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ABSTRACT

An updated and expanded version of the Fast Grain Boundary (FGB) pro-
gram, originally developed by Eiler et al. (1994), is presented. In its current form,
FGB forward models the oxygen-isotope compositional evolution of a rock re-
sulting from diffusive oxygen isotope exchange. The new FGB program code is
written in Python and includes a graphical user interface. Additionally, C com-
piled versions of the code are available that provide a 20x speedup.

This thesis also describes the inversion of the FGB model to extract thermal
histories from oxygen isotope data. The Levenberg-Marquardt (LM) algorithm is
applied to the FGB model in search of cooling histories that maximize agreement
between the model output and recorded data. Through the use of simulated test
cases, it is shown that the LM algorithm is able to distinguish between simple
linear cooling and cooling histories containing reheating events. In an effort to
maximize the inverse solver’s resolution, a heuristic guide to optimal sampling
techniques is developed.

This thesis is based upon work supported by the National Science Foundation
under Grant No. (EAR-1650355).
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CHAPTER 1

INTRODUCTION

Oxygen, being the most abundant element on earth, is a common subject of
study among geologists. Understanding its movement and composition within
minerals can provide evidence for various earth processes. Oxygen is present
in the form of three stable isotopes, i.e. instances of the element with different
nucleon numbers, 16O, 17O, and 18O. These isotopes will move within a mineral
grain like that shown in Figure 1.1, and between mineral grains adjacent to each
other. The isotopic ratios at distinct points within the grain will be continuously
affected by this diffusion of isotopes until the mineral is cooled below a cut-off
temperature. Once the mineral cools below the cut-off temperature, diffusion has
slowed to a point that it is no longer perceptible and the isotopic record becomes
’frozen.’

During the cooling process, the rate of diffusion of isotopes between min-
erals is dependent on the current temperature. This means that a large amount
of information about the minerals’ thermal history will be recorded in the iso-
topic record. The objective of the research presented here is: first, improve the
numerical implementation of models simulating the isotope diffusion process;
and second, recover the stored information about a mineral’s time-temperature
history using inverse techniques.

Figure 1.1: Microscopic image of single titanite grain within a mineral sample.
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1.1 Background

This background is written to an audience unfamiliar with the method-
ologies of geochemists. Basic experimental units, measurement techniques, and
general problem classification will be given as it relates to the research presented
in this thesis.

1.1.1 Isotope Measurements and Standards

Isotopes of elements are denoted by a superscript preceding the element’s
symbol, where the superscript is the number of nucleons. 17O is an atom of oxy-
gen containing 17 nucleons, which is heavier than one containing only 16, 16O.
In general, the composition of isotopes for a given element inside a sample is de-
scribed by the ratio of the abundance of the heaviest isotope to the lightest. For
oxygen, this is the ratio of the number of 18O atoms to 16O atoms within a sam-
ple. Isotopic fractionation is the process of partitioning these isotopes between
two different substances (or phases). This can result from isotope exchange reac-
tions and kinetic processes ((Hoefs, 2009)). If RA is the isotopic ratio of a given
element for mineral A, and RB is the same ratio for mineral B, then the partition
coefficient is defined as:

αA−B = RA/RB (1.1)

When actually measuring the abundance of isotopes using a mass spec-
trometer, the precision of absolute abundances is significantly poorer than the
precision of the relative differences in isotope abundances between two samples
((Hoefs, 2009)). For this reason, isotopic compositions are reported using delta-
(δ) values, related to the isotopic ratios by Eq. 1.2, where o/oosymbolizes parts per
thousand.

δA = 103

(

RA

Rstandard
− 1

)

o/oo (1.2)

Thus, without repeated measurements to reduce statistical variance, we
cannot know the isotopic ratio for a given element with greater precision than
that of the standards we measure against. For Oxygen, the most widely used
standard is Standard Mean Ocean Water (SMOW), which has an uncertainty of
0.46 o/oo. The limitations of this precision will be discussed in chapter 4.

Because isotopic ratios vary so little in nature, RA/Rs ≈ 1. We can then
use the well known approximation ln(x) ≈ x − 1 to show that:

1

103
(δA − δB) =

(

RA

Rs
− 1

)

−
(

RA

Rs
− 1

)

≈ ln
RA

RS
− ln

RB

Rs
= ln

RA

RB
(1.3)

δA − δB ≈ 103 ln αA−B (1.4)
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The equilibrium fractionation factor is then conveniently defined by:

∆A−B = 103 ln αA−B ≈ δA − δB (1.5)

Now suppose we have a reference mineral M, and we know the fractiona-
tion factors (∆) between this mineral and two other minerals, A and B. Then we
can write:

δA − δB = (δA − δM)− (δB − δM) = ∆A−M − ∆B−M (1.6)

Thus, if we know the individual fractionation factors between a given set
of minerals and a common reference mineral, then we also know the difference
between any two delta values. Generally, fractionation factors are reported as
functions of temperature (T) using the approximation 1.7.

∆X−M = 1000 ln αX−M ≈ A + (1000)
B

T
+ (1000)2 C

T2
(1.7)

Table 1.1: Summary of common fractionation terms.

Name Example
Isotope ratio RA The absolute ratio of the heaviest to lightest iso-

tope in mineral A of an arbitrary element.
Delta value δ18O the per mil value of Oxygen-18 in a mineral with

respect to a given standard.
Partition coefficient αA−M The ratio of isotope ratios between mineral A

and monitor mineral M.
Equilibrium
fractionation factor ∆X−M The difference δX − δM. Generally reported as

three coefficients A, B, and C.

1.1.2 In-Situ Mass Spectrometry

It is desirable that the element delta values defined in the previous section
be recorded at many locations along our mineral grain, as opposed to a single
bulk isotopic measurement. This provides significantly more data, and highlights
the unique isotopic composition created by distinct cooling histories. In-situ mass
spectrometry accomplishes this goal. A traverse across the mineral grain is taken
and results in data like that shown in Figure 1.2. The individual ablation pits
must be large enough that a sufficient amount of oxygen is liberated for the mass
spectrometer to produce accurate measurements of isotope ratios. This limits
how close successive measurements can be taken across the traverse, ultimately
limiting the resolution of our data.
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Figure 1.2: Example of isotope data recorded using in-situ mass spectrometry.
The black error bars represent the recorded data points along with their analytical
uncertainty (2SD), and the blue-line fit was created by visual fit of forward model.

1.1.3 Forward vs. Inverse Problems

In the context of geology, a forward problem is any attempt to replicate
a natural process through numerical simulation. This is generally achieved by
formulating a concise definition of the process in terms of equations that repre-
sent the underlying physics. The equations are then approximated by discretized
variables, some number of model input parameters are accepted, and a deter-
ministic set of calculations is carried out that results in outputted data. A pro-
totypical example is the simulation of seismic waves created by an earthquake
occurring at any given location. The challenge associated with forward problems
is demonstrating that your model appropriately captures the physics. In the case
of seismic waves, given the location and intensity of an earthquake, the simulated
waves must match with those recorded by any seismometers.

