force.

To evaluate the rightmost term, consider the partial derivative ∂B
∂s . We begin

by using the Chain rule to expand the partial derivative,

∂B
∂s

=
∂B
∂x

∂x
∂s

+
∂B
∂y

∂y
∂s

+
∂B
∂z

∂z
∂s

. (3.72)
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Since s represents the arc length parameter along the magnetic field line, it follows
from the differential equations that B

B = 〈 ∂x
∂s , ∂y

∂s , ∂z
∂s 〉,

∂B
∂s

=
1
B

∂B
∂x

Bx +
1
B

∂B
∂y

By +
1
B

∂B
∂z

Bz (3.73)

where the subscripts indicate the component of a vector (as opposed to a partial
derivative).

This can be written in vector form,

∂B
∂s

=

〈
1
B

Bx
∂Bx

∂x
+

1
B

By
∂Bx

∂y
+

1
B

Bz
∂Bx

∂z
,

1
B

Bx
∂By

∂x
+

1
B

By
∂By

∂y
+

1
B

Bz
∂By

∂z
,

1
B

Bx
∂Bz

∂x
+

1
B

By
∂Bz

∂y
+

1
B

Bz
∂Bz

∂z

〉
.

(3.74)

By definition, this is equivalent to

∂B
∂s

=
1
B
(B ·∇)B. (3.75)

Using this, we obtain a final version for our expression,

rc

r2
c
=

B
B2

∂B
∂s
− 1

B2 (B ·∇)B. (3.76)

Substituting this expression into our equation for the centrifugal force,

Fc = mv2
‖

(
B
B2

∂B
∂s
− 1

B2 (B ·∇)B
)

. (3.77)

Applying this force to the equation for drift from a general force term,

vC =
1

qB2

(
mv2
‖

(
B
B2

∂B
∂s
− 1

B2 (B ·∇)B
))
× B. (3.78)

The first term in the inner most set of parenthesis is a constant multiplied with
B. This term will disappear when evaluating the cross product with B (since
B× B = 0) leaving,

vC =
1

qB2

(
−mv2

‖
1

B2 (B ·∇)B
)
× B. (3.79)
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Simplifying and using the anti-commutativity of cross products, we acquire the
guiding center equation for the curvature drift,

vC =
mv2
‖

qB4 B× [(B ·∇)B]. (3.80)

The final equation that needs to be derived regards the parallel velocity. In
order to update the parallel velocity in the simulation, we need to determine
an expression for its derivative. We begin by considering the force due to the
magnetic moment on the guiding center (3.58),

Fµ = −
mv2
⊥

2B
∇B. (3.81)

The component of this which is perpendicular to the magnetic field results in the
gradient drift. The component which is parallel to the magnetic field accelerates
the particle along the magnetic field. Considering the parallel component of this
force,

F‖ =

(
−

mv2
⊥

2B
∇B

)
‖

. (3.82)

This can be used to solve for the parallel acceleration, which is equivalent to the
derivative of the parallel velocity,

F‖ = ma‖ = mv̇‖ =

(
−

mv2
⊥

2B
∇B

)
‖

, (3.83)

v̇‖ =

(
−mv2

⊥
2B ∇B

)
‖

m
. (3.84)

Moving the constant out to the front,

v̇‖ =
−mv2

⊥
2B (∇B)‖

m
. (3.85)

The constant in the numerator is the negative magnetic moment (3.50),

v̇‖ =
−µ (∇B)‖

m
. (3.86)

The parallel component of the gradient can be simplified by noting that we seek
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an expression for the derivative of the scalar-valued parallel velocity, that is,

v̇‖ =
−µ

(B
B ·∇B

)
m

. (3.87)

Since the desired quantity is a scalar, we can compute the parallel component
(with respect to the magnetic field) of the gradient by taking the dot product
with a unit vector in the direction of the magnetic field. This leaves us with our
final equation for the derivative of the parallel velocity,

v̇‖ = −
µ

m

(
B
B
·∇B

)
. (3.88)

The three guiding center equations are defined by constants in combination
with the electric and magnetic field vectors, as well as the parallel and perpen-
dicular velocity. The gradients in the equations are again computed using finite
difference methods. As for the model, the input parameters are energy, pitch an-
gle, and position. The state vector has evolved to contain the 3D position and
the scalar-valued parallel velocity. The perpendicular velocity is calculated as the
sum,

v⊥ = vE + vG + vC, (3.89)

with an initial value assignment before the integration.

