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ABSTRACT

This thesis compares the performance of several first-order positive semidef-
inite programming solvers on two sets of benchmarking problems. The perfor-
mance is evaluated by robustness, accuracy, and speed. The four solvers tested
are the boundary point method and its generalization, the alternating direction
augmented Lagrangian method, and the splitting conic solver. Over all, the split-
ting conic solver was generally fastest and the alternating direction augmented
Lagrangian method was most robust, while the boundary point method was gen-
erally least robust and was usually outperformed in speed and robustness by its
alternating-direction-augmented-Lagrangian-like generalization.

Keywords: Optimization; Benchmarking; Semidefinite Programming; First-Order
Methods; Large SDPs
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CHAPTER 1

INTRODUCTION

Semidefinite Programming problems, or SDPs, are convex optimization
problems in which the trace of the product of an n × n symmetric matrix and
a constant objective n× n symmetric matrix is minimized, subject to m equality
constraints on the trace of the same matrix and constant constraint n× n symmet-
ric matrices, and the constraint that the matrix is in the cone of n× n symmetric
positive definite matrices, Sn

+:

min tr (CX)

(P) tr (AiX) = bi, i = 1, . . . , m

X ∈ Sn
+

(1.1)

with the dual of the problem being to maximize the scalar product of a
vector of length m and the constraint vector, subject to the constraint that the
difference between the objective matrix and the linear combination of the equality
constraint matrices when scaled by the elements of the vector is symmetric and
positive semidefinite.

max bTy

(D) ∑m
i=1 yi Ai + Z = C

Z ∈ Sn
+

(1.2)

There are well-known primal-dual interior point methods to solve these
problems quickly and accurately, but they do not scale well to very large prob-
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lems, necessitating the use of first-order methods [18]. In this thesis, we bench-
mark and compare the performance of first-order solvers on large and small
SDPs.

Generally, an interior point method can solve SDPs in polynomial time.
However, if the number of n× n constraint matrices m is of order O

(
n2), then the

time and memory complexity required for each iteration becomes unreasonably
large, O

(
n6) and O

(
m2) respectively, to find a (usually dense) m × m positive

definite Schur complement matrix and compute its Cholesky factorization. For
particularly large problems, the matrices that need to be calculated in each itera-
tion may not even fit into a computer’s memory [19].

In contrast, most first-order methods are based on the augmented La-
grangian method, and involve O (m) and O

(
n2) storage. Usually they involve

solving an m × m system of equations which could theoretically require up to
O
(
m2) storage, but this system is typically very sparse, making storage and cal-

culation more efficient, and allowing it to fit in memory and be solved quickly.
SDPs were significantly used starting in the early 1990s, for some com-

binatorial optimization and graph theory problems. Later, they were also used
for problems in structural optimization, signal processing, circuit design, alge-
braic geometry, communications and information theory, quantum computing,
and finance [4, 18]. SDPs also arise in analysis of moments of statistical distribu-
tions, and in relaxations to simpler convex optimization problems to make them
more robust to uncertainty in inputs, and in many other fields [6]. Primal-dual
interior-point methods, such as the predictor-corrector infeasible interior-point
method SDPA started in 1995 and fully implemented in 1998 [20], self-dual min-
imization using a centering-predictor-corrector method SeDuMi created in 1998
[15], infeasible predictor-corrector barrier method CSDP created in 1999 [2], and
infeasible interior-point path following method SDPT3 created in 2001 [17], were
developed, and generally work well on small and medium sized SDPs [10]. Start-
ing in the mid 2000s, first-order methods began to be developed to solve larger
problems, including the general first-order methods investigated in this thesis:
the boundary point method BPM in 2006 [14], its generalization MPRW in 2009
[9], the alternating-direction augmented Lagrangian method SDPAD in 2009 [19],
and the self-dual alternating-direction method of multipliers, or splitting conic
solver, SCS in 2016 [12].
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CHAPTER 2

POSITIVE SEMIDEFINITE PROGRAMMING DUALITY AND

ALGORITHMS

We standardize the form of the SDP problem with C, A1, . . . , Am ∈ Sn

(n× n symmetric matrices) and b ∈ Rm to:

min 〈C, X〉

(P) A (X) = b

X � 0

(2.1)

where 〈 , 〉 is the Frobenius inner product of two matrices of the same size, which
defines the Frobenius norm ‖·‖2

F:

〈P, Q〉 = ∑i ∑j PijQij = tr
(

PTQ
)

‖P‖2
F = 〈P, P〉

(2.2)

(note that, because the matrices in question for these problems are all square and
symmetric, the transpose is omitted and the product is written as tr (PQ) in this
thesis, which is equivalent), the function A : Sn → Rm is

A(X) :=


〈A1, X〉

...

〈Am, X〉

 , (2.3)
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and� is the conic inequality defined in relation to Sn
+, the cone of n×n symmetric

positive semidefinite matrices, so P � 0 ⇔ P ∈ Sn
+ and P � Q ⇔ P− Q ∈ Sn

+.
(Similarly, Sn

++ is the cone of n × n symmetric positive definite matrices, and
P � 0⇔ P ∈ Sn

++.)

The dual of this problem over y ∈ Rm is:

max bTy

(D) AT (y) +Z = C

Z � 0

(2.4)

where AT(y) = ∑m
i=1 yi Ai, derived below.

A primal SDP problem is of the form (2.1). We associate a Lagrange mul-
tiplier vector y ∈ Rm with the equality constraints, associating element yi with
constraint bi − 〈Ai, X〉 = 0 for i = 1, . . . , m, and a Lagrange multiplier symmetric
matrix Z ∈ Sn with the conic inequality constraint−X � 0. Then, the Lagrangian
of the problem is

L (X, y, Z) = 〈C, X〉+
m

∑
i=1

yi (bi − 〈Ai, X〉) + 〈Z,−X〉 (2.5)

so the Lagrangian dual function is

g (y, Z) = infX∈Sn (L (X, Z, y))

= infX∈Sn (〈C, X〉+ ∑m
i=1 yi (bi − 〈Ai, X〉) + 〈Z,−X〉)

= bTy + infX∈Sn (〈C, X〉 −∑m
i=1 〈yi Ai, X〉+ 〈−Z, X〉)

= bTy + infX∈Sn (〈(C−∑m
i=1 yi Ai − Z) , X〉)

= bTy + infX∈Sn
(〈(

C− AT (y)− Z
)

, X
〉)

.

(2.6)

Note that
〈(

C− AT (y)− Z
)

, X
〉

is linear in X, and so is not bounded below ex-
cept when

(
C− AT (y)− Z

)
is identically 0, so the Lagrangian dual function is

g (y, Z) =


bTy, C− AT (y)− Z = 0 ∈ Sn

−∞, otherwise.
(2.7)
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Then, the Lagrangian dual problem is

max g (y, Z)

(D) Z � 0
(2.8)

(where Z must be in the dual cone of Sn
+ to have the lower bound g (Z, y) ≤

〈C, X〉 for all feasible X, but the positive semidefinite cone is self-dual, so this is
simply Z ∈ Sn

+) and can be written as

max bTy

(D) AT (y) + Z = C

Z � 0

(2.9)

which is the dual problem in its standard form for this thesis: (2.4) [6, p264-265].
Weak duality, from the construction of the Lagrangian dual problem, gives

that 〈C, X〉 ≥ bTy for all feasible X and y. Strong duality, where there exist feasi-
ble and optimal X?, y?, and Z? such that 〈C, X?〉 = bTy?, does not always hold,
but holds when Slater’s condition, that both the primal and dual problems are
feasible and either of them is strictly feasible holds, i.e. ∃X � 0 3 A (X) = b or
∃y 3 AT (y) � C (i.e. Z = C− AT (y) � 0). When strong duality holds, an opti-
mal solution will satisfy the complementary slackness condition: 〈X?, Z?〉 = 0 [6,
p265-266]. Most solvers assume that Slater’s condition and thus strong duality
hold, which is the case for many but not all possible SDP problems.

For convenience, we define vectorization of the matrices as an invertible
function vec : Sn → Rn̂, which must maintain

vec (P)T vec (Q) = 〈P, Q〉 , ∀P, Q ∈ Sn. (2.10)

and let vec (P) ∈ vec (Sn
+) denote P ∈ Sn

+. This allows us to define a single
constraint matrix

A =


vec (A1)

T

...

vec (Am)
T

 ∈ Rm×n̂, (2.11)
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so for x = vec (X), Ax = A(X), and ATy = AT (y), for any valid vectorization
function.

Most SDP solvers use a vectorization vecC : Sn → Rn̂, n̂ = n2 of sym-
metric matrices, by vertically concatenating all of a matrix’s columns, in order.
This vectorization maintains vecC (P)T vecC (Q) = 〈P, Q〉 , ∀P, Q ∈ Sn because
〈P, Q〉 = Σn

i=1Σn
j=1PijQij is exactly the same as element-wise multiplication and

addition of each element of each column of P and Q, which is the same as tak-
ing the vector dot product of their vecC vectorizations. Therefore, it is a valid
vectorization. To illustrate this with an example:

vecC




1 2 3

2 4 5

3 5 6




T

vecC




7 8 9

8 10 11

9 11 12


 =



1

2

3

2

4

5

3

5

6



T 

7

8

9

8

10

11

9

11

12



= 315

〈
1 2 3

2 4 5

3 5 6

 ,


7 8 9

8 10 11

9 11 12


〉

= tr




50 61 67

91 111 122

115 140 154


 = 315

(2.12)

SCS uses a vectorization vecS : Sn → Rn̂, n̂ = n(n+1)
2 of symmetric matri-

ces, scaling all elements of a matrix but those on the diagonal by
√

2, and verti-
cally concatenating the lower-triangular parts of the columns in order. This vec-
torization maintains vecS (P)T vecS (Q) = 〈P, Q〉 , ∀P, Q ∈ Sn, because 〈P, Q〉 =
Σn

i=1Σn
j=1PijQij can be separated out into strictly lower-triangular, diagonal, and

strictly upper triangular parts:

n

∑
i=1

n

∑
j=1

PijQij =
n

∑
i=1

n

∑
j=i+1

PijQij +
n

∑
i=1

PiiQii +
n

∑
i=1

i−1

∑
j=1

PijQij. (2.13)
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Then, because the matrices are symmetric, the sum of the products of the strictly
lower triangular parts of the matrices is equal to the sum of the products of the
strictly upper triangular parts of the matrices:

n

∑
i=1

n

∑
j=i+1

PijQij +
n

∑
i=1

i−1

∑
j=1

PijQij = 2
n

∑
i=1

n

∑
j=i+1

PijQij =
n

∑
i=1

n

∑
j=i+1

(√
2Pij

) (√
2Qij

)
.