The inverse problem, in contrast, starts with a model and the final data,
and attempts to recover the model input parameters. This can prove quite dif-
ficult. Just as there are many combinations of speed, angle, and rotation that a
pitcher may use to hit the same target, there are potentially many combinations
of model parameters that result in the same recorded data. In the case of an
earthquake, the inverse problem would be identifying its size and location given
a seismograph’s readings. Additionally, most inverse methods are iterative and
small changes in starting solutions can result in dramatic changes to the final
solution.

Thus, for any results from an inversion scheme to be taken seriously, two
separate tasks need to be performed. First, the forward model must have been

4



shown to capture the physics, and its results validated through repetitive appli-
cation to real world data. Second, the inversion scheme should show that the
model parameters, or certain features about them, are uniquely determined by
the data. And not excessively sensitive to noise in the data.

1.2 Literature Review

This thesis is by no means the first attempt at time-temperature recovery
on geological time-scales. The historic achievements in thermal inversions by
past researchers will be outlined below. It should be noted that there is a gen-
eral pattern of initial empirical descriptions for data, followed by forward model
development, forward model validation, and finally forward model inversion.
However, there does not currently exist any research on the inversion of the Fast
Grain Boundary model which was originally developed nearly 25 years ago.

1.2.1 Closure Temperatures

Radiometric dating uses the known rate of decay from a parent isotope
into a daughter isotope, along with the two isotopes respective abundances within
a system to determine that system’s age. However, this analysis works on the as-
sumption that the system under study is closed. Therefore the system’s ’time
since closure’ will be recorded as opposed to its actual age (Jager and Niggli
(1964)). For thermally activated diffusion within a mineral, the temperature at
which the daughter isotope becomes immobile, and the system therefore becomes
closed, is called the closure temperature. It was shown that the closure tempera-
ture could be calculated from the parent isotope’s decay rate, the diffusivity of the
daughter isotope within the mineral, and various geometric parameters (Dodson
(1973)). The calculated closure temperature and the radiometric age, together,
provide a single point in the mineral’s time-temperature history.

The two obvious weakness of this approach to reconstructing a mineral’s
complete time-temperature history are: first, that a wide variety of minerals must
be used to cover the range of potential temperatures encountered. And second,
since closure temperatures only provide the last time the mineral cooled to the
specified temperature, any recovered histories will always be monotonically cool-
ing and reheating events will not be recoverable. To overcome the need for mul-
tiple samples ”closure functions” for simple geometries were developed that de-
scribed the closure temperature as a function of position within a cooling object
(Dodson (1986)). This allowed multiple points in a system’s time-temperature
history to be recovered from a single sample. However, still present in Dodson’s
method of closure temperatures is the assumption that the mineral is exchanging
with an infinite reservoir; this is not a physically realistic representation.
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1.2.2 Fission Track Lengths and Helium Production

Spontaneous fission within uranium-bearing minerals will leave damage
trails referred to as fission-tracks. As the mineral is heated the mineral’s crys-
talline structure will anneal and the fission-tracks shorten. Using previous em-
pirical models for fission-track length reduction and the equivalent-time hypoth-
esis, a complete forward model was developed to describe the forward evolution
of fission track length distributions as a function of time and temperature (Green
et al. (1989)). Once a mineral is heated above its total annealing temperature
though, all fission-tracks will be completely annealed and any thermal informa-
tion stored will be lost (Ketcham (2005)).

Helium (He) is produced by the decay of both uranium (U) and thorium
(Th). It was first proposed that (U-Th)/He data could be used as a thermochroneme-
ter with a range similar to fission-track dating if He loss within apatite was cor-
rectly accounted for through modeling low-temperature diffusion (Zeitler et al.
(1987)). Using high-precision experiments, the main parameters required to de-
scribe He diffusion within apatite were discovered. (Farley (2000)).

Using the foundations for forward modeling both Helium production and
fission-track annealing, (Ehlers et al. (2005)) created the HeFTy program for low-
temperature thermal history recovery. While the program is exhaustive and easy
to use, the method of inversion employed is simple random guessing across a
uniform grid of possible thermal histories defined by the user. Thus, the program
cannot recover any thermal histories that were not explicitly looked for by the
user. Also, due to the physical limitations of both fission-track annealing and He
diffusion, the program cannot recover high-temperature histories.

1.2.3 40Ar/39Ar Step-Heating

In nature, 40K is unstable and decays into radiogenic 40Ar. In a closed
system the amount of 40Ar will build up over time. 40Ar/39Ar step-heating is
the process of maintaining neutron-irradiated potassium feldspar samples at suc-
cessfully higher temperatures for set periods of time while measuring the relative
rate of 40Ar release. The purpose for first irradiating the samples is to convert 39K
into 39Ar and allow the measurement of 40Ar/39Ar, which will have greater pre-
cision and improved robustness to sample inhomogeneity, to serve as a proxy for
40K/39Ar measurements. Plotting the relative rate of release against the inverse of
temperature will produce an Arrhenius plot. Under the assumption of diffusion
from a single domain this plot is expected to be linear (Lovera et al. (1989)).

The multi-diffusion domain model (MDD) was developed to explain the
non-linearity in the observed Arrhenius plots of alkali feldspars (Lovera et al.
(1989)). The MDD postulated that minerals could have distributions of different
diffusion domain sizes (i.e. multiple differently sized pockets of trapped argon
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gas) and gave a complete theoretically backed model for producing Arrhenius
plots that matched those recorded in nature and inverting the plots for continu-
ous time-temperature histories.

More recently, Gallagher (2011) has created the QtQt software which per-
forms time-temperature history inversion using a combination of fission track,
(U-Th)/He, and 40K/39Ar data. This is achieved by creating likelihood functions
using each data types respective forward model, and employing Markov Chain
Monte Carlo (MCMC) to find those thermal histories with the highest likelihood.
An advantage to this method is that MCMC produces very visually appealing
and easily interpretable confidence regions based on relative likelihoods. How-
ever, computationally expensive forward models would not be usable as Gal-
lagher reports using a 100,000 iterations with the first 50,000 discarded as burn
in.

1.2.4 δ18O Diffusion Profiles

The diffusive oxygen isotope exchange between coexisting mineral grains
results in profiles like that shown in Figure 1.2. Eiler et al. (1994), developed the
Fast Grain Boundary model to simulate this isotope exchange using finite differ-
ence approximations to the diffusion equation in combination with mass balance
constraints. Since the model’s conception there has been no work devoted to
inverting the model to recover thermal histories or diffusivity parameters from
spatially resolved oxygen isotope data.