The integration follows a tracing function that computes the magnetic and
electric fields, applies the resulting vectors to obtain the guiding center velocities
using formulas (3.28), (3.62), and (3.80), then updates the position by summing
the perpendicular and parallel velocities (the parallel scalar velocity is applied
to a unit vector in the direction of the magnetic field). The parallel velocity is
updated via the equation above (3.88). Altogether, the state vector is updated by
the following system of equations,

ṙ = v⊥ +

(
B
B

)
v‖, (3.90)

v̇‖ = −
µ

m

(
B
B
·∇B

)
. (3.91)

The simple dipole-approximation of the guiding center was first implemented
in MATLAB, with an additional version in C. The C version of the code utilizes
the SUNDIALS library for integration. SUNDIALS stands for SUite of Nonlin-
ear and DIfferential/ALgebraic Equation Solvers and is made freely available by
Lawrence Livermore National Laboratory [7]. Multiple methods of integration
are available, but the results best matched those previously computed by MAT-
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LAB when using the Adams-Moulton method. A comparative sample simula-
tion is featured below (see Figure 3.3). Notice the gyrations, which accounted for
much of the computing power, are no longer present, but the mirroring effect and
orbit remain. Also notice the difference in run time between the guiding center
(Figure 3.3) and the full gyration (Figure 3.1) simulation. While the full model
requires over a minute, the guiding center model requires just over ten seconds,
meaning a reduction in computation by a factor of six.

Figure 3.3: High energy proton orbiting Earth at three Earth radii (run time: 10.8
seconds, MATLAB).

3.2.1 Advanced Magnetic Field

The magnetic field model used in many practices is a combination of the
International Geomagnetic Reference Model (for internal sources) and the Tsyga-
nenko model (for external sources). These models are freely available in FOR-
TRAN.

The International Geomagnetic Reference Model and Tsyganenko model are
best-fit approximations to a large number of satellite observations ([22], [23]).
This thesis uses the IGRF2008 and Tysganenko T89c models. The IGRF models
are based on a spherical harmonic series, which was shown to represent the main
geomagnetic field by Carl Friedrich Gauss in 1839. The difference between IGRF
models is in the form of updated coefficients, based on the inclusion of new data.
These data typically come from magnetic observatories, measurement stations,
surveys from aircrafts and ships, and global satellite measurements. The number
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attached after IGRF represents the year the model was issued, in the case of this
thesis, 2008.

The Tsyganenko models vary, in one sense, by focus. The 1996 Tsyganenko
model focuses on accurately modeling the magnetopause, while the Tsyganenko
1989 model T89c bins the data by Kp and is useful when Kp is of primary impor-
tance. Since we are interested in the effects of varying Kp, it is most sensible to
select the T89c model for the purposes of this thesis.

Many useful codes including the aforementioned IGRF2008 can be obtained
with the GEOPACK modeling software package [24], in addition to stand-alone
Tsyganenko models, all provided by the Community Coordinated Modeling Cen-
ter (CCMC) connected to NASA.

In order to utilize the IGRF2008 and T89c models, a number of internal vari-
ables must be initialized, which requires the knowledge of solar wind velocity
and time. The time requested by the model includes year, day, hour, minute,
and second. This is for modeling the orientation of the magnetic axis. The solar
wind velocity is requested by component in x, y, and z. The selected time is fixed
uniquely for each simulation, as days will be selected based on desired condi-
tions. The solar wind velocity is fixed at the standard values of zero in y and z,
and -400 km/s in x.

Given this information, the internal variables can be set, but to run the mag-
netic field computing functions within the T89c model, the IOPT (essentially a
shifted version of Kp), particle position, and tilt angle of Earth must be provided.
While Kp is varied in different simulations, the particle position is known by
the outside integration, and the tilt angle of Earth is computed by the date and
time. The function that computes this tilt angle is separately included with the
GEOPACK package.

3.2.2 Advanced Electric Field

The electric field is generated from tracing along magnetic field lines back to
Earth’s surface. The Sojka model is used to compute the surface potentials whose
values are again extended to the trace origin in space.

The advanced electric field is generated similarly to that of the previously
discussed electric fields. It begins with the generation of a 1001× 1001 × 1001
semi-logarithmically spaced, spherical grid extending from the surface of the
Earth to 15 Earth radii. Each location is traced back to the surface of Earth us-
ing the IGRF and Tysganenko models as the driving force. This occurs three
more times at perturbed versions of the original location to obtain four traced
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locations on Earth’s surface. These four locations are input to the Sojka model to
obtain estimates of the potentials. The four potentials are the values needed for
finite difference methods to compute the gradient. The negative gradient of the
potential is the electric field which is stored at each location.