(2.14)
The entire trace can be simplified to

vecS (P)T vecS (Q) =
n

∑
i=1

n

∑
j=i+1

(√
2Pij

) (√
2Qij

)
+

n

∑
i=1

n

∑
j=i+1

PijQij = 〈P, Q〉 ,

(2.15)
so it is a valid vectorization. To illustrate this with an example:

vecS




1 2 3

2 4 5

3 5 6




T

vecS




7 8 9

8 10 11

9 11 12


 =



1

2
√

2

3
√

2

4

5
√

2

6



T 

7

8
√

2

9
√

2

10

11
√

2

12


= 315

〈
1 2 3

2 4 5

3 5 6

 ,


7 8 9

8 10 11

9 11 12


〉

= tr




50 61 67

91 111 122

115 140 154


 = 315

(2.16)
Let functions (·)+ : Sn → Sn

+ and (·)− : Sn → Sn
− denote the projection

of symmetric matrices onto the positive semidefinite and negative semidefinite
cones, found by performing a spectral decomposition and replacing the negative
or positive eigenvalues with zeros, respectively. For example, given a spectral
decomposition

P = ∑
i

λivivT
i (2.17)

of matrix P ∈ Sn, so eigenvalues are real and eigenvectors vi are chosen real
and pairwise orthonormal. Then, the projections onto the positive definite and

7



negative definite cones are respectively:

P+ = ∑λi>0 λivivT
i ,

P− = ∑λi<0 λivivT
i

(2.18)

and maintain
P = P+ + P−. (2.19)

By the Eckart-Young-Mirsky Theorem, P+ is the projection of P onto the positive
semidefinite cone, for both the Frobenius norm and the Euclidean norm [7, 6,
p399]:

min ‖P−Q‖F

Q � 0
=

min ‖P−Q‖2

Q � 0
= P+. (2.20)

Most solvers also assume that the constraint matrices A1, . . . , Am are lin-
early independent; if this is not true, then some can be eliminated as redundant
constraints until it is. Because of this, for any vectorization vec : Sn → Rn̂, the re-
sulting constraint matrix A ∈ Rm×n̂ has full row rank, rank (A) = m. Therefore,
the matrix AAT ∈ Sm

++ also has full rank, rank
(

AAT) = m, so it is invertible,

i.e. ∃
(

AAT)−1 ∈ Sm
++. Then, the nonvectorized composition

(
AAT) = A ◦ AT :

Rm → Rm is invertible, and

∃
(

AAT
)−1

: Rm → Rm. (2.21)

If C, A1, . . . , Am share a block diagonal structure, meaning that they are
each diagonal concatenations of the same number and sizes of smaller symmetric
matrices, then X and Z will share that block diagonal structure, and can be stored
more efficiently. Suppose there are ns diagonal blocks in each of the matrices,
possibly of varying sizes. Then, when Ck, Xk, Zk , and Aik are the kth blocks of C,
X, Z, and Ai respectively, the primal and dual problems can be rewritten as

min ∑ns
k=1 〈Ck, Xk〉

(P) ∑ns
k=1 〈Aik, Xk〉 = bi , i = 1, . . . , m

Xk � 0 , k = 1, . . . , ns

(2.22)
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max bTy

(D) ∑m
i=1 yi Aik +Zk = Ck , k = 1, . . . , ns

Zk � 0 , k = 1, . . . , ns

(2.23)

for more efficient storage and computation.
Linear Programming problems, of the form

min cTx

(P) Ax = b

x ≥ 0

,

max bTy

(D) ATy +z = c

z ≥ 0

(2.24)

with x, z ∈ R
|x|
+ , c ∈ R|x|, can be incorporated as constraints and variables in an

SDP, by treating each element of Linear Programming variables x and z as a 1× 1
SDP block [18]. SDP solvers therefore can also solve Linear Programming prob-
lems, although they often have a separate format to input Linear Programming
constraints on SDPs, to perform calculations more efficiently than by converting
them to SDP form.

2.1 The Solvers

2.1.1 Boundary Point Method (BPM)

In 2006, Povh, Rendl, and Wiegele [14] developed a boundary point method
(BPM) which follows the boundary of the cones of positive semidefinite matrices
for the primal and dual problem until it finds a feasible solution, using an aug-
mented Lagrangian function.

BPM uses the problem format:

max 〈C, X〉

(P) A (X) = b

X � 0

,

min bTy

(D) AT (y) −C = Z

Z � 0

(2.25)
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To convert the BPM variables to the standard variable definitions, substi-
tute CBPM = −C and yBPM = −y, to get

max 〈−C, X〉

(P) A (X) = b

X � 0

,

min bT (−y)

(D) AT (−y) +C = Z

Z � 0

(2.26)

which is equivalent to problems (2.1) and (2.4), the standard format of the primal
and dual problems.

Applying an augmented Lagrangian method to problem (2.4) is approach-
ing the problem with a boundary point method, which maintains X � 0, Z � 0,
and XZ = 0 in each iteration, following the boundary of the cone of positive
semidefinite matrices until it reaches the affine subspace from the equality con-
straints on (2.1) and (2.4), satisfying

A (X) = b

AT (y) + Z = C,
(2.27)

i.e. maintaining the complementary slackness condition 〈X, Z〉 = 0 and main-
taining positive semidefinite X and Z, until it reaches a point that is feasible for
the equality constraints. Then, when it reaches a point satisfying equation (2.27),
the complementary slackness condition 〈X, Z〉 = 0 and the positive semidefinite
feasibility conditions X � 0 and Z � 0 will be true because they are true in every
iteration, and the equality feasibility conditions (2.27) will then be satisfied, so
the solution will be feasible and satisfy the complementary slackness condition,
and therefore must be optimal.

The augmented Lagrangian method to solve the dual problem (2.4) uses
X as the Lagrange multiplier for constraint AT (y) + Z− C = 0 and introduces a
fixed σ > 0 as a scaling factor on the squared norm of AT (y) + Z− C, which is 0
for feasible solutions:

Lσ (y, Z, X) = −bTy +
〈

X, AT (y) + Z− C
〉
+

σ

2

∥∥∥AT (y) + Z− C
∥∥∥2

F
. (2.28)

Defining

W (y) = −AT (y) + C− 1
σ

X (2.29)
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the augmented Lagrangian can be written as

Lσ (y, Z, X) = −bTy +
〈

X, Z−W (y)− 1
σ X
〉
+ σ

2

〈
Z−W (y)− 1

σ X, Z−W (y)− 1
σ X
〉

= −bTy + σ
2 ‖Z−W (y)‖2

F − 1
2σ ‖X‖

2
F .

(2.30)
Then, removing the terms that depend only on X, the augmented Lagrangian
objective function is

f (y, Z) = −bTy +
σ

2
‖Z−W (y)‖2

F (2.31)

so each iteration of the augmented Lagrangian method to solve the dual problem
(2.4) consists of minimizing f (y, Z) with some fixed X � 0 over Z � 0 to get
y and Z, then updating X as X ← X + σ

(
AT (y) + Z− C

)
. The process iterates

until convergence, following the standard method of multipliers or augmented
Lagrangian update [5].

The inner minimization of f (y, Z) over Z � 0 is the main computation of
each iteration. It can be written

min −bTy + σ
2 ‖Z−W (y)‖2

F

y ∈ Rm

Z � 0

(2.32)

which is a convex quadratic SDP. This problem is too hard to solve in every iter-
ation, so instead it is iteratively approximately solved. Introducing the Lagrange
multiplier V � 0 for the constraint −Z � 0, this problem’s Lagrangian is

L (y, Z, V) = f (y, Z)− 〈V, Z〉 (2.33)

whose Karush-Kuhn-Tucker (KKT) necessary and sufficient conditions for opti-
mality [6, p244] are

∇yL (y, Z, V) = −b + σA
(

AT (y) + Z− C + 1
σ X
)
= 0

∇ZL (y, Z, V) = σ
(

AT (y) + Z− C + 1
σ X
)
−V = 0

Z � 0, V � 0, VZ = 0.

(2.34)
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Expanding the gradiant conditions shows that y, Z is optimal if and only if there
exists V such that

(
AAT) (y) = 1

σ b− A
(

Z− C + 1
σ X
)

V = σZ− σW (y)

Z � 0, V � 0, VZ = 0.

(2.35)

For fixed y, the problem minZ�0 f (y, Z) is a projection onto the cone of positive
semidefinite matrices. Therefore, Z must also satisfy the projection condition

Z = W (y)+ (2.36)

defined earlier. Then, the necessary and sufficient conditions can be reformulated
as follows: The triple (y, Z, V) satisfies (2.35) if and only if

(
AAT) (y) = 1

σ b− A
(

Z− C + 1
σ X
)

Z = W (y)+

V = −σW (y)− .

Thus, while keeping Z constant, y can be obtained from the linear system
(2.35), and while keeping y constant, Z can be obtained from (2.36), so the inner
minimization can be calculated by alternately solving (2.35) for y and (2.36) for Z.

Finally, after the inner minimization is done, the update on X is given by
the standard method of multipliers update

X ← X + σ
(

AT (y) + Z− C
)
= σZ− σW (y) = −σW (y)− = V � 0. (2.37)

The method uses a sequence of tolerances
{

ε(k)
}
→ 0, ∑k ε(k) < ∞ for the

inner optimization, and a single tolerance ε for the outer optimization. It starts
with k = 0 and initializes X(0) = Z(0) = 0 � 0. The inner optimization solves
(2.35) for y(k), calculates W from (2.29), Z(k) from (2.36), and V(k) = −σW (y)−,
repeating until the inner optimization’s infeasibility is within tolerance for the
iteration

∥∥∥A
(

V(k)
)
− b
∥∥∥

F
≤ σε(k), then updating X as X(k+1) = V(k), increment-

12



ing k, and calculating whether the outer problem’s infeasibility is within tolerance∥∥∥AT
(

y(k)
)
+ Z(k) − C

∥∥∥
F
≤ ε, and starting the next iteration’s inner optimization

if not.

The stopping condition of the inner optimization k, with
(

y(k), Z(k)
)

cor-

responding to a fixed X(k) and σ, is the scaled primal infeasibility of V(k) as a new
value of X(k+1): ∥∥∥A

(
V(k)

)
− b
∥∥∥

F
≤ σε(k) (2.38)

and using

Z(k) = W
(

y(k)
)
+

V(k) = σ
(

AT
(

y(k)
)
+ Z(k) − C

)
+ X(k)

(2.39)

the condition can be rewritten as∥∥∥∥A
(

AT
(

y(k)
)
+ Z(k) − C

)
− 1

σ

(
A
(

X(k)
)
− b
)∥∥∥∥

F
≤ ε(k) (2.40)

to show the primal and dual linear components of the error.
The stopping condition of the outer optimization

∥∥∥AT
(

y(k)
)
+ Z(k) − C

∥∥∥
F
≤ ε (2.41)

is simply checking whether the dual linear infeasibility is sufficiently small.
Although the BPM paper shows that the method eventually converges for

any choice of σ > 0 [14], choice of σ affects the speed at which primal and dual
feasibility are reached, with large σ causing the inner problem to become increas-
ingly difficult while the outer problem of dual feasibility is reached more easily,
and small σ causing primal feasibility in the inner problem to be reached easily
while the outer problem of dual feasibility is difficult and slow.

For the computations, BPM uses the vectorization vecC : Sn → Rn̂, n̂ = n2

defined earlier. To speed up computation of y(k) from (2.35)

AATy(k) =
1
σ

b− A
(

z(k) − c +
1
σ

x(k)
)

, (2.42)

the sparse Cholesky factorization of AAT = LLT (where L is lower-triangular
with all positive diagonal entries, which exists because AAT ∈ Sm

++ and every

13



symmetric positive definite matrices has a Cholesky factorization [6, p118]) is pre-
computed once at the beginning, and then in each iteration the system is solved
for y(k) with simple vector and scalar arithmetic, matrix-vector multiplication,
and back substitution. Additionally, a full spectral decomposition of W

(
y(k)
)

is
performed in each inner iteration, which is generally the most computationally
expensive step.

Algorithm 2.1 Boundary Point Method (From Table 2 of [14])

Select σ > 0,
{

ε(k)
}
→ 0, ε > 0.