1.3 Research Objectives

The time-temperature history of a mineral can yield insights about the ge-
ological processes that that mineral underwent. In particular large, temperature
spikes, or reheating events, are indicative of magmatic injections. Unfortunately,
magmatic intrusion temperatures typically exceed fission track annealing tem-
peratures in common minerals used for fission-track dating. Since (U-Th)/He
dating was intended as a thermocronometer for similar temperature ranges as
those in fission-track dating, neither will effectively store thermal information
about the injection. We hope that by computing the inverse of the FGB model,
we will be able to recover large reheating events.

The goal of our research is to solve the inverse problem and package the
inverse solver into an easily distributable repository so that this type of analy-
sis can be performed by the geological community at large. We will create a large
number of simulated test-cases for the solver that are representative of real-world
data. The solver will also be tested on ’ideal’ cases where the noise level of our
data is reduced to demonstrate the potential of our work as the accuracy of mass
spectrometry improves. We hope the ideal case solutions will serve as motivation
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for the geological community to begin creating standards with improved preci-
sion. Finally, we will give a heuristic model on optimal sampling procedures for
a researcher interested in obtaining the best possible inverse solutions.
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CHAPTER 2

THE FAST GRAIN BOUNDARY MODEL

We wish to model the diffusion of stable isotopes through a collection of
coexisting mineral grains within a sample. A typical example of mineral grains is
depicted in Fig. 2.1; where there are visible grain boundaries separating each in-
dividual grain from the rest. Because the diffusivity along these grain boundaries
is several orders of magnitude higher than that within the mineral grains them-
selves, we assume the grain boundaries are always at equilibrium. (Eiler et al.
(1994)). Using this fast grain boundary (FGB) assumption we are not required to
make any infinite reservoir assumptions.

Figure 2.1: Back scatter electron image of a rock sample showing minerals grains.
Shades of gray correlate to mean atomic number (density), with lower density
minerals appearing darker shades and higher density minerals appearing in
lighter shades.

2.1 Background

For modeling the movement of stable isotopes within a mineral, we start
with the diffusion equation as given by eq. (2.1). (Shewmon (2016)). This equa-
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tion describes the most general case in which isotope concentrations are allowed
to diffuse within the mineral in all directions; and the mineral may have differ-
ent diffusivities for each directional flow (anisotropic diffusion). The problem is
greatly simplified by reducing our physical model to one dimension, in which we
discretize the shape of a mineral by a single parameter. In our work we employ
the 1D Cartesian geometry, in which our mineral grain is represented as a slab
where oxygen isotopes diffuse along a single axis. We also employ the 1D spher-
ical geometry where the mineral grain is represented as a sphere and oxygen
isotopes diffuse radially outward and inward. The spherical geometry simulates
the case in which oxygen diffuses at a uniform rate in all directions (isotropic
diffusion); and the slab geometry simulates the case in which oxygen diffuses
at different rates in one direction vs. another (anisotropic diffusion) (Eiler et al.
(1994)). These simplified cases of the general equation are given by eq. 2.2 and
2.3; and the diffusion models they represent are shown in Figure 2.2.

∂c

∂t
= D(t)∇2c (2.1)

∂c

∂t
= D(t)

∂2c

∂x2
(2.2)

∂c

∂t
= D(t)

(

∂2c

∂r2
+

2

r

∂c

∂r

)

(2.3)

If the continuous function u is defined on a finite interval in space, we
can discretize it into n nodes representing small intervals of width ∆x each. We
then solve for an approximate solution by successively solving finite systems of
equations. For the linear case, we use the Crank-Nicolson scheme as it has been
found to have better accuracy compared to alternative backward/forward-time
and central-space schemes (Strikwerda (2004)). This creates an implicit relation-
ship between successive iterations of the function through time. This relationship

is shown in Eq 2.4, where ck
i,j is the jth node of mineral i at the kth time-step, and

κ = D∆t/2(∆x)2.

−κck+1
i,j+1 + (1 + 2κ)ck+1

i,j − κck+1
i,j−1 = κck

i,j+1 + (1 − 2κ)ck
i,j + κck

i,j−1 (2.4)

The original FGB model developed by Eiler makes use of the fixed-boundary
condition, requiring un = u1 = bc. Putting this iterative formula, along with the
boundary conditions, into matrix form we have the system of equations shown
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(a) Slab Geometry

(b) Spherical Geometry

Figure 2.2: Discretized 1D diffusion geometries. Darker shaded areas indicate
higher concentrations of 18O (i.e. higher δ18O values). Arrows indicate the cur-
rent direction of diffusion.

in Eq 2.5.
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For the spherical geometry we use the common finite difference discretiza-
tion with a fixed-boundaries. The matrix form of this discretization is shown in
Eq. 2.6.
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(2.6)

One final note on diffusion modeling is that, as a direct consequence of
Eq. 2.2, we can calculate the flux into/out of any representative node using the
differences of adjacent nodes (Shewmon (2016)). This will be used to ensure mass
balance.

2.2 Theoretical Framework for Model

The FGB model is composed of two distinct processes: isotopic diffusion
happening within each mineral, and the near-instantaneous isotopic transfer be-
tween mineral grains via the boundary pathways. We represent the system by

sets of discretized nodes for each individual mineral where c
(k)
i,j is used to denote

the concentration of the jth node of mineral i at time step k. This is depicted in
Figure 2.3. The end nodes, representing those parts of the minerals touching the
grain boundary, are the only locations where isotopes can flow from one mineral
into another. We use the diffusion equation to model isotope movement within a
mineral (nodes i = 2 through n). And a combination of fractionation factors with
mass balance to model the instant equilibration of the grain boundaries (nodes
i = 1 and i = n).
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Figure 2.3: Illustration of discretization for diffusion model at a single time-step.
C(i,j) is used to denote the concentration of the jth node of mineral i at the current
time-step. ∆i1−i2 is the difference between C(i1,0) and C(i2,0).

2.3 Numerical Simulation using Python

We have taken the updated MATLAB version of the FGB model created
by Chloe Bonamici, and converted it into the open-source language Python. We
hope that this, along with an intuitive user interface, will make the inversion soft-
ware we develop easily used by other researchers. An overview of the numerical
forward model will be given here. The next section will describe how all the input
parameters are controlled by the user in the actual program, and how simulation
plots are created.

The forward model requires as global inputs: the samples whole-rock δ18O
value, the simulations time-step and duration, the number of minerals, and a
time-temperature history for the sample. Then, we require each mineral’s:

(1) diffusive geometry (6) oxygen density
(2) initial diffusivity (7) radius
(3) activation energy (8) width
(4) mole fraction (9) spatial resolution (∆x)
(5) fractionation factors (A, B, C),

with respect to a common refer-
ence mineral

Supposing we have n nodes for each of m minerals, at every time-step
the simulation will recalculate each mineral’s diffusivity and fractionation factors
from the current temperature ( temperature is provided as a function of time).
The representative nodes are then updated in two parts:

i) Diffusive Step (Solving Interior from End Nodes)
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For each mineral i, we take a single iteration of the appropriate diffusion
scheme for that diffusive geometry individually. Using fixed-boundary condi-
tions, this updates the nodes j = 2, 3..., n − 1. If mineral i had a linear geometry,
this would be accomplished by solving the system of equations 2.7, as outlined
in section 1.1.2.
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(2.7)

ii) Mass Balance (Solving End Nodes From Interior)

From the m minerals, we have m − 1 constraints for the current end node
concentrations using the given fractionation factors. Using Fick’s second law, we
can calculate the flux of δ18O out of each mineral grain by equation 2.8, where Di
is the diffusivity of mineral i. The mass balance equation is given by 2.9, where
χi is the volume fraction, Ai is the surface area, and νi is the oxygen density.