3.2.3 Overall Implementation

The entirety of the simulation code is run on a computer cluster utilizing ten
blades of twelve cores each. The code requires initial energy, pitch angle, and po-
sition to begin simulation. Once these inputs have been provided, the SUNDIALS
integrator is initialized with the desired method of integration, tolerances, state
vector, output time step, special conditions (intersection with the leading satel-
lite), and termination conditions. The integration method was selected such that
the error between the simpler MATLAB and C models was minimized. To deter-
mine an appropriate tolerance, simulations were run for decreasing tolerances,
and the point where error was no longer meaningfully reduced was selected as
the tolerance to be used. The state vector consists of the same values as in the
second model: the position vector and scalar-valued parallel velocity. The posi-
tion will be carefully set to specific locations on the trailing Van Allen satellite’s
position. The parallel velocity is initially computed from the input energy and
pitch angle. The output time step is set to an arbitrarily large value to speed up
simulation, as a small output time step requests intermediary points which forces
the integrator to stop and interpolate values before continuing. By selecting an
arbitrarily large output time step, the integrator can operate freely until a special
or termination condition occurs. The special condition that will be searched for
is intersection with the leading Van Allen satellite’s orbit.

Finding the intersection of a simulated particle with a satellite orbit is non-
trivial, as the chance of such a collision is practically negligible. In order to deter-
mine the special condition, that is, where the particle intersects the orbit (or any
magnetic field line extending from the orbit) of the leading satellite, a boundary
is introduced. This boundary is a three dimensional surface mapping the satel-
lite orbit along the magnetic field lines both up and down to Earth’s surface (see
Figure 3.4). The design of such a boundary around a satellite orbit (which is not
too similar to the orbit of a particle) nearly ensures intersection at some point in
a particle’s trajectory.

Once a particle has intersected with the boundary, the satellite orbit location
which generated said boundary intersection point is credited with intersection
with the particle. This is sensible as the particle is representative of a stream of
similar particles that exist along the same magnetic field line. It should be noted
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Figure 3.4: Leading satellite boundary. The surface formed by integrating along
magnetic field lines to Earth’s surface.

that multiple intersections can occur, all of which are recorded and treated as
unique pairs.

The primary stopping condition for the integration is return of the particle
to its starting azimuthal location, in addition to the aforementioned termination
conditions. This allows for one orbit of the particle, whereas no new information
should be gained beyond the first orbit as the fields are static.

Once the integrator has been fully initialized, it begins tracing of the particle
by computing the magnetic and electric field vectors using the advanced models.
The magnetic field vector is obtained by calling the IGRF and Tsyganenko Fortran
codes discussed previously. The electric field, however, is stored as a 24 GB grid.
In order for the computer cluster simulating the particle motion to utilize the
grid, it must first load the grid into memory; however, it is not feasible on the
given machine nor generally reasonable to load a 24 GB grid multiple times. As
a result, a single copy of the grid is stored into shared memory, where it can be
accessed by all of the running programs simultaneously, which use the grid to
interpolate the electric field vector.

With the electric and magnetic field vectors known, the guiding center ve-
locities and parallel velocity derivative can be computed and used to update the
state vector. This is repeated until the aforementioned boundary is intersected, at
which point all relevant information is recorded, after which it continues until it
reaches another intersection, a special termination condition, or until the particle
azimuth returns to its initial value.
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CHAPTER 4

SIMULATION SETUP AND DATA PREPARATION

4.1 Selection of the Day

Given that the model assumes time stationarity (that is, effects on the mag-
netic and electric field due to time are assumed to be negligible), a day of consis-
tent Kp must be selected to ensure that the fields are not changing significantly
within the simulation. Days which maintain a constant Kp for a minimum of 12
consecutive hours meet this criteria, provided that the real-time within the sim-
ulation is expected to be on the order of hours. Additionally, the selected day
must have complete data for both satellites; there are periods of time in which
the satellites do not report data as well as periods of time with few measure-
ments (the satellite reports failed measurements). Furthermore, both satellites
must be roughly equatorial, that is, approximately near the magnetic field mini-
mum surface. If the satellites deviate up or down while maintaining radial dis-
tance, then the data is actually measuring particles traveling along radially more
distant paths, which lessens the results from simulation, as the particle popula-
tions that are more distant are more prone to leaving the magnetosphere. Lastly,
one satellite should be positioned on the outgoing pass away from Earth, and the
other on the incoming pass towards Earth. This both observes a more complex
domain of the magnetic field and avoids the near-Earth region which would pro-
duce predictably insensitive results, due to the Kp parameter typically impacting
the tail of the magnetosphere more.