Set k = 0, x(k) = 0 ∈ vecC (Sn), Z(k) = 0.
Precompute sparse Cholesky factorization of AAT.

repeat until δouter < ε:
(Outer iteration for k = 0, 1, . . . )

repeat until δinner < σε(k):
(Inner iteration with X(k) and σ held constant)

Solve for y(k) using Cholesky factorization:

AAT
(

y(k)
)
= 1

σ b− A
(

Z(k) − C + 1
σ X(k)

)
W (y) = −AT

(
y(k)
)
+ C− 1

σ X(k)

Z(k) = W+

V(k) = −σW−
δinner =

∥∥∥A
(

V(k)
)
− b
∥∥∥

2
end

X(k+1) = V(k)

k = k + 1
δouter =

∥∥∥AT
(

y(k)
)
+ Z(k) − C

∥∥∥
F

end

2.1.2 Boundary Point Method Generalization (MPRW)

In 2009, Malick, Povh, Rendl, and Wiegele [9] developed a generalization
of BPM, an algorithm which uses two equivalent quadratic regularizations, one
for the primal problem and one for the dual problem, to generate a sequence of
primal and dual solutions that converge to a feasible approximate solution for a
given tolerance. For convenience, this algorithm is sometimes refered to by the
authors’ initials, as MPRW. The regularizations improve the numerical stability
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of the solutions against perturbations in the problem. For the primal problem,
they apply a Moreau-Yosida regularization to replace the primal problem (2.1)
with the equivalent problem

min 〈C, X〉+ 1
2σ ‖X−Y‖2

2

A (X) = b

X � 0

Y ∈ Sn

(2.43)

introducing a parameter σ > 0. Then, they separate this into two steps,

Fσ (Y) =

min 〈C, X〉+ 1
2σ ‖X−Y‖2

2

A (X) = b

X � 0

(2.44)

as an intermediate step, and the problem solved at

min
Y∈Sn

Fσ (Y) =

min 〈C, X〉+ 1
2σ ‖X−Y‖2

2

A (X) = b

X � 0

Y ∈ Sn

=

min 〈C, X〉

A (X) = b

X � 0.

(2.45)

The X that minimizes Fσ (Y) is called the proximal point of Y with parameter σ,
denoted

Pσ (Y) =

argminX 〈C, X〉+ 1
2σ ‖X−Y‖2

2

X � 0

A (X) = b.

(2.46)
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Similarly, for the dual problem (2.4), as in the BPM, they take the augmented
Lagrangian of the dual problem

Lσ (y, Z; Y) = bTy−
〈

Y, AT (y) + Z− C
〉
− σ

2

∥∥∥AT (y) + Z− C
∥∥∥2

2
(2.47)

with parameter σ > 0, which is the usual Lagrangian for the equivalent problem

max bTy− σ
2

∥∥AT (y) + Z− C
∥∥2

2

C− AT (y) = Z

Z � 0.

(2.48)

Then, the dual of this is

Θσ (Y) =
maxLσ (y, Z; Y)

Z � 0.
(2.49)

(Note that solving the augmented Lagrangian of the dual problem is exactly the
approach used in the boundary point method.)

The two quadratic regularizations are equivalent processes on either the
primal or dual problem, and using the same scaling factor σ, Θσ (Y) = Fσ (Y).
Then, a solution to the problem can be found by minimizing Fσ or Θσ, where
Fσ (Y) or Θσ (Y) is also an optimization problem. If strong duality holds, then an
optimal solution (X?, y?, Z?) to Fσ (Y) and Θσ (Y) also satisfies

X? = σ
(

1
σY + AT (y?)− C

)
+

Z? = −
(

1
σY + AT (y?)− C

)
−(

AAT) (y?) + A (Z? − C) = 1
σ (b− A (Y))

(2.50)

[9, 14]. (Note that the theoretical derivation in the paper of the algorithm would
have led to an algorithm much like the BPM, with X(k) fixed while alternately
minimizing over y(k+1) and Z(k+1) until the inner minimization was solved within
tolerance, followed by a single update to X(k), but with the new inclusion of nu-
merical adjustments, scaling to normalize the objective matrix and vector, and
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dynamic reduction of the scaling factor if the relative dual error becomes larger
than the relative primal error. However, in their experiments they determined
that the overall performance was better if they performed exactly one iteration
of the inner optimization, meaning that each of the dual variables was updated
once before the primal variable was updated, rather than approximately solving
the inner problem more closely first, giving an overall approach identical to that
of SDPAD.)

Algorithm 2.2 Boundary Point Method Generalization (From Algorithm

5.1 of [9])

Scale problem so ‖C‖2 = ‖b‖2 = 1 if possible.

Precompute sparse Cholesky factorization of AAT.

Choose σ ∈ [0.1, 10], Y ∈ Sn, and ε > 0.
Set Z = 0.
repeat until δ < ε:

Solve for and update y using Cholesky factorization:

AAT (y) = A (C− Z) + 1
σ (b− A (Y))

Z ← −
(

1
σY + AT (y)− C

)
−

X ← σ
(

1
σY + AT (y)− C

)
+

Y ← X
δp ← ‖A(X)−b‖2

1+‖b‖∞
, δd ←

‖C−Z−AT(y)‖2
1+‖C‖∞

, δ← max
{

δp, δd
}

Every 10 iterations, if δp ≤ δd:

update σ← 0.9σ

end

Unscale solution.

2.1.3 Alternating Direction SDP Solver (SDPAD)

In 2009, Wen, Golfarb, and Yin developed an augmented Lagrangian alter-
nating direction method for solving SDPs, SDPAD [19]. SDPAD uses the problem
format

min 〈C, X〉

(P) A (X) = b

X � 0

,

min −bTy

(D) AT (y) +Z = C

Z � 0

(2.51)
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which has (P) exactly the same as the standard definition of the primal prob-
lem (2.1), and (D) which can be rewritten as the standard definition of the dual
problem (2.4) by the equivalence of min −bTy and max bTy.

Much like the boundary point method and its generalization [14, 9], they
calculate the augmented Lagrangian for the dual problem (2.4),

Lσ (X, y, Z) = −bTy +
〈

X, AT (y) + Z− C
〉
+

σ

2

∥∥∥AT (y) + Z− C
∥∥∥2

F
, (2.52)

for X ∈ Sn, σ > 0, identical to the augmented Lagrangian calculated there. Start-
ing with X(0) = 0 ∈ Sn, the augmented Lagrangian method solves on the kth
iteration:

min

y ∈ Rm

Z ∈ Sn

Lσ

(
X(k), y, Z

)
Z � 0

, (2.53)

for y(k+1) and Z(k+1), and then updates the primal variable X(k+1) with

X(k+1) = X(k) + σ
(

AT
(

y(k+1)
)
+ Z(k+1) − C

)
. (2.54)

Because the joint minimization of Lσ

(
X(k), y, Z

)
with respect to both y and Z

can be very slow and expensive, it is faster to instead approximate by minimiz-
ing with respect to first one and then the other. Then, the kth iteration of the
augmented Lagrangian method is replaced with the steps:

y(k+1) = argmin
y∈Rm

Lσ

(
X(k), y, Z(k)

)
, (2.55)

Z(k+1) =
argmin

Z∈Sn
Lσ

(
X(k), y(k+1), Z

)
Z � 0

, (2.56)

X(k+1) = X(k) + σ
(

AT
(

y(k+1)
)
+ Z(k+1) − C

)
, (2.57)
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in any order. The first-order optimality conditions for (2.55) are

∇yLσ

(
X(k), y(k+1), Z(k)

)
= A

(
X(k)

)
− b + σA

(
AT
(

y(k+1)
)
+ Z(k) − C

)
= 0.
(2.58)

Because
(

AAT) is invertible, from (2.21), we obtain

y (X, Z) = −
(

AAT)−1
(

1
σ (A (X)− b) + A (Z− C)

)
y(k+1) = y

(
X(k), Z(k)

) (2.59)

The problem (2.56) can be rewritten as the projection

min
Z∈Sn

∥∥∥Z−V(k+1)
∥∥∥2

F

Z � 0
, (2.60)

with
V (X, Z) = C− AT (y (X, Z))− 1

σ X

V(k+1) = V
(

X(k), Z(k)
)

,
(2.61)

Letting V = V+ + V− be the spectral decomposition of V gives

Z(k+1) = V(k+1)
+ . (2.62)

Then, (2.57) can be solved as

X(k+1) = X(k)+σ
(

AT
(

y(k+1)
)
+ Z(k+1) − C

)
= σ

(
Z(k+1) −V(k+1)

)
= σV(k+1)

− .
(2.63)

This X(k+1) is also the optimal solution of the projection

min
X∈Sn

∥∥∥ 1
σ X + V(k+1)

∥∥∥2

F

X � 0.
(2.64)

Then, the alternating direction augmented Lagrangian method involves selecting
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initial X(0) � 0, Z(0) � 0, and then calculating y(k+1) from (2.59), V(k+1) from
(2.61), spectrally decomposing it to calculate Z(k+1) from (2.62), and calculating
X(k+1) from (2.63), until a stopping condition is met. (Note that this is closely
related to the BPM, and is exactly the same as the iterative update of primal and
dual variables in its generalization MPRW as implemented.)

They proved that this algorithm converges eventually to an optimal so-
lution for any penalty parameter σ > 0. To improve the algorithm’s numerical
performance, they tune σ as the algorithm progresses, to try to achieve and main-
tain ∥∥∥A

(
X(k+1)

)
− b
∥∥∥

2
≈
∥∥∥C− AT

(
y(k+1)

)
− Z(k+1)

∥∥∥
F

. (2.65)

From (2.63), (2.59), (2.61), and (2.21),

A
(

X(k+1)
)
− b = σ

(
Z(k+1) −V(k+1)

)
− b

= σA
(

Z(k+1) − C
)
+ A

(
X(k)

)
− b +

(
b− A

(
X(k)

))
+ σ

(
C− Z(k)

)
= σA

(
Z(k+1) − Z(k)

)
,

(2.66)

and (2.63) can be rearranged to give

C− AT
(

y(k+1)
)
− Z(k+1) =

1
σ

(
X(k) − X(k+1)

)
, (2.67)

so changes to the primal and dual infeasibilities are proportional to σ and 1
σ , re-

spectively. Then, to keep them of approximately the same size, σ is decreased
(increased) by a factor of γ ( 1

γ ) if primal infeasibility is less than (greater than)
a chosen multiple of the dual infeasibility for a chosen number of iterations in
a row, with the additional restrictions that 0 < γ < 1 and σ remains within a
chosen interval

[
σmin, 1

σ max

]
, where 0 < σmin < σmax < ∞. This thesis’s im-

plementation of the algorithm checks whether either relative infeasibility is less
than half of the other for 50 consecutive iterations, and initializes σ = 0.2 with
σmin = 10−4, σmax = 104, and γ = 0.99.

The algorithm stops when the relative primal and dual errors are below a
chosen tolerance, or it runs out of CPU time or iterations.

Note: the paper uses primal error relative to 1 + ‖b‖2, dual error relative
to 1 + ‖C‖1, while the code implemented and tested uses DIMACS errors with
1 + ‖b‖∞, 1 + ‖c‖∞, does not test for and stop with stagnation in dual gap, and
instead, if primal and dual relative errors are within tolerance and the primal-
dual gap error is not, it shifts the primal solution to become worse, along the
direction away from the projection of vecC (C) onto the null space of A, until the
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gap decreases and then returns the result instead.