J
(k+1)
i = −D

(k+1)
i

∆xi

(

c
(k)
i,n−1 − c

(k+1)
i,n

)

(2.8)

m

∑
i=1

χi Aiνi J
(k+1)
i = 0 (2.9)

Then substituting 2.8 into 2.9, results in the final mth constraint that is a
function of concentration as shown in equation 2.10. Combining all m equations

we get the system (2.11), where ki =
Di
∆xi

χi Aiνi. Solving this system represents the

equilibration of the boundary pathways and ensures mass balance is maintained
through out the diffusion simulation.

m

∑
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χi Aiνi
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)

=
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D
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)

(2.10)
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Finally, the general algorithm for the FGB model can therefore be written as
shown in Algorithm 1 below.

Algorithm 1 Forward FGB Model

1: procedure INITIALIZE

2: time = 0
3: tend = duration/∆t
4: Solve for initial equilibrium concentrations

5: for t=1, 2,..., tend do
6: time = time + ∆t
7: Get current temperature T
8: for j=1, 2, ..., m do
9: Calculate diffusivity Dj from T

10: Solve system 2.7

11: Calculate fractionation factors ∆1−2,...∆1−m from T
12: Solve system 2.11

13: Return m individual isotope concentration profiles

The Python code for the forward model can be found inside modelfunc-
tions.py from the Github repository. The code takes a temperature history as the
input, and produces as output a diffusive profile like that shown in the blue line
of Figure 1.2. The code takes, on average, 4-6 seconds to run a typical simulation.

2.4 Performance Gains using C

Running just the forward model simulations, the Python code used in the
previous section works fine with a run-time of roughly 4 seconds. However,
when running the inverse solver we need to calculate the Jacobian of our error
function. This requires anywhere from 10-30 forward runs per iteration, depend-
ing on the resolution of our solution. This results in 20+ minute run-times. If
we then wish to use a multi-start approach, this becomes unmanageable. Using
a basic profiler we see that the majority of the model’s run-time is spent solving
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the system of equations within the diffusion step of our simulation. Therefore,
this is where we focus our effort in optimizing the code.

One of the main issues with Python is that it is an interpretive language.
Thus, when attempting to use problem specific algorithms, the interpretive over-
heard of defining functions outweighs the computational savings. The diffusion
schemes we use create tridiagonal systems of equations, for which Thomas al-
gorithm is highly efficient in terms of flops, or computations. We tried SciPy’s
generic system solver, SciPy’s banded matrix solver, and a custom function em-
ploying Thomas’ algorithm. Figure 2.4 shows the runtime vs. matrix size using
randomly generated tridiagonal matrices. Typically, the spatial resolution we use
results in matrices of size 200 by 200. We can see from the plot that while the more
general banded solver is not as efficient as Thomas Algorithm, it performs better
because it is a built-in function that has already been compiled with C. From a
more detailed profiler, is was found that the diffusion solver is spending 50% of
its time just generating the matrices and vectors used for the actual SciPy func-
tion calls.

Figure 2.4: Comparison of run times for matrix inversion using different solvers.

Therefore, building the forward model in C allows us to save significant
time in declaring variables, and we are able to employ a more problem-specific al-
gorithm for the solver. The C code is written to accept file locations as input from
the command line; the os module in python is then used to execute the compiled
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C code. This allows us to avoid defining Cython structs for arrays, and allows
the C code to be compiled with the highest level of optimization. Additionally,
the repetitive calculations in constructing our tridiagonal systems of equations
are stored in C arrays. Then using C’s built-in memcpy function we are able
to save time by avoiding rebuilding the full array at every iteration. The actual
oxygen-isotope profiles at each iteration are stored on the heap, but all reference
parameters are kept on the stack to maximize memory transfer speeds. The end
result is that the new C code cuts the runtime of forward mode simulations down
from 4s to roughly .2s.

2.5 Using the Python GUI - Forward Model

The forward model accepts global model parameters, mineral-specific pa-
rameters, and an expected time-temperature history for the mineral sample. The
model output will be the isotope composition for each mineral grain in our sam-
ple. This section will walk through a basic setup. The files referenced can be
download from the repository https://github.com/gkropf/FastGrainBoundary-
DiffusionSolver.

On the first tab of the application entitled ”Forward Model”, we will set
the number of minerals to four. Current version allows for any number between
two and eight. Next, we will select a linear cooling type; this creates a cooling
history where temperature is proportional to time. With this we will need to
specify the starting and ending temperatures, and the time duration of this cool-
ing. There is also a reciprocal cooling option (temperature inversely proportional
to time), and a custom option. The custom option will ask for a comma-delimited
text file containing times in the first column and cooling rates for that correspond-
ing length of time in the second column. All times are in millions of years, and all
temperatures are in Celsius unless otherwise stated. We will also need to spec-
ify the whole rock delta-18O of our sample. After putting in the general model
parameters you should have the following screen:
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Figure 2.5: Global model parameters in forward model.

To input diffusion parameters type in the name of your mineral, and then
click the corresponding ’Diff’ button. This should cause the menu shown in Fig-
ure 2.6 to pop-up. You can select from the any of the current options or enter
manually. Similarly for fractionation factors, enter the name of your mineral and
the monitor mineral and the program will look for any chain of references that
will relate the two. If there are multiple options for any step then the program will
allow you to select which one to use. After putting in the modes (mole fractions),
mineral radii and widths, and the shape parameters describing the diffusion ge-
ometry, we have the window shown in Figure 2.8. You can use the ’File->Load
Parameters’ option to import these parameters from the Examples/Ex Params1.txt
file.

Figure 2.6: Search menu for diffusion parameters.

To save the model parameters use the ’File->Save Parameters’ button. These
saved model files will be used for the inverse solver explained below. Now click
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Figure 2.7: Search menu for fractionation factors.

Figure 2.8: Final example of model input.