In order to verify the model, two days of low and medium Kp were selected.
(Note that high Kp days seldom occur - although there are geomagnetic storms,
they rarely result in a 12 hour period of consistently high Kp, which was a spec-
ified requirement for the assumption of time stationarity.) The selected low Kp
time interval was March 7th, 2014, centered around 12 UTC. The medium Kp time
interval was February 21st, 2014, around 0 UTC. The observed Kp plots pulled di-
rectly from the Van Allen Probes Science Gateway database are shown in Figures
(4.1, 4.2).
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Figure 4.1: The observed low Kp in the selected time period generated by the
RBSP database.

Figure 4.2: The observed medium Kp in the selected time period generated by the
RBSP database.

Within these days lie desirably equatorial orbits, which are expected to yield
the most results. The orbits of the satellites’ are nearly-identical, but delayed;
the orbits and most equatorial orbit of the satellites are featured in the following
Figures (4.3, 4.4).
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Figure 4.3: The orbital path of the satellites (black) and most equatorial orbit (red),
including the variation on the equatorial axis (shaded regions) for the low Kp day;
GSM coordinate system.

Figure 4.4: The orbital path of the satellites (black) and most equatorial orbit (red),
including the variation on the equatorial axis (shaded regions) for the medium Kp
day; GSM coordinate system.

Beyond the satisfaction of the two aforementioned criteria, the time at which
the satellites are on the outgoing and incoming pass can be chosen as the center
for computation. Finally, both satellites have complete data for the selected days,
which will be illustrated in the following section.
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4.2 Particle Spawning

In order to obtain complete coverage of the fields and their changes with
respect to Kp, we spawn an ensemble of particles of various energies and pitch
angles at various positions. Although this was initially done uniformly across the
satellite path, including a uniform spread of energies and pitch angles, the pro-
cess was streamlined to target features of the satellite spectrograms. The focus
eventually materialized in the form of vertical and horizontal line plots. These
were selected due to their computational feasibility in conjunction with their rea-
sonably informative results. Beyond this, features of the spectrograms are ex-
pected to change or shift with respect to Kp. Line plots are an ideal method for
taking one such slice of a feature, whereas simulating the entire region is fre-
quently redundant and to reiterate, computationally demanding. This decision
is further supported by the convenient structure of the features - they have pri-
marily straight edges parallel to the cardinal axes, meaning that simple horizontal
and vertical line plots are near-normal to the features’ surfaces, which is ideal. Ul-
timately, the objective is to produce measurably different results for different Kp
values, which these boundaries (features) may serve as the best source of change.
Accordingly, particles along three particular energies and three particular posi-
tions were spawned to create the aforementioned horizontal and vertical lines,
respectively. These energies and positions were selected because they cross key
features of interest. A depiction of the spawn lines is included as Figure (4.5).

The dimensions of the spectrogram are 72 rows by 1284 columns. Further-
more, every point corresponds to 11 particles of identical position and energy, but
varying pitch angle. It follows that the total number of particles in a vertical line is
792. Altogether that’s almost 2400 spawns for the vertical lines alone. A horizon-
tal line at full resolution requires over 14,000 particle simulations, which would
require many weeks if not months to fully compute. However, the main feature
these horizontal lines are meant to observe is the initial vertical wall just past 2.7
RE (on the left side) on the position axis. Rather than pursue a full horizontal
line at low resolution, it was decided to simulate a small portion around the fea-
ture of interest at high resolution. A small number of points were logarithmically
spaced, slightly distant from the feature, whereas nearby was full resolution - re-
quiring a little under 80 position-energy points to simulate. In other words, the
vertical and horizontal line plots consist of roughly the same number of points,
both of which fall into the category of computationally reasonable.
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Figure 4.5: The regions of interest (shaded yellow and red) encompassing spec-
trogram features in which particles are spawned.

4.3 Termination Conditions

The total 4,917 particles were simulated until one of the following conditions
was met: the initial azimuth was reached, the particle entered Earth, the particle
exceeded 15 Earth radii, the real-time within simulation surpassed 24 hours, or
SUNDIALS returned failure from the integration. Although additional termina-
tion conditions were applied to other simulations and testing, such as limiting the
number of reported intersections or defining a maximum number of integration
steps, these were excluded in the final, full simulations, as they serve to reduce
simulation time with minimal impact on the results.