Algorithm 2.3 Alternating-Direction Augmented Lagrangian Method [19]

Precompute sparse Cholesky factorization of AAT.

Choose X, Z � 0, σmin, σmax ∈ (0, ∞),
σ ∈ [σmin, σmax], γ ∈ (0, 1), tolerance ε > 0.
repeat until δ < ε:

Solve for and update y using Cholesky factorization:

AAT (y) = −
(

1
σ (A (X)− b) + A (Z− C)

)
V ← C− AT (y)− 1

σ X
Z ← V+

X ← −σV−
δp ← ‖A(X)−b‖2

1+‖b‖∞
, δd ←

‖C−Z−AT(y)‖2
1+‖C‖∞

, δ← max
{

δp, δd
}

If 1
2 δp > δd for 50 consecutive iterations:

σ← max (σmin, γσ)

If δp < 1
2 δd for 50 consecutive iterations:

σ← min
(

σmax, 1
γ σ
)

end

If
〈C,X〉−bTy

1+|〈C,X〉|+|bTy| > ε:

move X to improve dual gap, maintain
‖A(X)−b‖2

1+‖b‖∞
< ε

2.1.4 Splitting Conic Solver (SCS)

In 2016, O’Donoghue, Chu, Parikh, and Boyd [12] developed a first order
solver, Splitting Conic Solver (SCS), for large conic programming problems in-
cluding SDPs, which uses the alternating direction method of multipliers to solve
a self-dual homogeneous embedding of the problem. SCS uses the vectorization
vecS : Sn → Rn̂, n̂ = n(n+1)

2 of symmetric matrices, defined earlier.
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SCS uses the problem format:

min cTx

(P) Ax + s = b

s ∈ vecS (S
n
+)

,

max −bTy

(D) −ATy +r = c

y ∈ vecS (S
n
+)

r ∈ {0}m

(2.68)

To convert the SCS variables to the standard variable definitions, substitute ASCS=AT,
bSCS = c = vecS (C), cSCS = −b, ySCS = x = vecS (X), xSCS = y, sSCS = z = vecS (Z),
(P)SCS = (D), and (D)SCS = (P):

max bTy

(D) ATy + z = c

z � 0

,

min cTx

(P) Ax −r = b

x ∈ vecS (S
n
+)

r ∈ {0}m

(2.69)

Although r is a new variable not in the standard notation, it must be r = 0 ∈ Rm

for a feasible solution, so it does not change the problem:

min cTx

(P) Ax −r = b

x ∈ vec (Sn
+)

r ∈ {0}m

⇔

min cTx

(P) Ax = b

x ∈ vec (Sn
+)

(2.70)

If strong duality holds, then by the theorem of strong alternatives [6, p260],
exactly one of the pair

D =
{
(y, z) : ATy + z = c, z ∈ vecS (S

n
+)
}

(2.71)

P =
{

x : Ax = 0, x ∈ vecS (S
n
+) , cTx < 0

}
(2.72)
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is empty, where D encodes dual feasibility and P encodes dual unboundedness,
so ∃x ∈ P ⇒ D = ∅ means that the dual problem is infeasible and x is a cer-
tificate of dual infeasibility. Similarly, also by the theorem of strong alternatives,
exactly one of the pair

D̃ =
{

y : −ATy ∈ vecS (S
n
+) ,−bTy < 0

}
(2.73)

P̃ = {x : Ax = b, x ∈ vecS (S
n
+)} (2.74)

is empty, so any y ∈ D̃ is a certificate of primal infeasibility [12].
Homogeneous Self-Dual embedding: Instead of having a separate primal

and dual problem, SCS combines the primal-dual pair into a single feasibility
problem, by embedding the KKT conditions into a system of equations and in-
clusions that solutions to (P) and (D) must jointly satisfy:

r

z

0

 =


0 A

−AT 0

−bT cT


 y

x

+


−b

c

0

 (2.75)

and (x, r, y, z) ∈ vecS (S
n
+)× {0}

m ×Rm × vecS (S
n
+). Any (x, r, y, z) satis-

fying this embedding is primal-dual optimal, because it is equivalent to Ax− b =
r = 0 ∈ Rm ⇔ Ax = b, c− ATy = z ⇔ ATy + z = c, −bTy + cTx = 0, but if ei-
ther (P) or (D) is infeasible, then the embedding has no solution, and there is no
valid (x, r, y, z) ∈ vecS (S

n
+)× {0}

m ×Rm × vecS (S
n
+). However, this embedding

does not give a certificate of infeasibility, to show that there is no solution.
A modified version of the homogeneous self-dual embedding:




r

z

κ

 =


0 A −b

−AT 0 c

bT −cT 0




y

x

τ


(y, z, r, x, τ, κ) ∈ Rm × vecS (S

n
+)× {0}

m × vecS (S
n
+)×R+ ×R+

(2.76)

introduces new nonnegative complementary variables, κ and τ, so that at most
one of the two is nonzero. 〈(y, x, τ) , (r, z, κ)〉 = 0, yTr ≥ 0, xTz ≥ 0, and τκ ≥ 0,
by the definition of dual cones. For a solution (y, z, r, x, τ, κ) to this modified
embedding, τ 6= 0 is a scaling factor that can be used to recover solutions to the
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initial primal and dual problems, or κ 6= 0 can be used to recover a certificate
of primal or dual infeasibility, which, if it exists, proves that the primal or dual
problem is infeasible, respectively. This is because the system (2.76) is equivalent
to 

 r

z

 =

 0 A

−AT 0


 y

x

+

 −b

c

 τ

κ = bTy− cTx

(2.77)

i.e., scaling the added constants by τ and defining κ as the duality gap between
the primal and dual objective values. This means that κ > 0 is a positive duality
gap indicating that the current solution is not optimal, and τ > 0 is a scaling fac-
tor which can be used to convert a feasible solution to the system into an optimal
solution to the original problem.

There are three cases for any solution (y, z, r, x, τ, κ):

If τ > 0 and κ = 0, then (ŷ, x̂, ẑ) = 1
τ (y, x, z) satisfies the original KKT

conditions and is an optimal primal-dual solution.
If τ = 0 and κ > 0, then there is a duality gap and the original problem

is primal or dual infeasible. If τ = 0, κ > 0, and cTx < 0, then x̂ = x
cT x is a

certificate of primal infeasibility: Ax̂ = 0, x̂ ∈ vecS (S
n
+) , cT x̂ = −1 ⇒ x̂ ∈ P . If

τ = 0, κ > 0, and −bTy < 0, then ŷ = y
−bTy is a certificate of dual infeasibility (a

certificate of primal unboundedness, in this case): −AT (ŷ) ∈ vecS (S
n
+) , −bTy =

−1 ⇒ ŷ ∈ D̃. If τ = 0 and κ > 0 and both −bTy < 0 and cTx < 0, then the
problem is both primal and dual infeasible, but the assumption of strong duality
has been violated.

If τ = κ = 0 and cTx < 0 or −bTy < 0, then it can be used to derive
a certificate of primal or dual infeasibility, as in the previous case. Otherwise,
there is no information about the original problem; 0 is always a solution to the
embedding, and the solving algorithm must take steps to avoid it.

The embedding is homogeneous: if

(y, z, r, x, τ, κ) ∈ Rm × vecS (S
n
+)× {0}

m × vecS (S
n
+)×R+ ×R+ (2.78)

is a solution to the system, then

t (y, z, r, x, τ, κ) = (ty, tz, tr, tx, tτ, tκ) ∀t ≥ 0 (2.79)

is also a solution, yielding the same primal dual solution or infeasibility certifi-
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cates. To simplify, let

u =


y

x

τ

 , v =


r

z

κ

 , Q =


0 A −b

−AT 0 c

bT −cT 0

 (2.80)

and C = Rm × vecS (S
n
+) ×R+, with dual cone C∗ = {0}m × vecS (S

n
+) ×R+.

Then, searching for a solution to the modified homogeneous self-dual embedding
can be expressed as finding (u, v) ,3 v = Qu, (u, v) ∈ C×C∗. (u, v) = 0 is always
a valid solution to this, but it is not useful for the original problem, so we want to
find a nonzero solution to this system. It can straightforwardly be shown that this
problem is self-dual, from the Lagrangian

L (u, v, ν, λ, µ) = νT (Qu− v)− λTu− µTv, (2.81)

with dual variables ν and λ ∈ C, µ ∈ C∗, using QT = −Q and ν = −µ to simplify
the problem to the original problem, but with (µ, λ) replacing (u, v).

The feasibility method can be solved in multiple ways, but SCS uses the al-
ternating direction method of multipliers (ADMM), a splitting method that solves
convex problems of the form

min f (x) + g (z) , s.t. x = z (2.82)

with the (k + 1)th iterative step

x(k+1) = argminx

(
f (x) + ρ

2

∥∥∥x− z(k) − λ(k)
∥∥∥2

2

)
z(k+1) = argminz

(
g (z) + ρ

2

∥∥∥x(k+1) − z− λ(k)
∥∥∥2

2

)
λ(k+1) = λ(k) − x(k+1) + z(k+1)

(2.83)

where ρ > 0 is a step-size parameter and λ is the scaled dual variable associated
with constraint x = z, with arbitrary initial points z(0), λ(0), usually taken to be
0. This is the alternating direction method of multipliers because the augmented
Lagrangian is minimized with respect to x and z sequentially, rather than jointly
as in the method of multipliers. The residual between x and z, the primal objec-
tive value f

(
x(k)
)
+ g

(
z(k)
)

, and the dual variable λ(k) converge, if f and g are
closed, proper, and convex, and a saddle point exists [5].
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To apply ADMM to the embedding, the simplified self-dual homogeneous
embedding can be expressed as

min
(

IC×C∗ (u, v) + IQu=v (ũ, ṽ)
)

, s.t. (u, v) = (ũ, ṽ) (2.84)

where

IS (x) =


0 x ∈ S

+∞ x /∈ S
(2.85)

is the characteristic function for a set S. Then, direct substitution into the ADMM
format gives: (

ũ(k+1), ṽ(k+1)
)
= PQu=v

(
u(k) + λ(k), v(k) + µ(k)

)
u(k+1) = PC

(
ũ(k+1) − λ(k)

)
v(k+1) = PC∗

(
ṽ(k+1) − µ(k)

)
λ(k+1) = λ(k) − ũ(k+1) + u(k+1)

µ(k+1) = µ(k) − ṽ(k+1) + v(k+1)

(2.86)

where PS (x) denotes Euclidean projection of x onto set S, and λ and µ are the
dual variables for the equality constraints on u and v, respectively.

If the variables are initialized as

λ(0) = v(0), µ(0) = u(0) (2.87)

then
λ(k) = v(k), µ(k) = u(k) (2.88)

for all subsequent iterations, allowing the simplification of the system and the
elimination of the dual variables, using

Q = {(u, v) : Qu = v} = Q⊥ (2.89)

because Q is skew-symmetric, so using z = PQ (z) + PQ⊥ (z) , ∀z :

(
ṽ(k+1), ũ(k+1)

)
= PQ⊥

(
u(k) + v(k), u(k) + v(k)

)
(2.90)
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which gives
u(k) + v(k) = ũ(k+1) + ṽ(k+1). (2.91)

The final algorithm becomes:

ũ(k+1) = (I + Q)−1
(

u(k) + v(k)
)

u(k+1) = PC

(
ũ(k+1) − v(k)

)
v(k+1) = v(k) − ũ(k+1) + u(k+1)

(2.92)

where I + Q is guaranteed to be invertible, because Q is skew-symmetric. The
matrix inversion can be avoided by instead solving for ũ(k+1) as a linear system
of equations:

ũ(k+1) = (I + Q)−1
(

u(k) + v(k)
)
⇔ (I + Q) ũ(k+1) = u(k) + v(k) (2.93)

(I + Q) ũ(k+1) =


Im A −b

−AT In c

bT −cT 1




ũy

ũx

ũτ


(k+1)

=


uy

ux

uτ


(k)

+


vr

vz

vκ


(k)

.