’File->Run’ and the program will begin, the model simulation will take 10-30 sec-
onds depending on your system. After the simulation is complete you can plot
any minerals delta-18 values at any time, or save the entire simulation to a csv
file. If you’ve used the parameters from importing Examples/Ex Params1.txt, you
should get the plots shown in Figure 2.9 by using times 0, .8, 2, 4 for mineral 3
and 0,1,2,3 for mineral 4.
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Figure 2.9: Final example of model input.
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CHAPTER 3

INVERTING THE FGB MODEL

3.1 Background

Suppose we have a forward model G, that accepts a vector of model inputs
m and produces a vector of data outputs d. Then the inverse problem, of finding
model inputs given data outputs, can be expressed as the optimization problem
(3.1). (Aster et al. (2018)).

min
m

‖G(m)− d‖2
2 (3.1)

If G were assumed to be linear, then this would be a simple least squares prob-
lem and the Normal Equations could be used to analytically find the optimal m.
However, in the general case G may be very complex, and its inverse may have
many solutions. To prevent the overfitting of noise in data, a regularization term
is added to the optimization problem(3.2). The matrix L can be constructed to
penalize first or second order derivatives in our model vector m. These regu-
larizations have the added benefit of collapsing many possible solutions of the
inverse problem to a single best solution when the data does not entirely con-
strain the model (Aster et al. (2018)). We achieve an optimal balance between
data fit and solution smoothness using L-curves; this will be discussed in more
detail in the following section.

min
m

‖G(m)− d‖2
2 + β‖Lm‖2

2 (3.2)

There does not exist an analytic solution for the general inverse optimization
problem (nonlinear G); thus, we must employ iterative methods. A well-known
method for this is the Levenberg-Marquardt (LM) algorithm. First, we define the
vector valued function F according to eq. 3.3 and 3.4, where σi represents the
uncertainty of our data measurement di.

fi(m) =
G(m)i − di

σi
(3.3)

F =
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
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



(3.4)
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The Jacobian of F is then defined in typical fashion:

J =
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∂m1

. . .
∂ f1(m)
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. . .
...
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. . .
∂ fm(m)

∂mn









(3.5)

Finally, the LM algorithm starts with an initial solution and iteratively up-
dates this solution by solving eq. 3.6 for ∆m, and then adding ∆m to our current
solution. For a more complete derivation of the algorithm, please see Aster et al.
(2018).

(

J(m(k))T J(m(k)) + β2LT L + λI
)

∆m = −J(m(k))T
(

G(m(k))− d
)

− β2LT Lm(k)

(3.6)
The parameter β is a tuning parameter that controls the inverse solver’s prior-
ity for model smoothness. The parameter λ is used to ensure convergence and
is updated at each iteration depending on whether or not the solution is getting
better. The LM algorithm has the advantage of converging where gradient de-
scent would, but also has quadratic convergence under appropriate assumptions
(Aster et al. (2018)).

3.2 Sensitivity Analysis of Measurement Uncertainties

For any forward/inverse problem pair, there exists uncertainties in both
the model parameters and the recorded data. This feature is captured in equa-
tions 3.7 and 3.8. For inverse problems it is assumed that the forward model
accurately captures the physics of the process, thus G(mtrue) = dtrue, and dnoise
is noise generated purely by measurement error and is not correlated with mnoise
or G in anyway.

mmeasured = mtrue + mnoise (3.7)

dmeasured = dtrue + dnoise (3.8)

Define ξ as the effect of our measurement error on the model output in the fol-
lowing fashion:

ξ = G(mmeasured)− G(mtrue) (3.9)
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Recall that G is not assumed to be linear, so this expression cannot be simplified.
An expression for the σ weights used in 3.3 can now be derived.

σ2
i = Var [G(mmeasured)i − (dmeasured)i] (3.10)

σ2
i = Var [G(mtrue)i + ξi − (dtrue + dnoise)i] (3.11)

σ2
i = Var [G(mtrue)i − (dtrue)i + ξi − (dnoise)i] (3.12)

σ2
i = Var [ξi − (dnoise)i] (3.13)

σ2
i = Var [ξi] + Var [(dnoise)i] (3.14)

The variance of dnoise comes from the analytical uncertainty of the mass spec-
trometer used to measure the oxygen-isotope ratios. The variance of ξ as defined
by 3.9, has to be estimated by repetitive forward model runs. This section fo-
cuses on estimating the effects of the uncertainties associated with the mineral
diffusivities on model output.

All the samples, real and synthetic, analyzed in this research contain four
minerals that are simultaneously simulated. For each mineral, the forward model
accepts two diffusivity parameters, D0 and Q, which are used to calculate the
diffusivity by the Arrhenius relation:

D = D0 exp (−Q/RT) (3.15)

where R is the gas constant and T is the current temperature. This gives us 8
real-valued inputs hi, with 8 associated uncertainties σ(hi). For each input, we
try the three possibilities: hi − σ(hi), hi, and hi + σ(hi). This results in 38 = 6561
possible forward runs; with the speed-ups achieved by the C code this only takes
a few minutes. The minimum and maximum values for each model output, taken
over all possible forward runs, are kept. The minimum and maximum values are
then considered the range of reasonable estimates for our model output, with the
difference between them acting as an estimate for output variance.

An example of the model output uncertainties is shown in Figure 3.1. The
ranges of model output can be seen to tighten near the mineral grain boundaries.
This is a desirable feature, as it will be shown in chapter 4 that the data points
nearest the grain boundary contain the most useful information for thermal his-
tory inversion.
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(a) (b)

(c) (d)

Figure 3.1: Example of model output uncertainties produced by diffusivity un-
certainties. The upper and lower bounds, indicated by the solid blue lines, are
computed from the point-wise maximum and minimum outputs from the FGB
algorithm over all possible combinations of 2SD diffusivity parameter uncertain-
ties.

3.3 Applying the Levenberg-Marquardt Algorithm in Python and C

With all other model parameters known, the inverse solver attempts to
recover the time-temperature history of a mineral sample from the diffusion pro-
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files of the grains within that sample. This works by first descretizing the time-
temperature history as shown in Figure 3.2; where the solution is assumed to
be a linear interpolator between a finite number of points equally spaced apart.
We can then use the LM algorithm as outlined in section 1.3, where the vector of
temperatures is considered the model input vector m.

Figure 3.2: Example of the discretized model input. The actual input is a vec-
tor of temperatures, m, corresponding to the temperature at each of the equally
spaced time-periods. A linear interpolator is then used to create a continuous
time-temperature history.

Because the LM algorithm is an iterative method, it requires an initial so-
lution. The user provides this in the form of a csv file, with times in the first
column and corresponding temperatures in the second column. Only values in
the second column are changed; at each step they are updated by solving 3.6. At
each iteration, if the error improves, λ is multiplied by a factor of 1/8. Otherwise,
it is doubled. The λ term is used to ensure convergence when the condition num-
bers of our matrices become large as is often the case with quadratic methods
and poor initial guesses.(Aster et al. (2018)). The program is built to accept any
number of data files corresponding to the diffusive profiles for each mineral in
the sample. Additionally, if multiple samples are taken from the same region and
assumed to have experienced identical thermal conditions, the program allows
these to be combined to more accurately recover the shared thermal history.