By halting the particle simulation at the initial azimuth, we restrict the par-
ticle to a single orbit. Theoretically the second orbit would follow roughly the
same path as the first orbit (provided the model is time-stationary), yielding no
new results. Thus we reduce simulation time without loss of data by constraining
the motion to one orbit.

Although we do not expect the position of any particle to decrease below
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one Earth radii, it is not infeasible given the slight error in numerical integration,
especially with respect to the particles that were spawned near Earth. Physically,
particles cannot enter Earth, thus we include such a bound as a safety measure.
Similarly, particles are known to sometimes diverge and travel far outside the re-
gion of interest. The particles frequently do not return, and the simulation time
required is dramatically increased in correspondence to the length of the diverg-
ing particle path. As such, it is sensible to include an upper bound of 15 Earth
radii; large enough such that some particles that do simulate to more distant radii
have enough space to return, while those which are highly unlikely to return and
surpass 15 Earth radii are dropped.

Lastly, it is necessary to limit the simulated real-time. Not only does this rein-
force the assumption of time stationarity, but it also saves a potentially immense
amount of simulation time. Some low energy particles are particularly slow in
their orbit, and it can be very costly to attempt to simulate the entire path.

Given these termination conditions, the particles simulate freely, unrestricted
in their intersections with the leading satellite’s magnetic boundary. Every inter-
section is recorded and used when processing the results.

4.4 Simulation Output

Out of the 4,917 particles simulated, none were guaranteed to successfully
intersect the path (magnetic boundary) of the leading satellite (see Figure 3.4 in
Chapter 3). However, some particles were observed to intersect the boundary
more than once - all of which were recorded. For each instance of intersection, the
simulation recorded the initial and final energy, pitch angle, and position (subto-
tal of ten values), as well as the point of satellite intersection, the 2-norm of the
magnetic field at that point, and the parallel velocity. The use of each of these
values will be explained in the following section on post processing. Although
the simulation also returned lists of other values, these values sole purpose was
to indicate how the simulation terminated, along with any errors that may have
occurred. Each of the aforementioned lines of data were printed to individual
files, which were directly used in the post-processing.

4.5 Post-Processing

As mentioned in the previous section, the output from the simulations was
multiple individual files whose lines are data regarding intersections, errors, or
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termination conditions. Given these data, the output was processed in the fol-
lowing manner.

(i) Combine the lines of intersection results from each of the individual files
into a single results file (roughly 40-60 MB). (Note that the remaining lines
were discarded, but can be otherwise used to analyze the simulations.)

(ii) Filter the results by energies and pitch angles, for example, we only consider
energies between 0-52 keV, so anything significantly greater than that range
is discarded.

(iii) Compute the translated pitch angle. Although the results returned a final
pitch angle, this was the pitch angle of the particle somewhere up or down
the magnetic field line from the satellite. Since field lines are equipotentials,
the energy remains unchanged, but the pitch angle needs to be adjusted.
This adjustment can be made using the magnetic moment, which was con-
served throughout the simulation. We begin by computing the magnetic
moment using data at the intersection location,

µ =
E sin2 α

‖B‖ (4.1)

where E is the energy, α is the pitch angle, and B is the magnetic field vector
at the point of boundary intersection.

Given that the magnetic moment is constant along field lines, we can use
data at the satellite’s physical position to calculate the translated pitch angle
by solving for α in equation (4.1),

α∗ = arcsin

√
µ‖B∗‖

E
(4.2)

where α∗ is the translated pitch angle, µ is the previously computed mag-
netic moment, E is the energy, and B∗ is the magnetic field vector at the
satellite’s physical position.

Lastly, the translated pitch angle (4.2) must be filtered. Particles navigate
up and down field lines until their pitch angle reaches 90 degrees; however,
if particles are spawned with a pitch angle of 90 degrees, then they imme-
diately mirror. If said particles were also spawned near the magnetic field
minimum, then they will experience a very small range of motion along
field lines. As such, it is possible that a particle may not be able to reach
a certain position along a field line, or in other words, the position of the
satellite. Provided the particle cannot reach the satellite, the formula (4.2)
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outputs pitch angles that are complex valued and thus discarded; although
there are notably few of these occurrences.

(iv) Given the energy and translated pitch angle of the simulated particle at the
intersecting satellite’s position, the results must be binned to match that of
the observations. Both linear and nearest neighbor binning methods were
tried, with negligible differences between the results. Out of convenience
for spectrogram reconstruction, the nearest neighbor binning method was
chosen.