(2.94)
The optimality conditions are u(k) ∈ C, v(k) ∈ C∗, u(k)Tv(k) = 0, and Qu(k) −
v(k) = 0. The first three conditions are true at every iteration, and the final condi-
tion holds asymptotically, as k→ ∞.

The projectionPC (w) is the Euclidean projection onto C = Rm×vecS (S
n
+)×

R+, so

PC




wy

wx

wτ


 =


PRm

(
wy
)

PvecS(Sn
+)

(wx)

PR+ (wτ)

 =


wy

wx+

wτ+

 (2.95)

where wx = wx+ + wx− is the vecS vectorization of spectral decomposition of
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vecS
−1 (wx) and wτ+ =


0, wτ < 0

wτ otherwise
.

Let (u?, v?) be a nonzero solution to the system. Because it is a nonzero
solution, either u?

τ > 0 or v?κ > 0, so it can be used to derive an optimal solution
or a certificate of infeasibility. If an initial point

(
u(0), v(0)

)
is chosen with u(0)

τ = 1

and v(0)κ = 1, with all other entries zero, then

(u?, v?)T
(

u(0), v(0)
)
> 0. (2.96)

Let φ : C× C∗ → C× C∗ denote the mapping from one iteration of the algorithm
to the next, (

u(k+1), v(k+1)
)
= φ

(
u(k), v(k)

)
(2.97)

which is nonexpansive

‖φ (u, v)− φ (û, v̂)‖2 ≤ ‖(u, v)− (û, v̂)‖2 , ∀ (u, v) , (û, v̂) (2.98)

and (u?, v?) is a fixed point:

φ (u?, v?) = (u?, v?) . (2.99)

Choosing initial
(

u(0), v(0)
)

such that u(0)
y = v(0)r = 0, u(0)

x = v(0)z = 0, and

u(0)
τ = v(0)κ = 1 then forces the algorithm toward nonzero solutions.

To improve convergence, the algorithm adds over-relaxation to the u and v
updates above, by replacing all occurrences of ũ(k+1) with αũ(k+1) + (1− α) u(k),
with some relaxation parameter α ∈ (1, 2), usually α ∈ [1.5, 1.8] [5]. Also, to
reduce computational costs, rather than solving the linear system of equations
(I + Q) ũ(k+1) =

(
u(k) + v(k)

)
for ũ(k+1), it uses the approximate projection of

finding any ũ(k+1) that satisfies

∥∥∥(I + Q) ũ(k+1) −
(

u(k) + v(k)
)∥∥∥

2
≤ ζ(k) (2.100)

where ζ(k) > 0 and Σkζ(k) < ∞, bounding the norm of the residual between
(I + Q) ũ(k+1) and

(
u(k) + v(k)

)
rather than forcing it equal to 0.
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Solving the linear system of equations (I + Q) ũ = w for ũ with some w is
performed in each iteration:


Im A −b

−AT In̂ c

bT −cT 1




ũy

ũx

ũτ

 =


wy

wx

wτ

 . (2.101)

To simplify notation, define

M =

 Im A

−AT In̂

 , h =

 −b

c

 , (2.102)

so

I + Q =

 M h

−hT 1

 . (2.103)

Because M + hhT is the Schur complement of the lower right block 1 in I + Q,

 ũy

ũx

 =
(

M + hhT
)−1


 wy

wx

− wτh

 (2.104)

so applying the Sherman-Morrison-Woodbury formula [6, p650, p678] to
(

M + hhT)−1

gives

(
M + hhT)−1

= M−1 −M−1h
(

I1 + hT M−1h
)−1 hT M−1

= M−1 − M−1hhT M−1

1+hT M−1h .
(2.105)

Substituting this into the previous equation, and using hT M−1 = −
(

M−1h
)T
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because M is skew-symmetric, gives:

 ũy

ũx

 =
(

M−1 − M−1hhT M−1

1+hT M−1h

)
 wy

wx

− wτh


= M−1

 wy

wx

− wτ

(
M−1h

)
+

(M−1h)(M−1h)
T

1+hT(M−1h)


 wy

wx

− wτh


(2.106)

ũτ = wτ − bTũy + cTũx (2.107)

Then, in the first iteration, M−1h is precomputed, and the bulk of subsequent
iterations’ effort is in computing

M−1

 wy

wx

 (2.108)

and simple vector operations with precomputed quantities. Solving linear equa-
tions of the form  Im −A

−AT −In̂


 zy

−zx

 =

 wy

wx

 (2.109)

for z is performed every iteration, either by solving a sparse permuted LDLT

factorization or indirectly with an iterative conjugate gradient method. The in-
direct conjugate gradient method approximately iteratively solves the system by
rewriting it as

zx =
(

Im + AAT
)−1 (

wy − Awx
)

, zx = wx + ATzy (2.110)

by elimination, which is then solved with the conjugate gradient method, which
iteratively approximately solves for z by parallelly multiplying by A and ATin
each iteration, avoiding actually constructing the AAT matrix, and halting when
the residual satisfies (2.100) for some appropriate sequence ζ(k).

However, the indirect conjugate gradient method is still generally slower
than directly solving the system, and so was not used. Instead, the direct method,
solving the system with a sparse permuted LDLT factorization was used. This
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involves factoring  Im −A

−AT −In̂

 = PLDLTP (2.111)

where P is a permutation matrix, L is a lower triangular matrix with positive
diagonal elements, and D is a block diagonal with nonsingular 1× 1 and 2× 2
blocks. The factorization takes 1

3 (m + n̂)3 floating point operations without ex-
ploiting the structure, but there are methods for improving the factorization effi-
ciency for sparse A, using the sparsity pattern and nonzero values. The factoriza-
tion only needs to be computed once, and then each iteration takes O

(
(m + n̂)2

)
flops to solve for z by permutation, scaling, and forward and backward substitu-
tion. This allows each iteration’s AAT linear system of equations to be solved in
at most O

(
(m + n̂)2

)
time [6, p672].

SCS uses ADMM, described above. A variant program written by the
same group, SuperSCS, instead uses an algorithm called SuperMann to solve a
different Douglas-Rachford Splitting of the problem [16]. SuperSCS generally
performs worse than SCS on the limited set of problems tested in this thesis, and
is not used here.
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Algorithm 2.4 SCS [12]

Set k = 0, x(0) = z(0) = 0 ∈ vecS (S
n
+),

y(0) = r(0) = 0 ∈ Rm,

τ(0) = κ(0) = 1.
Choose tolerance ε ≥ 0.
Precompute sparse permuted LDLT factorization of M.

Precompute M−1
[
−b
c

]
using LDLT factorization.

repeat until τ(k) ≤ ε, δ ≤ ε:

Solve for

 ỹ
x̃
τ̃

 using M−1
[
−b
c

]
and LDLT factorization:

 Im A −b
−AT In̂ c

bT −cT 1

 ỹ
x̃
τ̃

 =

 r
z
κ

(k)

 y
x
τ

(k+1)

=

 ỹ
x̃+

max (τ̃, 0)


 r

z
κ

(k+1)

=

 r
z
κ

(k)

−

 0
x̃−

min (τ̃, 0)


δ = max

(
‖ATy(k)+z(k)−c‖2

1+‖c‖2
, ‖Ax(k)−b‖2

1+‖b‖2
, cT x(k)−bTy(k)

1+|cT x(k)|+|bTy(k)|

)
k = k + 1

end
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CHAPTER 3

RESULTS

3.1 DIMACS Error Measures

This thesis uses six relative error measures for SDP solutions, five of which
were defined by The Center for Discrete Mathematics and Theoretical Computer
Science (DIMACS) for its Seventh Implementation Challenge on Semidefinite and
Related Optimization Problems [13], whose proceedings are archived online at
[1], with names of the errors standardized and a sixth measure added in Mittel-
mann’s benchmarking work [10]. These error measures describe how infeasible
a solution is relative to its constraints and how suboptimal a solution is relative
to its objective values. It is important to investigate all error measures, because
solvers might sacrifice one measure of feasibility or optimality to improve perfor-
mance in others.

The first and second error measures concern primal infeasibility. The first
error measure is primal infeasibility for the affine equality constraint A (X) =
b, with respect to the greatest absolute element of the vector b that defines its
boundary:

err1 =
‖A (X)− b‖2

1 + ‖b‖∞
. (3.1)

The second error measure is primal infeasibility for the conic inequality con-
straint X � 0, i.e. λmin (X) ≥ 0, where λmin denotes the least eigenvalue of a
matrix. (Note: if X is broken into linear component X` and multiple diagonal
blocks Xs, this is the minimum of the minimum element of X` and the minimum
eigenvalues of each positive semidefinite sub-matrix of Xs). Then, the second er-
ror measure is the magnitude of the most negative eigenvalue of X with respect
to the size of the greatest absolute element of b:

err2 = max
{

0,
−λmin (X)

1 + ‖b‖∞

}
. (3.2)
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The third and fourth error measures concern dual infeasibility. The third
error measure is dual infeasibility with respect for the affine equality constraint
AT (y) + Z = C , with respect to the greatest absolute element of the matrix C
that defines its boundary

err3 =

∥∥AT (y) + Z− C
∥∥

2
1 + ‖c‖∞

. (3.3)

The fourth error measure is dual infeasibility with respect to the conic inequality
constraint Z � 0, i.e. λmin (Z) ≥ 0, with respect to the size of the greatest absolute
element of C:

err4 = max
{

0,
−λmin (Z)
1 + ‖c‖∞

}
. (3.4)

The fifth and sixth error measures concern optimality. If strong duality
holds, then for a feasible and optimal solution, the duality gap should be 0 and
the complementary slackness condition should hold. A negative duality gap gen-
erally indicates that there has been some infeasibility in the solution. It can be
taken as zero if negative, with the infeasibility instead described by earlier er-
ror measures, or left negative to communicate this. The fifth error measure is
the duality gap between primal and dual objective values with respect to their
magnitudes:

err5 =
〈C, X〉 − bTy

1 + |〈C, X〉|+ |bTy| (3.5)

The sixth error measure, defined only if the second and fourth errors are 0, i.e. X
and Z are positive semidefinite, is the distance from the complementary slackness
optimality condition with respect to the magnitudes of the objective values:

err6 =
〈X, Z〉

1 + |〈C, X〉|+ |bTy| . (3.6)

For feasible solutions, err5 = err6, because feasibility conditions give 〈X, Z〉 =
〈C, X〉 − bTy. This can be shown using the feasibility conditions A (X) = b and
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AT (y) + Z = C :

〈X, Z〉 = 〈X, Z + C− C〉

= 〈X, C〉+ 〈X, Z− C〉

= 〈C, X〉+
〈

X,−AT (y)
〉

= 〈C, X〉 − XT AT (y)

= 〈C, X〉 − 〈A (X) , y〉

= 〈C, X〉 − bTy.