To select the optimal β that balances data fit and model smoothness, we
compute L-curves. This works by running the inverse solver with progressively
larger values of β, and then plotting the error ‖G(m) − d‖2

2 vs. the solution

smoothness ‖Lm‖2
2. This produces plots similar to that shown in Figure 3.3. We

then select the β associated with the point found in the kink of the L-curve. Ad-
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Figure 3.3: Example of L-curve used to choose optimal smoothing parameter.

ditionally, to ensure that our solutions are actual global minimums and not just
local entrapments, we use the multi-start approach. This works by simply rerun-
ning the inverse solver with many different initial solutions, and then comparing
all the final solution errors. If there are many equally good solutions (similar er-
rors), then we compare the structure of these solutions to find general trends and
make statements about persistent features, such as reheating events.

3.4 Evaluation of Inverse Capabilities on Simulated Data

Before applying the inverse algorithm to real world data, it is evaluated on
simulated data to determine what features it is capable of recovering. The overall
process is to start with a known time-temperature history, run the forward model,
keep only a sample of the data points from the output, add noise to these data
points, and then run the inverse solver on this noisy data. We do this for many
different temperature histories. The output that is kept and fed into the inverse
solver is shown Figure 3.4, where G(m)i is the actual output and di is the value
stored that has been obscured with noise. The level of noise is chosen to match
the real data we have.
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Figure 3.4: Example of the stored data from simulated cases.

3.4.1 Analysis of First Synthetic Sample

For the first test case we start with the thermal history shown in Figure 3.5.
After running the forward model and adding noise to the points that are kept, we
get the data shown in 3.6. The data kept are chosen to match the locations of our
real world isotope measurements. The data in Figure 3.6 is the only information
that the inverse solver has access to. We run the inverse solver with 17 different
initial solutions, some of which are shown in Figure 3.7. Then we take the local
minimum that these starting solutions fall into and plot the resulting error of each
on the bar plot shown in Figure 3.8. The plot is an overlaid bar plot with the reg-
ularization shown on top (solution roughness ‖Lm‖). We can see how little area
of the bar plot is made up of the regularization term. We deliberately used a low
β value for this first case to gauge how well the data constrains the problem. The
total errors on the bar plot corresponding to each solution are all roughly equal,
showing that our data does not entirely constrain our solution.

The solutions are then split into three separate groups based on their vi-
sual similarities. The solutions are shown in the right of Figures 3.9 through 3.10,
with their corresponding errors highlighted on the left. We can see that group
A recreates the reheating event slightly early, and counteracts this by proceeding
with a cooler history than the actual solution. Group C does the opposite, recre-
ating the history late and preceding by a cooler region. However, every solution
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Figure 3.5: Time-temperature history of our first synthetic test case.

Figure 3.6: Simulated data of first test case.

correctly recovers both the height and duration of this reheating event. To find
the optimal smoothing parameter that collapses these many possible solutions
we compute an L-curve. This is shown in Figure 3.12, where the point high-
lighted in red is the current value we used to generate plots 3.9 through 3.11. If
we increase the smoothness to that highlighted in blue, we condense our wide
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Figure 3.7: Four of the 17 initial solutions used to begin the inverse solver.

Figure 3.8: Bar plot of errors from the 17 local minimums achieved from our
inverse solver.

spread of solutions to a single best solution to that shown in 3.13. However, this
has significantly smoothed out the reheating event.
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(a) Highlighted Errors (b) Actual Solutions

Figure 3.9: Grouped solutions to the first synthetic test case (group A).

(a) Highlighted Errors (b) Actual Solutions

Figure 3.10: Grouped solutions to the first synthetic test case (group B).

(a) Highlighted Errors (b) Actual Solutions

Figure 3.11: Grouped solutions to the first synthetic test case (group C).
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Figure 3.12: L-curve with previous and optimal smoothing parameter values
highlighted.

Figure 3.13: Collapsed solutions from first test case after regularization has been
turned up to optimal value.
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3.4.2 Summary of Inversion Results From All Simulated Cases

We want to create a catalog of what features the inverse solver does and
does not pick up. Reheating events may not be recoverable if they occur too early
or late and this needs to be examined before drawing any conclusions from our
real world data. A disadvantage of the LM method is that it does not allow the
x values (times) to change, only the y values (temperature). Alternative methods
such as Markov Chain Monte Carlo used by Gallagher (2011), allow data points
to be created, eliminated, and shifted as need. Our solver works as a proof-of-
concept to the amount of thermal information stored inside the mineral grains
diffusive profiles.

By looking at the thermal history inversions of three different reheating
events using synthetic data with the full level of expected noise (Fig. 3.14 through
3.16), it can be seen that our inverse solver cannot with any degree of confidence
state when the reheating event occurred. However, comparing these recovered
solutions to those found in 3.20, we can see that our solver can clearly distinguish
between thermal histories which contain reheating events and thermal histories
of a simple linear form. If we then reduce the level of noise to 20% of what our
current real world samples contain, in Figures 3.17 through 3.19 it can be seen
that the inverse solver is now able to correctly determine the time at which the
reheating even occurred to within a million years. Additionally, we see that the
closer a reheating event occurs to the end of our cooling period the more the
solution becomes smoothed over by the regularization.

All the synthetic data used in this chapter were ’measured’ at the same
locations as our real world data and with similar levels of noise. This was done
to provide context when analyzing the inverse solutions from our real world data,
so that we have an appropriate representation of the solver’s current ability. We
will explore how the actual sample locations affect the inverse solutions in more
detail in chapter 4.
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(a) (b)

Figure 3.14: Inversion of an early reheating event using full noise.

(a) (b)

Figure 3.15: Inversion of a mid-history reheating event using full noise.

(a) (b)

Figure 3.16: Inversion of a late reheating event using full noise.
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(a) (b)

Figure 3.17: Inversion of an early reheating event using low noise.

(a) (b)

Figure 3.18: Inversion of a mid-history reheating event using low noise.

(a) (b)

Figure 3.19: Inversion of a late reheating event using low noise.
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(a) (b)

Figure 3.20: Inversion of a linear profile using full noise.

(a) (b)

Figure 3.21: Inversion of a linear profile using low noise.

3.5 Alternate Methods of Regularization

As was seen in the figures from the previous section, the curvature regular-
ization over-smoothed reheating events when they occurred closer to the end of
our cooling period. This is because the temperatures are lower near the end and
diffusion is greatly slowed down. This means that reheating events that occur
during cooler periods of time are not well-recovered with the curvature regular-
ization. And without smoothing the solutions were not physically reasonable.
Thus, we wish to try alternate forms of regularization. Since the dominant mode
of cooling is expected to be linear in the absence of other physical phenomena,
we will regularize by penalizing deviation from linearity. This means portions of
the cooling history will only be changed from linearity in the presence of strong
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evidence. The new objective function that we wish to optimize over is now given
by eq. 3.16, where mlinear is the vector of model parameters that describes a linear
cooling trend over the specified time-period.