(v) The two final adjustments to the simulated data are binning the other val-
ues, such as position (since the precision of printed results may vary from
the true result by some fraction of a meter), and reducing the data to only
feature unique results. There were numerous instances where a particle
would be detected to contact the magnetic boundary multiple times for an
expected single intersection. These repeated hits were typically close and
designated to the same bins, meaning that we had multiple, identical pre-
dictions. This redundant data was discarded to yield only a final list of data
corresponding to unique intersections.

(vi) Provided a list of data for unique intersections from simulation, the next
step is to pair up the fluxes from the starting and ending locations to obtain
predicted and observed flux values. To do so requires real data from satellite
observations for the day. However, the real satellite data includes fill-values
such as -1e31, that indicate a failure to record or measure on the satellite’s
end. If either the starting or ending simulated data had such a flux value,
the pair was discarded.

(vii) The final step in post processing was to convert all of the binned values to
indices, whereas the predictions and observations are trivially obtained by
searching for the indexed value from the 3D flux matrices.

To demonstrate the effect of each step in the process, the percentage of re-
maining data points are shown in Table (4.1). Note that the initial number of data
points is typically in the hundreds of thousands, while the final number of data
points is roughly hundreds or thousands.

Table 4.1: Percentage of Total Data Remaining after Each Step

Step (i) (ii) (iii-iv) (v) (vi-vii)
Data 100% 98.8% 95.0% 0.55% 0.49%
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4.6 Analysis of the Results

In analyzing the results, we have considered and discarded numerous ap-
proaches. We have tried a number of Chi-squared-statistics-based metrics; how-
ever, the low count regime nullifies the applicability of such statistics. We have
contemplated the Cash-statistic (C-statistic) [1] and Poisson statistics, but the lack
of a count to flux conversion factor dismisses such methods. Beyond statistical
approaches, we designed a binary metric that classifies predictions as successes
or failures based off the measured values, but the selection of thresholds (both
constant and linear) are all but arbitrary without the count to flux conversion
factor, or an approximation of the conversion factor. Although we investigated
possible regression fits for the conversion factor as a function of position, energy,
and pitch angle; there are additional unclear factors that are necessary to obtain
an approximation, for which we cannot currently account. We attempted said bi-
nary analysis with thresholds based off of expectations developed from visualiza-
tions of the results, but ultimately we decided that the visualizations themselves
would be the best method of analyzing the results.

We wanted to observe the change of spectrogram features with respect to the
Kp indices. Although we had simulated numerous regions, we concluded that it
would be most efficient, especially temporally, to simplify our focus and simulate
horizontal and vertical line plots. It follows that we simulated the lines in accor-
dance with Figure (4.5) for all nine combinations of electric and magnetic Kp. The
results are then visualized and interpreted separately for each combination.

4.7 Parallel Computing

We initially attempted to optimize the computation of the grid by a straight-
forward distributive approach; by sending each core an equal combination of
radially near and radially distant particles. However, it was determined that the
runtime of the particles is not just related to radial position. Analysis revealed
that the runtime is a function of position, energy, and pitch angle, none of which
are obviously dominant. To overcome this, a simple randomization of the initial
particles was employed before distribution across the 120 cores. Once the data
had been distributed, the simulations were performed in parallel. Each blade
would load the appropriate electric field grid once, which would be accessed by
all of the 12 cores which were each simulating a unique particle. Upon finishing
a unique particle, the core would progress to the next in the list, until all particles
assigned to the blade had been simulated. This process occurred simultaneously
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across 10 blades. The success due to the random distribution was decent, with
typically a few cores finishing somewhat early and late, and the remaining cores
completing their tasks almost simultaneously. This process was repeated nine
times for all combinations of a low, medium, and high magnetic and electric Kp.
If the user is vigilant, a full simulation (all 4,917 particles for all nine magnetic
and electric Kp combinations) can be conducted in little under a week. Simulat-
ing everything for a low and medium Kp day could be completed within two
weeks.
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CHAPTER 5

RESULTS WITH APPLICATION OF REAL DATA

As discussed earlier, one day of consistent low Kp and one day of consistent
medium Kp were selected for simulation. For each of these days, nine simulations
were executed to cover all nine combinations of low, medium, and high electric
and magnetic Kp. Although physically there is only a single Kp, we adjusted
the Kp parameter input to the magnetic and electric field models separately to
increase the diversity of models.