(3.7)

Error Equation

err1
‖A(X)−b‖2

1+‖b‖∞

err2 max
{

0, −λmin(X)
1+‖b‖∞

}
err3

‖AT(y)+Z−C‖2
1+‖C‖∞

err4 max
{

0, −λmin(Z)
1+‖C‖∞

}
err5

〈C,X〉−bTy
1+|〈C,X〉|+|bTy|

err6
〈X,Z〉

1+|〈C,X〉|+|bTy|

Table 3.1: DIMACS Error Measures

3.2 Benchmarking

No known solver works well on all valid problems. The performance of
solvers can be compared either to a standard or to whichever solver in a set per-
forms best, depending on what is available, in a process known as benchmarking.
The accuracy, speed, and robustness of solvers can be compared. Usually, there
is a known acceptable error for a solution, which separates usable solutions from
unusable solutions, so error measures of a solver on a given problem define its
accuracy. Some solvers do not run at all on some problems, for example if the
problem or operations are too large to fit in memory, or the solver crashes. It is
also common to treat an unacceptably inaccurate solution as a failure. A solver’s
robustness is its ability to solve a variety of problems. Of solvers that work ac-
ceptably well on a problem, it is preferable to use a solver that works quickly,
so speed is measured as the number of CPU seconds a solver takes to run on a
problem. This will generally roughly reflect the computational complexity of the
solver’s algorithm on the problem. Most programs parallelize some independent
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steps of matrix and vector multiplication and addition, and the objective time
taken might vary significantly depending on available computing resources, so
CPU seconds spent by a solver on a problem is a better measure of the amount of
computational work it performs than objective time.

3.2.1 Benchmarking through Shifted Geometric Means

Mittelmann’s work in benchmarking SDP solvers stored the CPU runtime
for each program on each problem in a library of test problems, and marked
whether it crashed or was unacceptably or significantly inaccurate on any of the
six error DIMACS error measures, defined above.

For comparison purposes, it is helpful to have a number for each solver de-
scribing its overall performance. To avoid rewarding quick but unacceptably in-
accurate solutions, failures, or crashes, these are treated as taking a large amount
of time.

The geometric mean is the nth root of the product of the n values:

(
n

∏
i=1

vi

)1/n

= exp

(
1
n

n

∑
i=1

ln (vi)

)
. (3.8)

This is preferable to the arithmetic mean

1
n

n

∑
i=1

vi (3.9)

for positive values which are likely to be significantly different in scale, because
it is less sensitive to large outliers. However, this is still susceptible to exces-
sive influence by small outliers, and unfairly rewards the addition of particularly
quickly solved problems. To reduce the effect of small outliers, a shift s ≥ 0 is
added to each of the values, as (vi + s), and subtracted from the final result. To
prevent the mean from being decreased by a small new value, beyond the effect of
increasing the number of values, each term is replaced with the maximum of the
shifted value and 1, max (1, vi + s), so including a particularly small term is not
equivalent to multiplying by a small fraction. Then, the shifted geometric mean
used is

(
n

∏
i=1

max (1, vi + s)

)1/n

− s = exp

(
1
n

n

∑
i=1

ln (max (1, vi + s))

)
− s. (3.10)
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Mittelmann’s work generally uses the shift s = 10 CPU seconds in his bench-
marking work [10], which is also used in this thesis.

3.2.2 Performance Profiles

Another way to compare the performance of solvers on a set of problems
is performance profiles. If each solver reports a statistic for each problem which is
better when smaller, such as a sum of error measures or runtimes, set to +∞ upon
failure, then the performance ratio for each solver on a problem is its reported
statistic divided by the best reported statistic on that problem, with problems no
solvers can solve not included. Then, the performance profile of a solver is the
graph on f ≥ 1 of the fraction of total problems for which its performance ratio
is ≤ f . It is common to overlay the performance profiles of all solvers tested in
a single plot, to compare them. However, although it usually makes clear which
solver solves the most problems for a desired range of f , the apparent ranking of
the worse solvers is misleading, and showing the best of the remaining solvers
requires recomputing the performance profiles while excluding the best solver
[8].

3.3 The Test Problems

The solvers were tested on two sets of benchmarking test problems, SD-
PLIB 1.2 library of SDP problems [3] and Mittelmann’s collection of sparse and
other SDP problems [11]. The SDPLIB set includes problems from truss topology
design, control and system theory, graph equipartitioning, control system engi-
neering, pregenerated random graph max cuts, graph max cuts, quadratic as-
signment problems, SDP relaxations of box constrained quadratic programming
problems from pregenerated random graphs, Lovasz numbers, Lovasz theta num-
bers from pregenerated random graphs, and truss topology design problems.
The infeasible problems were not included in the tests.

Mittelmann’s library of problems are taken from maximal and maximum
stable set problems, global polynomial minimization, copositivity determination
for high-dimensional Hilbert matrices, SDP relaxations minibisection and max-
cut problems for Gset graphs, efficient graph cuts for image segmentation, sum
of squares bounding and relaxation problems, generalized problem of moments
on polynomial systems, Rosenbrock functions, sensor locations, sparse exam-
ple problems from various lectures, constrained polynomial problems, and other
sources, including the DIMACS Seventh Implementation Challenge. Of Mittel-
mann’s problems, diamond_patch, G60_mb, theta102, and theta123 were not in-
cluded, nor were the prob* problems, which were too large to read as files rather
than generate with separate MATLAB programs. Generally in both libraries,
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problems with the same name followed by a larger number are structurally sim-
ilar but larger or otherwise more difficult.

3.4 Results

The solvers were run on all problems, and were killed or halted after an
hour. (All code except SCS was possible to modify to accept a maximum CPU
time rather than a maximum number of iterations, but SCS could only be killed
and could not save its status on exit.)

Of the SDPLIB problems, all solvers failed to solve control3 through con-
trol11 of the eleven control* family control theory problems, maxG32, maxG55,
and maxG60 of the five maxG* family max cut problems, both qpG11 and qpG51
of the qp* family problems from relaxations of quadratic programming, and thetaG51,
the larger of the two thetaG* family theta number problems. Of the Mittelmann
Library problems, all solvers failed to solve 1zc.1024, the last of the four 1*1024
family stable set problems, all of buck3 through buck5 of the buck* family prob-
lems all six G*mb and G*mc family problems from minbisection and maxcut
problems, inc_1200, the larger of the two inc* family problems, mater:4 through
mater:6, the largest three of the four mater* family problems, both neosfbr* family
problems, neu2g, a middling-size problem from the seven neu* family problems,
sensor_1000, the larger of the two sensor* family problems, all shmup3 through
shmup5 of the three shmup* family problems, trto5, the largest of the three trto*
family problems, and all of vibra3 through vibra5 of the vibra* family problems.
Additionally, there were seven problems in the Mittelmann Library not from fam-
ilies of related problems that no solvers could solve in time: biggs, checker_1.5,
foot, hand, ice_2.0, p_auss2_3.0, rendl1_2000_1e:6, swissroll, and tiger_texture.

Additionally, BPM was the only solver to solve control1 or control2, its
generalization, MPRW, was the only solver to solve 1dc.1024, 1et.1024, or 1tc.1024,
SDPAD was the only solver to solve inc_600 or neu2c, and SCS was the only
solver to solve arch8, gpp500:1, gpp500:2, ss30, thetaG11, trto3, or trto4. MPRW
crashed due to memory issues on the Mittelmann Library problem neosfbr25, and
SDPAD crashed due to memory issues on neosfbr30e8, which were two particu-
larly large problems whose AAT systems were very dense and whose structures
were respectively a single 25× 25 block with 14376 constraint matrices and a sin-
gle 842 × 842 block with 25201 constraint matrices, which none of the solvers
were able to solve.

Over all, BPM was the least robust with 49 failures, followed by SCS with
29 failures, MPRW with 27 failures, and SDPAD, the most robust, with 19 failures,
of the 112 problems that were solved by any solver at all, not counting the 49
problems that were not. Of the problems it was able to solve, SCS was often the
fastest or not much slower than the fastest, and SDPAD overall outperformed
BPM and MPRW. SCS might have performed better and more robustly if there
were a way to modify it to accept a maximum time, or to cause it to use the same
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error measures as stopping criteria. The robustness of the solvers by total number
of problems solved with the requested accuracy, solved with accuracy issues, or
failed, is shown in Table 3.2.

Solver Solved within 10−3 Solved Between 10−3 and 10−2 Failed
BPM 8 55 98

MPRW 62 23 76
SDPAD 75 18 68

SCS 69 14 78

Table 3.2: Robustness of solvers in number of problems solved

The different solvers had different failure modes, for giving inaccurate so-
lutions or failing to solve problems. BPM was most likely to reach an error within
tolerance on its own error measures and terminate before reaching the requested
accuracy of 10−3 on DIMACS errors, although in these cases it often still stopped
with a worst error better than 10−2. MPRW generally solved to higher accuracy
than BPM, and was more robust to failure. MPRW generally either solved a prob-
lem acceptably accurately, solved it with low accuracy by the time it ran out of
time, or did not solve in time, although it incorrectly identified six problems as
solved and returned solutions with unacceptably large primal or dual infeasibil-
ity. On some problems, it did return fairly quickly with low accuracy, usually on
problems where it was not able to normalize with respect to b or C (on truss2,
truss6, and truss7 of SDPLIB), or where it reached a solution such that the dual-
ity gap, which it does not use as a stopping condition, was larger than tolerance
even though the relative infeasibilities were not (on cnhil8 and cnhil10 of Mittel-
mann’s Library). SDPAD was the most robust to failure but was the fastest solver
least often; it never exited before it was out of time unless it had a solution within
tolerance. It generally solved acceptably or with low accuracy most problems rea-
sonably quickly, and did not ever exit early with a low accuracy solution, which
was helped by its checking whether a solution with low infeasibility had a large
dual gap and adjusting to reduce it. SCS was the fastest solver most often by a
large margin, and often solved with the requested accuracy and exited quickly, or
exited early with a worst error between 10−2 and 10−3. It generally either solved
problems particularly quickly, exited early with low accuracy due to achieving er-
rors within tolerance on its own error measures, or was killed for running out of
time. However, SCS reported that the Mittelmann library problem Bex2_1_5 was
infeasible, which is incorrect; this was treated as a failure, but no other solvers
incorrectly reported problems as infeasible, because no other solvers were de-
signed to detect infeasibility to begin with, and it is a concerning error to make.
On many of the problems where it was killed for running out of time, it still had
very large relative errors by its own measures, on the order of 101 or larger, but
was generally still improving rather than oscillating between decreasing each of
two sets of error measures.

A performance profile of the solvers, shown in Figure 3.1, was calculated
for the problems that any solvers could solve. The problems no solvers could
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solve were included in the calculation of shifted geometric mean but not included
in the calculation of the performance profile. The performance profile is cal-
culated for each solver relative to the best only for problems where any solver
was able to solve it, because relative performance between failures is meaning-
less in this context, while the shifted geometric mean of time for each solver is
not calculated relative to the other solvers, and accounts for failures differently,
with a penalty of time. SCS was the fastest solver most often, by a large margin,
while BPM and MPRW were fastest an approximately equal but smaller number
of times, and SDPAD was fastest least often. However, eventually SDPAD over-
took SCS on the performance profile, by being more robust and able to solve the
most problems despite being slower.
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BPM (49 failures)
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SDPAD (19 failures)

SCS (29 failures)

Figure 3.1: A performance profile, showing the fraction of the 113 problems that
any solver was able to solve for which each solver’s time was within a given
fraction of the best solver’s time. The boundary point method BPM in green
is least robust, with 49 failures, and generally does not perform quickly, while
its generalization MPRW in blue, with 27 failures, is somewhat faster and more
robust. The alternating direction augmented Lagrangian method SDPAD in red
is the most robust, with 19 failures, and generally solves within about 46 times
the time of the fastest solver about 80% of the time, surpassing the less robust
splitting conic solver SCS in green, with 29 failures, at about 36 times longer than
the best time about 71% of the time, where SCS is most often faster before then.