‖G(m)− d‖2
2 + β‖m − mlinear‖2

2 (3.16)

To find local minimum we use the same iterative approach with multi-starts, ex-
cept the model updates are now made by:

(

J(m(k))T J(m(k)) + β2I
)

∆m = −J(m(k))T
(

G(m(k))− d
)

− β2(m(k) − mlinear)

(3.17)

Note that the βI term is different than in eq. 3.6. In eq. 3.6 the I term
is used to stabilize the iterations and does not effect the final solution achieved.
In this equation, it is used as a regularization, which is why the iterative steps
have an associated term on the right. β is a tuning parameter. Using this devia-
tion from linearity regularization and selecting the optimal tuning parameter we
get the spread of inverse solutions shown in Figure 3.22. This offers a dramatic
improvement over the solutions achieved in Figures 3.16 and 3.19. Thus, devi-
ation from linearity regularization should be used for time-temperature history
recovery during cooler periods.

Figure 3.22: Multiple equally-good inverse solutions using deviation from linear-
ity regularization for late reheating event.

Combinations of both curvature and deviation from linearity can be used
as regularization. However, with two tuning parameters there is no longer a
simple criteria by which we can select optimal parameter pairs as we can with
the L-curve for one tuning parameter. Multiple combinations were tried, but no
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successful values were found that produced better solutions than the individual
regularizations by themselves. This is a potential avenue for future research in
which deep exploration could be performed on combination pairs.

3.6 Inverse Results from Titanite Samples

We are very limited in the amount of real world data available to us. How-
ever, with the software package completed, future data will be easily analyzed as
it is recorded. The data we do have available is four samples all collected from
within the same region. Thus, we can use the data together as the minerals should
have undergone identical cooling conditions. Within each sample there are four
abundant minerals: titanite, feldspar, quartz, and augite. For each sample, we
have roughly 25 data points collected along a single side of a single grain of ti-
tanite within the sample. This results in 102 data points used to reconstruct the
discretized 17-point time-temperature history. Running the inverse solver results
in the solutions shown in the right of Figures 3.23 through 3.26, with correspond-
ing errors shown in the bar plots on the left.

(a) Highlighted Errors (b) Actual Solutions

Figure 3.23: Grouped solutions to real titanite samples (group A).

While there appears to be a reheating event in some of the solutions, there
are other equally good solutions that do not show one. Thus, we cannot say
whether or not there was a reheating event. What these solutions do indicate, is
that 700oC is likely an underestimate of the peak temperature conditions attained
in this region. With more data from different minerals and grain sizes we would
likely be able to better constrain the thermal history.

3.7 Using the Python GUI - Inverse Solver

The inverse solver will accept 1-5 files containing saved model parame-
ters created in the forward model tab (see section 2.5). Each file corresponds
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(a) Highlighted Errors (b) Actual Solutions

Figure 3.24: Grouped solutions to real titanite samples (group B).

(a) Highlighted Errors (b) Actual Solutions

Figure 3.25: Grouped solutions to real titanite samples (group C).

(a) Highlighted Errors (b) Actual Solutions

Figure 3.26: Grouped solutions to real titanite samples (group D).

to a single mineral sample. For each sample, and each mineral grain in that
sample, we can then upload a data file containing an isotopic profile and asso-
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ciated uncertainties. The files referenced can be download from the repository
https://github.com/gkropf/FastGrainBoundary-DiffusionSolver.

By clicking on the rows of section ’Model Parameters’ in the tab ’Inverse
Model’, we can upload all four of our example of model parameters: Ex Params1.txt,
Ex Params2.txt, Ex Params3.txt, and Ex Params4.txt. This will result in the screen:

Figure 3.27: Selecting saved forward model parameter files.

Each one of these parameter files is setup to simulate the diffusive ex-
change between four minerals: quartz, feldspar, titanite, and augite. However,
for each one we only have data available for the third mineral, titanite. Thus, we
will upload our example data Ex Data1.txt through Ex Data4.txt, in the top four
rows of the column ’Mineral 3.’

Figure 3.28: Selecting output data files.

Next, we will need to select which starting solutions we wish to use for our
multi-start Levenberg-Marquardt algorithm. Click on the ’directory location’ file
dialog and select the Inverse InitialSol folder. We will then elect to use Initial09.txt
as our starting solution.
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Figure 3.29: Selecting initial profiles used in inverse solver.

Finally, we will click File->Run. At each iteration of the process, the left
panel will show the initial solution in a black dashed line, and the current solution
will be shown in blue. All the past objective values (measure of data fit and
smoothness) will be shown in the bar plot on the right.

Figure 3.30: Example of inverse solver progress plots.
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CHAPTER 4

MEASUREMENT SCHEMES FOR IMPROVED INVERSE

THERMAL HISTORY RECOVERY

We want to determine where in the diffusive isotope profile the most ther-
mal information is stored. We cannot rely on minimizing the estimated model
covariance matrix because we have employed regularization and regularization
always introduces bias. Therefore, we will try eight different schemes for sample
measurements with the current achievable minimum distance between succes-
sive pits, and the current values for isotope ratio uncertainties. Then we will try
sample schemes with a hypothetical reduction in uncertainty and minimum dis-
tance between successive measurements. The general problem set up is the same
as in section 3.4: forward model, select data points from the locations shown in
the scheme illustration, add noise, and then run the inverse solver. The smooth-
ing parameter used is individually determined for each noise realization so that
the solutions from every individual noise realization are representative of what
might be uncovered if we did not know the original profile.

For sample schemes 1 through 4, illustrated in Figures 4.1, 4.3, 4.5, and 4.7,
measurements are taken 12 microns apart and noise is generated from a normal
distribution with a standard deviation of .28o/oo. For each sample scheme, four
separate noise realizations are generated. Then for each individual noise realiza-
tion, all the equally good fitting solutions found by the inverse solver are overlaid
on a plot of the actual cooling history used to forward model the data. For sample
scheme 5, the the measurements are taken only 6 microns apart. For scheme 6,
the noise has a standard deviation reduced to 0.06o/oo. For schemes 7 and 8, the
measurements are taken only 6 microns apart and the noise level is reduced to
±0.06o/oo.

The first measurement scheme takes 12 measurements on a single side of
the oxygen isotope profile. From the inverse solutions using the first measure-
ment scheme, illustrated in Figure 4.2, the solver is able to identify the relative
height and duration of our reheating event. However, for noise realizations (b)
and (c), the inverse solver does not recover the linear cooling trend following the
reheating event. The l2-norm regularization can both smooth out the original re-
heating event or introduce an artificial second one. The second sample scheme
takes six measurements on each side of the diffusive profile. Because the isotope
profile is symmetric, this effectively cuts the number of measurements in half but

reduces their uncertainty by a factor of
√

2. As seen in Figure 4.4, this scheme
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is slightly worse than scheme 1 because a much higher smoothing parameter is
needed to collapse the solutions. Thus the reheating events are more sharply
smoothed and none of the noise realizations result in solutions that correctly re-
cover the linear sections of the cooling history. For sample scheme 3, 12 measure-
ments are taken 12 microns apart at the center of the isotope profile. While the
inverse solutions, illustrated in Figure 4.6, are highly consistent between the four
noise realizations and the peak temperature of recovered solutions matches the
original reheating event, the duration of the reheating event is completely lost
and no portion of the linear cooling trend is correctly recovered.