5.1 Low Kp Day

Provided the resulting data for the nine simulations, we visualize the hori-
zontal and vertical line plots as described. The horizontal line plots are shown on
the following page in Figure 5.1, followed by the vertical line plots (Figures 5.3,
5.4, 5.5) on the subsequent pages. These vertical line plots present the simulation
results corresponding to the vertical lines depicted in Figure 5.2. Note that all of
the horizontal line plots have been combined into a single figure, as they do not
indicate a Kp nor offer much information. These will be excluded in the following
section.
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Figure 5.1: Horizontal line plots for the low Kp day. Black is measured, shapes
and colors correspond to the input Kp to the magnetic and electric field models,
respectively. Note that no particular Kp value stands out.
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Figure 5.2: Location of vertical line plots, low Kp day.

Figure 5.3: Results for vertical line plot A, low Kp day. Black is measured, shapes
and colors correspond to the input Kp to the magnetic and electric field models,
respectively.
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Figure 5.4: Results for vertical line plot B, low Kp day. Black is measured, shapes
and colors correspond to the input Kp to the magnetic and electric field models,
respectively.

Figure 5.5: Results for vertical line plot C, low Kp day. Black is measured, shapes
and colors correspond to the input Kp to the magnetic and electric field models,
respectively.
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To elaborate on these figures, (5.2) shows the location of the spawns for the
vertical line plots, labeling the vertical lines as A, B, and C. Figures (5.3), (5.4),
and (5.5) show the resulting predictions of vertical lines A, B, and C, respectively.
The colors correspond to the Kp values input to the electric field model: red, blue,
and green indicate low, medium, and high Kp, respectively. Similarly, the shapes:
circle, square, and triangle correspond to low, medium, and high Kp values, re-
spectively, that were input to the magnetic field model. The black points repre-
sent the measured data, observed at the leading satellite. The symbols that most
closely match the black points are taken to indicate which input Kp values are
the best for this day. Vertical line plot A covers a high-flux region at low energy
values, after which it trails off in a region of small fluxes. Vertical line plots B and
C traverse through the sides of the flux rectangle centered in the spectrogram,
passing through the trough at higher energy, and intersecting the higher-energy
denser-flux region at the top of the spectrogram.

5.2 Medium Kp Day

Using the output of the nine simulations for the medium Kp day, we visualize
the vertical line plots as described (Figures 5.7, 5.8, 5.9). The locations of these
vertical lines are depicted in Figure 5.6. Due to the lack of applicable information
in the horizontal line plots (as illustrated earlier), only the vertical line plots are
presented below.
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Figure 5.6: Location of vertical line plots, medium Kp day.

Figure 5.7: Results for vertical line plot A, medium Kp day. Black is measured,
shapes and colors correspond to the input Kp to the magnetic and electric field
models, respectively.
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Figure 5.8: Results for vertical line plot B, medium Kp day. Black is measured,
shapes and colors correspond to the input Kp to the magnetic and electric field
models, respectively.

Figure 5.9: Results for vertical line plot C, medium Kp day. Black is measured,
shapes and colors correspond to the input Kp to the magnetic and electric field
models, respectively.
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These figures correspond to the second day that has an observed medium
Kp value. Figure (5.6) shows the location of the spawns for the vertical line plots,
labeling the vertical lines as A, B, and C. Figures (5.7), (5.8), and (5.9) show the
resulting predictions of vertical lines A, B, and C, respectively. The colors corre-
spond to the Kp values input to the electric field model: red, blue, and green indi-
cate low, medium, and high Kp, respectively. Similarly, the shapes: circle, square,
and triangle correspond to low, medium, and high Kp values, respectively, that
were input to the magnetic field model. The black points represent the measured
data, observed at the leading satellite. The symbols that most closely match the
black points are taken to indicate which input Kp values are the best for this day.
Vertical line plot A covers a high-flux region at low energy values, after which it
trails off in a region of small fluxes. Vertical line plots B and C traverse through
the sides of the flux rectangle centered in the spectrogram, passing through the
trough at higher energy, and intersecting the higher-energy denser-flux region at
the top of the spectrogram.

49



CHAPTER 6

DISCUSSION AND CONCLUSIONS

Vertical line plot A for the low Kp day (see Figure 5.3) does not reveal much
beyond a consistency in the low flux and high flux regions. That is, the high flux
plasmasphere centered around the base of vertical line A (see Figure 5.2) does
not change much with respect to electric or magnetic Kp. Similarly, the low flux
(near-zero) region of higher energies in the plasmasphere does not change much
with respect to Kp either. Note that the fluxes are nonzero in the line plot because
we smoothed the spectrograms, but they remain relatively small. For the vertical
line plots, a primarily horizontal smoothing kernel was applied.