The shifted geometric means, were calculated with the formula (3.10) us-
ing a shift of 10 s, cut off at 1 hour, and treated as taking 1 hour for failures
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including having any error worse than 10−2, and are shown in Table 3.3.
Even despite its non-robustness, SCS performed best in shifted geometric

mean of time overall, likely because this measure penalizes taking the entire time
equivalently to failures, and SCS took the shortest time on the most problems.
The other three solvers performed about equivalently with each other overall.
On the SDPLIB problems, SCS performed the best, followed by BPM and SD-
PAD about equivalently, followed by MPRW. On the Mittelmann Library prob-
lems, MPRW and SCS performed best about equivalently, followed by SDPAD,
followed by BPM.

Solver Overall SDPLIB Mittelmann Library
BPM 1001.27 468.81 2480.51

MPRW 998.59 710.36 1503.26
SDPAD 926.59 559.97 2028.13

SCS 513.23 189.01 1667.92

Table 3.3: Shifted Geometric Mean (CPU s)
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CHAPTER 4

DISCUSSION AND CONCLUSIONS

None of the four solvers generally produced high accuracy solutions within
an hour of computations. Even with 10−3 tolerance, the solvers were only able to
solve between 8 and 75 of the 161 problems within the requested tolerance, and
were only able to solve within better tolerance than 10−2 for between 63 and 93
of the problems. More problems might have been solved with requested or ac-
ceptable accuracy if the solvers had been given more CPU time in which to solve,
because running out of time was the most common failure, and most solutions
were generally continuing to improve in accuracy, rather than stagnating or os-
cillating by alternately improving and worsening each of two error measures, at
the time the solver was killed or exited due to running out of time. This indicates
that future work in SDP solver development should focus on producing more ro-
bust and faster solvers. Additionally, BPM and SCS might have performed better
on the problems for which they exited with remaining time with an inaccurate
solution if they had used the same error measures as stopping criteria.

BPM, MPRW, and SDPAD were fundamentally performing the same oper-
ations and calculations in every iteration, with the difference that BPM performed
several updates to the dual solution before updating the primal solution in each
iteration and used different stopping criteria, whereas MPRW and SDPAD up-
dated all variables once per iteration but used different dynamic adjustments of
the scaling parameter and handled the duality gap differently. All three of these
solvers solve a symmetric positive definite system of equations using a Cholesky
factorization to update the variables. SCS on the other hand solves a different and
larger indefinite system of equations to update the variables in each iteration, us-
ing an LDLT factorization. However, the system can be algebraically reduced to
a smaller positive definite system in one variable which can then be solved with a
Cholesky factorization, from which the other variables can be calculated. In gen-
eral, such a change could be expected to improve performance, and the SCS paper
does not discuss any reason to expect it to be ill-conditioned or otherwise discuss
the possibility, so future work might investigate whether an otherwise-identical
implementation of SCS which instead used a Cholesky factorization to solve a
reduced positive definite system would perform faster. Another significant dif-
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ference between SCS and the other solvers is that all of the computations of SCS
are performed by calling code in MEX files, MATLAB executable files which run
compiled C code, while the other programs performed some computations in
calls to MEX files, generally the spectral decompositions, but performed other
operations directly in MATLAB, which is generally much slower than optimized
C code. Future work in comparing the underlying algorithms might investigate
whether the same operations of the first three algorithms would perform more
competitively as compiled code.
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APPENDIX A

DETAILED TABLES OF RESULTS
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A.1 BPM Results

BPM had an overall shifted geometric mean of 1001.27 CPU seconds, with shift 10 s, cut off at 1 hour, treated as
taking 1 hour for failures, including having any error worse than 10−2.

A.1.1 BPM Results on SDPLIB

On the SDPLIB problems, BPM had a shifted geometric mean of 468.81 CPU seconds, with shift 10 s, cut off at
1 hour, treated as taking 1 hour for failures, including having any error worse than 10−2.

problem reported status time (s) err1 err2 err3 err4 err5 err6

arch0 Solved Acc. 771.59 5.30E-03 5.87E-17 2.62E-03 6.40E-13 2.95E-03 -6.54E-13

arch2 Solved Acc. 350.44 4.37E-03 3.49E-17 2.95E-03 1.38E-12 -3.70E-03 -1.50E-12

arch4 Solved Acc. 2523.02 1.12E-03 7.80E-17 2.95E-03 2.17E-14 -5.57E-03 1.17E-12

arch8 Time Fail 3600.07 2.96E-01 2.40E-16 1.30E-01 1.76E-12 3.99E-01 3.99E-11

control10 Time Fail 3600.09 2.34E-01 2.24E-16 8.33E+00 5.73E-11 1.21E-01 -3.72E-11

control11 Time Fail 3600.12 3.35E+00 1.59E-16 2.78E+01 5.31E-11 4.73E-01 -3.77E-12

control1 Solved Solved 3584.89 1.00E-03 1.35E-15 1.67E-04 1.31E-10 7.77E-04 -1.27E-10

control2 Solved Acc. 2698.95 6.03E-04 3.06E-16 2.08E-03 3.10E-11 -3.78E-04 5.97E-12

control3 Time Fail 3600.06 3.03E-02 1.48E-16 4.19E-01 1.62E-10 -2.44E-01 -8.02E-11
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problem reported status time (s) err1 err2 err3 err4 err5 err6

control4 Time Fail 3600.07 5.22E-01 2.52E-15 3.45E-01 1.72E-09 -5.80E-02 -1.09E-09

control5 Time Fail 3600.06 8.54E-02 9.37E-17 6.75E-01 1.22E-10 -3.22E-01 3.37E-11

control6 Time Fail 3600.08 1.54E+00 5.50E-16 7.01E-01 3.10E-11 -5.00E-01 1.21E-10

control7 Time Fail 3600.04 9.85E-02 2.04E-16 5.46E-01 9.49E-11 -2.84E-01 -8.83E-12

control8 Time Fail 3600.06 4.19E-02 1.82E-16 1.44E+00 3.02E-11 -1.74E-01 -2.10E-12

control9 Time Fail 3600.04 5.99E-02 9.65E-17 7.93E-01 1.31E-10 -2.15E-01 4.39E-13

equalG11 Solved Acc. 530.32 8.35E-03 3.17E-15 9.91E-04 2.72E-15 -2.24E-02 5.75E-15

equalG51 Solved Acc. 560.66 2.79E-03 3.66E-15 1.01E-03 4.08E-16 -6.52E-03 1.48E-16

gpp100 Solved Acc. 65.39 5.50E-03 1.94E-15 6.85E-04 5.75E-14 -2.78E-04 3.50E-14

gpp124:1 Solved Acc. 162.74 6.07E-03 2.85E-15 9.46E-04 7.25E-14 -3.59E-03 1.66E-12

gpp124:2 Solved Acc. 99.14 6.07E-03 3.83E-15 1.16E-03 8.16E-14 -1.12E-03 1.18E-13

gpp124:3 Solved Acc. 54.59 6.07E-03 3.59E-15 9.82E-04 4.72E-13 -3.52E-04 3.19E-13

gpp124:4 Solved Acc. 92.51 6.07E-03 2.29E-15 5.16E-03 4.76E-13 -1.54E-03 -1.12E-14

gpp250:1 Solved Acc. 952.98 8.41E-03 7.13E-15 8.48E-04 1.45E-12 -2.30E-03 -4.27E-12

gpp250:2 Solved Acc. 776.85 8.41E-03 4.16E-15 1.11E-03 6.07E-13 -1.00E-03 -2.41E-12

gpp250:3 Solved Acc. 753.55 8.41E-03 3.51E-15 1.36E-03 3.15E-13 -5.38E-04 -2.31E-13
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problem reported status time (s) err1 err2 err3 err4 err5 err6

gpp250:4 Solved Acc. 768.78 8.41E-03 4.45E-15 2.03E-03 2.51E-13 -4.35E-04 1.22E-13

gpp500:1 Time Fail 3600.07 3.79E-02 6.64E-15 3.71E-03 5.47E-13 -1.75E-02 -1.11E-12

gpp500:2 Solved Fail 2658.48 1.17E-02 9.69E-15 3.38E-03 3.50E-12 -2.80E-03 1.79E-12

gpp500:3 Solved Fail 2045.5 1.17E-02 5.70E-15 2.33E-03 9.30E-13 -8.54E-04 1.06E-12

gpp500:4 Solved Fail 2268.06 1.17E-02 5.29E-15 1.62E-03 1.36E-13 -3.56E-04 -1.37E-15

hinf10 Solved Solved 6.38 1.00E-03 4.72E-15 1.90E-04 1.85E-14 -4.03E-02 -1.46E-13

hinf11 Solved Solved 3.76 1.00E-03 2.81E-15 2.01E-04 6.45E-15 -4.42E-02 -1.15E-13

hinf12 Solved Solved 12.01 1.00E-03 1.10E-14 1.91E-04 1.42E-14 -1.71E-01 9.27E-13

hinf13 Solved Acc. 1392.36 1.79E-04 8.44E-14 2.00E-03 9.74E-15 -2.44E-01 9.73E-13

hinf14 Solved Acc. 39.98 2.06E-04 1.02E-14 2.52E-03 3.22E-14 -8.22E-02 3.01E-12

hinf15 Solved Acc. 382.31 3.58E-04 2.19E-14 2.39E-03 2.04E-13 -1.44E-01 -3.95E-12

hinf1 Solved Solved 0.84 1.00E-03 3.95E-17 1.86E-04 3.70E-15 -5.66E-03 -5.06E-15

hinf2 Solved Acc. 10.56 9.05E-04 7.17E-15 1.81E-03 4.08E-14 -5.45E-02 -8.96E-13

hinf3 Solved Acc. 45.55 3.43E-04 3.70E-14 1.57E-03 9.41E-15 -7.52E-02 -1.63E-13

hinf4 Solved Solved 3.27 1.00E-03 2.94E-16 1.72E-04 4.93E-14 -2.25E-04 7.29E-14

hinf5 Solved Solved 303.06 1.00E-03 1.75E-14 9.31E-04 5.20E-13 -1.61E-02 -7.36E-12
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problem reported status time (s) err1 err2 err3 err4 err5 err6

hinf6 Solved Acc. 315.48 5.93E-04 4.22E-14 1.67E-03 1.27E-14 -1.12E-01 8.59E-12

hinf7 Solved Acc. 10.54 1.01E-04 2.55E-15 1.85E-03 2.08E-15 -7.15E-03 5.55E-14

hinf8 Solved Acc. 130.45 4.12E-04 4.78E-14 1.58E-03 9.56E-16 -8.35E-02 2.26E-11

hinf9 Solved Acc. 0.41 9.83E-04 4.75E-18 1.70E-03 5.40E-16 -1.15E-02 1.30E-15

maxG11 Solved Fail 289.86 1.79E-03 9.88E-15 1.05E-02 6.87E-15 -9.81E-04 -7.36E-16