For sample scheme 4, we combine 12 measurements taken from one side
of the grain boundary and 12 measurements from the center of the grain. The
cooling histories recovered using this scheme, illustrated in Figure 4.8, show no
significant improvement over the solutions found using scheme 1. Thus, the
thermal information recorded in the center of the grain is redundant and mea-
surements should be taken closest to the grain boundary in order to improve the
time-temperature history recovery. This is not unexpected, as the current temper-
ature primarily influences the equilibration of the grain boundaries, and it takes
time for this thermal information to diffuse to the center of the grain.

For sample scheme 5, we take 24 measurements 6 microns apart at the
edge of the grain boundaries. This is a theoretical reduction of the minimum
spacing between successive measurements by a factor of 2. For sample scheme 6,
we use the same measurement locations as scheme 1 but reduce the noise level
by a factor of 5. We can see from the inverse solutions in Figures 4.10 and 4.12,
that both measurement improvements offer noticeably better inverse solutions
than those obtained in 4.2. However, the inverse solutions achieved from noise
reduction (Fig. 4.12) are slightly better than those achieved from measurement
spacing reduction (Fig. 4.10).

Finally, we test the inverse solutions obtained from improved measure-
ment spacing and improved noise levels in sample schemes 7 and 8. The solu-
tions illustrated in Figure 4.13, show no improvement over the solutions achieved
by scheme 3 which used half the number of measurements with five times the
level of noise. Again, this is because the center of the grain primarily holds infor-
mation about the long-term integration of the time-temperature history. Sample
scheme 8 however, which uses 24 measurements 6 microns apart taken at the
grain boundary, results in very desirable time-temperature history reconstruc-
tions. As seen in Figure 4.15, the reheating event’s temporal location, its peak
temperature, and relative duration are all accurately recovered. Additionally, the
linear cooling trend following the reheating event is almost exactly recovered.
For inverse solutions this accurate though, the noise level needs to be reduced
to ±0.06 o/oo, which is not currently achievable using standards such as UWQ-1
Quartz which has an uncertainty of ±0.15o/oo.
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Figure 4.1: Measurement locations and uncertainties for sample scheme 1.

(a) (b)

(c) (d)

Figure 4.2: Four separate noise realizations for sample scheme 1.
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Figure 4.3: Measurement locations and uncertainties for sample scheme 2.

(a) (b)

(c) (d)

Figure 4.4: Four separate noise realizations for sample scheme 2.
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Figure 4.5: Measurement locations and uncertainties for sample scheme 3.

(a) (b)

(c) (d)

Figure 4.6: Four separate noise realizations for sample scheme 3.
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Figure 4.7: Measurement locations and uncertainties for sample scheme 4.

(a) (b)

(c) (d)

Figure 4.8: Four separate noise realizations for sample scheme 4.
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Figure 4.9: Measurement locations and uncertainties for sample scheme 5.

(a) (b)

(c) (d)

Figure 4.10: Four separate noise realizations for sample scheme 5.
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Figure 4.11: Measurement locations and uncertainties for sample scheme 6.

(a) (b)

(c) (d)

Figure 4.12: Four separate noise realizations for sample scheme 6.
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Figure 4.13: Measurement locations and uncertainties for sample scheme 7.

(a) (b)

(c) (d)

Figure 4.14: Four separate noise realizations for sample scheme 7.
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Figure 4.15: Measurement locations and uncertainties for sample scheme 8.

(a) (b)

(c) (d)

Figure 4.16: Four separate noise realizations for sample scheme 8.
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CHAPTER 5

CONCLUSIONS

This thesis started by rebuilding the forward Fast Grain Boundary model
of oxygen isotope exchange created by Eiler et al. (1994). The forward model was
packaged into a distributable python repository which contains options for quick
parameter referencing. Included in the repository is pre-compiled C code which
can be used to accurately simulate 5 million years of diffusive isotope exchange
in roughly 0.2 seconds. A GUI interface for the application was built so that all
results demonstrated can be easily reproduced.

With the improved runtime achieved by our C code, we were able to
implement the Levenberg-Marquardt optimization algorithm to recover time-
temperature histories from diffusive isotope profiles. The inverse solver was built
into the software application. Synthetic data was generated to test the inverse
solver’s capabilities at recovering a known thermal history. We showed that in-
verse solutions can be improved by measuring data closest to the mineral’s grain
boundary. We found that with the current level of noise and minimum distance
between successive measurements we cannot reliably recover the location or du-
ration of reheating events.

However, with sufficiently small enough noise in our oxygen isotope data,
and implementing optimal sampling around the mineral’s grain boundary, we
could recover a reheating event’s time of occurrence, its duration, and its peak
temperature reliable through repeatable noise realizations. This required a noise
level that is not currently achievable due to the uncertainties associated with the
standards we measure against. Thus, if better standards are created and adopted,
we can provide this type of accurate thermal history recovery in the future.

One weakness of the approach we have taken, is that the user must specify
the timing of temperature values to recover and the total thermal history dura-
tion. We have not sufficiently explored how sensitive the solver is to histories
that are longer or shorter than the durations we specify. One possible approach
would be to include every temperature’s associated time as an additional model
parameter. However, this would dramatically increase the covariance between
model parameters and double the computational complexity. Additionally, we
did not optimize over the number of model parameters. This was chosen very
qualitatively at the beginning research stages by choosing a number of model
parameters that allowed adequate model complexity but still resulted in consis-
tent convergence. As the number of model parameters was moved past 40 the
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inverse solver began returning nonsensical time-temperature histories as numer-
ical rounding errors began to plague the iterative steps of the LM algorithm.

Finally, there is still a large body of work that needs to be done to vali-
date the inverse solver’s solutions; and improved standards are needed. How-
ever, this research shows that there is a significant amount of thermal informa-
tion stored in the isotopic records, and with sufficient standards and measure-
ment techniques, this information can be extracted to recover accurate continu-
ous time-temperature histories.
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APPENDIX A

PERMISSIONS

As quoted from direct email correspondence with the image’s owner, Chloe
Bonamici: ”I grant you permission to use images that I have created and that ap-
pear in Figures 1.1, 1.2, and 2.1 of your M.S. thesis. I hold the sole copyright to
these images, and they have not been published elsewhere.”

All other figures and images were personally created for the sole purpose
of appearing in this thesis document.
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