Vertical line plots B and C for the low Kp day (see Figures 5.4, 5.5) show large
differences between the different electric Kp values, with negligible differences
with respect to the magnetic Kp. It is clear in both of these vertical line plots
that the low electric Kp (red) simulations are far closer to the measured fluxes
than the other electric Kp values. This falls off somewhat as energy increases,
but this is expected, as the electric field is dominant at lower energies - meaning
that the electric Kp should decrease in relevance at higher energies. If we were
to determine the Kp from the simulated data without knowledge of the observed
Kp, we could easily do so correctly by determining the best matching simulation
(visually), then selecting its corresponding electric Kp. However, this is only a
conclusion for the low Kp day.

When considering the medium Kp day results, the conclusion is less clear.
From vertical line plot A (see Figure 5.7), we see again that the low and high
flux regions along the line A (see Figure 5.6) are fairly consistent across varying
magnetic and electric Kp values. Given that this result was observed in both the
low and medium Kp day, we might conclude that such regions operate indepen-
dently of the magnetic and electric Kp within the model. However, we are more
concerned with the ability to predict the correct Kp by selecting the electric field
Kp corresponding to the best matching simulation.

Considering vertical line plot B for the medium Kp day (see Figure 5.8), we
notice, if only slightly, that the medium electric field Kp (blue) matches the best.
It’s closer to the measured fluxes at low energies, then is slightly closer after the
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predictions cross over the measured values, until all three of the electric Kp values
are under-predicting. To reiterate, the electric field is dominant at low energies,
meaning that the left side of these plots (low energies) are more important than
the results at high energies, where the high Kp (green) line, for some small en-
ergy interval, appears to more closely match the measured fluxes. This seems to
weakly push the same conclusion about selecting the electric Kp that corresponds
to the best matching simulation; however, let’s discuss the third line plot.

In the vertical line plot for C (see Figure 5.9), we notice that the low electric
Kp is producing the best matching simulated values early on. Meanwhile, the
medium electric Kp model fluxes are rather spread out across nearly two orders
of magnitude. Otherwise, there’s a section between 10 eV and 100 eV (in en-
ergy) where the medium Kp appears to be better than the low electric Kp, but it’s
not clear which you would conclude; if anything, you might be tempted to con-
clude the low electric Kp. As a final note regarding this line plot, the predicted
flux values were taken from earlier on in the spectrogram; that is, to maintain
the assumptions concerning time-stationarity, satellite positioning, and a consis-
tent Kp index, we did not pull values from the satellite orbit beyond what is de-
picted. Instead, we looped the spectrograms such that any values beyond the
orbit were mapped back onto the same orbit (essentially periodic boundary con-
ditions). This is a necessary condition since particles may simulate one full orbit
from their spawn location; so particles spawned on the vertical line C (see Figure
5.6) were already roughly 75% through the depicted orbit before they began sim-
ulating, and they continue from the front of the spectrogram once they reach the
end.

If we attempted to determine the Kp of the medium day without prior knowl-
edge of the observed Kp, the simulation results would lead us to select the best
matching simulation values, which is either a Kp of 1 or 3 (low or medium). We
would not be able to confidently conclude that we had acquired an estimate of
the Kp for the day. Thus, the results of the method are not strong enough to defini-
tively indicate the correct Kp with the current simulations and data; however, this
conclusion is subject to change with future investigation.

If we were to continue working on this project, we would pursue a few more
options. We would be particularly interested in applying this method to numer-
ous days - perhaps even computing additional vertical line plots (if not the entire
spectrograms). We would like to see if the results balanced out over numerous
samples to some level of confidence - in our mind there’s the possibility that
we chose days that were fortunate, and made the result appear better than they
should be, or we chose unlucky days, where any other medium Kp day would
have more strongly demonstrated the approach in our favor (the consequence of
a sample size of 2). Furthermore, it would be interesting to remove some of the
assumptions and corresponding constraints placed on the model, namely, time
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stationarity. Including time would mean that the magnetic and electric fields are
continuously changing. Other than challenges in implementation, time was fixed
in the model to avoid the immense computation the time-varying models entail
- updating the model coefficients at every time step would increase the run-time
many times over (in fact, brief experimentation suggests this could increase run-
time by up to 100-fold). Lastly, it would also be intriguing to analyze satellites
with greater physical separation, which may lead to the magnetic field model in-
put Kp having a larger effect when a longer particle path is traced. Altogether,
any [near] future work would likely face the same constraint we faced through-
out the project; computational resources.
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