maxG32 Time Fail 3601.93 3.85E-03 1.40E-14 1.66E-02 1.40E-14 -1.19E-03 -2.07E-16

maxG51 Solved Acc. 508.54 1.96E-03 1.09E-14 3.51E-03 2.49E-15 -1.91E-03 -8.43E-16

maxG55 Time Fail 3614.77 0.00E+00 0.00E+00 8.66E+00 0.00E+00 -2.85E-04 0.00E+00

maxG60 Time Fail 3687.43 0.00E+00 0.00E+00 1.03E+01 0.00E+00 -3.50E-05 0.00E+00

mcp100 Solved Acc. 5.83 5.17E-04 2.15E-15 4.16E-03 2.89E-15 -6.61E-04 6.71E-16

mcp124:1 Solved Acc. 8.83 2.32E-03 2.32E-15 3.54E-03 1.17E-15 -7.98E-04 7.90E-16

mcp124:2 Solved Acc. 8.47 1.37E-03 4.72E-15 4.25E-03 2.72E-15 -1.05E-03 1.14E-16

mcp124:3 Solved Acc. 7.77 1.55E-03 2.04E-15 5.28E-03 1.40E-15 -6.85E-04 2.34E-15

mcp124:4 Solved Acc. 8.49 1.73E-03 4.66E-15 6.97E-03 2.53E-15 -1.24E-03 -2.41E-16

mcp250:1 Solved Acc. 40.15 2.35E-03 7.45E-15 5.00E-03 3.96E-15 -1.61E-03 -1.06E-15

mcp250:2 Solved Acc. 31.29 1.28E-03 4.79E-15 5.91E-03 2.95E-15 -1.04E-03 1.97E-16
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problem reported status time (s) err1 err2 err3 err4 err5 err6

mcp250:3 Solved Acc. 29.56 1.30E-03 3.38E-15 7.50E-03 9.87E-15 -1.07E-03 -5.69E-16

mcp250:4 Solved Acc. 29.6 3.69E-03 5.80E-15 9.53E-03 2.97E-16 -1.03E-03 4.72E-15

mcp500:1 Solved Acc. 162.61 2.12E-03 6.47E-15 6.12E-03 3.71E-15 -1.53E-03 -5.52E-16

mcp500:2 Solved Acc. 141.33 2.22E-03 6.05E-15 8.38E-03 1.14E-14 -1.44E-03 -1.22E-15

mcp500:3 Solved Fail 127.48 1.64E-03 6.93E-15 1.07E-02 1.02E-14 -1.29E-03 -1.16E-15

mcp500:4 Solved Fail 121.32 1.92E-03 5.38E-15 1.27E-02 2.14E-14 -1.36E-03 -2.81E-15

qap10 Solved Fail 3.51 3.36E-04 2.37E-18 2.93E-02 1.95E-14 -3.56E-03 -1.45E-15

qap5 Solved Acc. 0.65 7.55E-04 5.31E-17 6.12E-03 5.13E-16 2.73E-03 -4.65E-16

qap6 Solved Fail 1.73 6.58E-04 5.98E-18 1.08E-02 6.81E-15 -5.57E-03 -1.42E-15

qap7 Solved Fail 2.3 3.46E-04 7.17E-18 1.17E-02 6.85E-15 -4.23E-03 -2.68E-15

qap8 Solved Fail 3.11 5.63E-04 4.92E-18 1.87E-02 4.99E-15 -5.26E-03 2.04E-15

qap9 Solved Fail 4.48 3.65E-04 3.89E-18 2.94E-02 1.03E-14 -3.08E-03 5.65E-16

qpG11 Solved Fail 2439.8 1.95E-03 1.02E-14 2.85E-02 5.82E-14 -7.01E-04 1.38E-16

qpG51 Time Fail 3600.65 5.61E-02 2.67E-13 1.73E+00 1.48E-12 -1.06E-01 -9.26E-14

ss30 Time Fail 3600.15 4.26E-01 3.98E-15 5.55E-01 0.00E+00 7.46E-01 4.24E-12

theta1 Solved Fail 1.09 7.21E-04 7.25E-17 2.52E-02 1.38E-14 5.15E-05 2.50E-16
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problem reported status time (s) err1 err2 err3 err4 err5 err6

theta2 Solved Fail 2.34 5.61E-04 1.47E-17 4.99E-02 3.93E-14 1.01E-03 -2.51E-16

theta3 Solved Fail 4.95 7.06E-04 1.70E-17 6.75E-02 5.50E-14 -1.48E-03 9.84E-16

theta4 Solved Fail 7.92 7.52E-04 1.20E-17 9.25E-02 7.26E-14 -1.59E-03 -4.85E-16

theta5 Solved Fail 12.5 8.58E-04 1.48E-17 8.88E-02 6.41E-14 -1.02E-03 1.50E-16

theta6 Solved Fail 15.57 2.32E-04 1.10E-17 1.50E-01 1.41E-13 8.18E-04 4.71E-16

thetaG11 Solved Fail 1269.73 1.07E-02 4.87E-14 1.22E-02 3.13E-13 -1.41E-03 -6.90E-14

thetaG51 Time Fail 3600.25 3.45E+00 6.30E-14 1.11E-01 3.39E-11 9.92E-01 9.50E-14

truss1 Solved Acc. 1.06 1.08E-03 5.31E-17 3.95E-04 8.88E-16 -2.07E-03 -6.99E-16

truss2 Solved Acc. 97.36 1.54E-03 2.39E-15 1.04E-04 3.18E-14 -2.43E-03 6.15E-15

truss3 Solved Acc. 1.97 1.08E-03 1.01E-15 9.81E-04 1.65E-16 -1.78E-03 -1.25E-15

truss4 Solved Acc. 1.37 1.08E-03 6.67E-16 2.09E-04 1.98E-16 -1.87E-03 1.25E-15

truss5 Solved Acc. 171.38 6.36E-04 9.63E-15 1.00E-03 5.97E-16 2.42E-03 -1.11E-13

truss6 Time Acc. 3600.08 1.97E-03 4.88E-14 1.89E-04 3.11E-13 -3.13E-03 -1.45E-13

truss7 Solved Acc. 3012.07 1.08E-03 2.96E-16 1.06E-04 1.12E-13 -1.72E-03 2.11E-14

truss8 Error Fail
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A.1.2 BPM Results on Mittelmann Library

On the Mittelmann Library problems, BPM had a shifted geometric mean of 2480.51 CPU seconds, with shift 10
s, cut off at 1 hour, treated as taking 1 hour for failures, including having any error worse than 10−2.

problem reported status time (s) err1 err2 err3 err4 err5 err6

1dc.1024 Solved Fail 396.16 2.05E-04 4.63E-17 5.10E-01 4.82E-13 -6.72E-04 -1.05E-15

1et.1024 Solved Fail 344.89 7.03E-04 5.53E-17 5.08E-01 2.01E-12 -3.19E-03 -1.49E-15

1tc.1024 Solved Fail 490.81 3.07E-04 5.88E-17 5.10E-01 3.43E-13 -1.05E-03 6.57E-16

1zc.1024 Solved Fail 335.99 7.75E-04 1.49E-16 4.49E-01 1.04E-12 -1.41E-03 -1.40E-15

Bex2_1_5 Solved Fail 69.8 1.27E-03 9.15E-17 2.79E-02 1.55E-14 -6.17E-03 -5.77E-15

biggs Time Fail 3600.1 6.28E+02 2.34E-10 1.24E+02 8.17E-10 -9.97E-01 7.46E-08

broyden25 Time Acc. 3600.36 6.59E-03 1.80E-14 1.13E-03 2.49E-14 -2.20E-01 -2.66E-13

Bst_jcbpaf2 Solved Fail 129.12 9.89E-04 2.99E-17 2.78E-02 2.21E-16 -2.91E-02 -3.09E-16

buck3 Time Fail 3600.2 1.63E-01 5.60E-14 4.24E-02 9.01E-14 -3.78E-01 1.19E-11

buck4 Time Fail 3600.54 9.05E-02 1.73E-14 4.50E-02 1.13E-15 -3.21E-01 -1.19E-14

buck5 Time Fail 3602.27 2.90E-01 7.14E-16 7.94E-02 1.57E-15 -2.25E-01 9.34E-14

butcher Solved Acc. 2024.2 3.88E-03 8.84E-15 1.15E-03 8.84E-15 -4.58E-02 -4.81E-14

cancer_100 Solved Fail 135.53 3.10E-02 1.78E-13 3.97E-02 2.16E-14 -2.00E-03 2.60E-15
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problem reported status time (s) err1 err2 err3 err4 err5 err6

checker_1.5 Time Fail 3617.39 0.00E+00 0.00E+00 6.09E-02 0.00E+00 -6.82E-03 0.00E+00

chs_5000 Solved Fail 81.62 1.98E-03 1.15E-16 3.48E-02 1.59E-16 2.13E-02 1.56E-15

cnhil10 Error Fail

cnhil8 Error Fail

cphil10 Error Fail

cphil12 Error Fail

e_moment_

quadknap_

17_100_

0.5_2_2

Solved Acc. 62.92 1.93E-03 1.03E-15 9.96E-04 6.24E-17 6.05E-04 2.49E-16

e_moment_

stable_17_

0.5_2_2

Solved Acc. 52.54 5.68E-04 1.11E-12 1.36E-03 2.20E-16 -2.51E-02 2.43E-09

foot Time Fail 3600.43 3.04E+00 0.00E+00 2.50E+02 5.21E-12 -8.49E-01 1.69E-15

G40_mb Time Fail 3603.55 3.60E-01 8.98E-15 1.84E-01 9.58E-14 -2.98E-02 -4.38E-15

G40mc Time Fail 3600.44 1.74E-02 4.66E-14 2.61E-02 1.76E-14 -8.12E-03 -2.29E-15
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problem reported status time (s) err1 err2 err3 err4 err5 err6

G48_mb Time Fail 3629.23 5.76E-02 4.46E-15 6.66E+00 1.46E-15 -2.12E-01 -2.27E-16

G48mc Time Fail 3622.07 1.29E-01 3.62E-15 6.29E+00 3.93E-13 -6.02E-02 5.39E-16

G55mc Time Fail 3660.44 0.00E+00 0.00E+00 9.30E+00 0.00E+00 -6.04E-04 0.00E+00

G59mc Time Fail 3602.2 0.00E+00 0.00E+00 8.39E+00 0.00E+00 -1.49E-01 0.00E+00

hand Time Fail 3600.32 2.14E-01 2.56E-14 3.23E+00 1.54E-11 -2.68E-02 -1.06E-13

ice_2.0 Time Fail 3912.86 0.00E+00 0.00E+00 2.71E-02 0.00E+00 -6.80E-05 0.00E+00

inc_1200 Solved Fail 3364.28 6.22E-04 1.69E-15 3.65E-02 1.28E-13 -1.89E-01 -6.03E-13

inc_600 Solved Fail 721.28 7.85E-04 1.48E-15 2.56E-02 5.59E-14 -2.09E-01 2.10E-14

mater:3 Time Acc. 3600.14 2.20E-03 1.86E-15 4.90E-04 4.25E-14 -3.75E-03 -2.18E-15

mater:4 Time Fail 3600.17 1.54E-01 3.06E-15 3.15E-02 1.40E-14 -1.08E-01 -1.97E-15

mater:5 Time Fail 3600.61 3.97E-02 3.35E-16 2.92E-02 1.82E-12 1.02E-01 -2.00E-12

mater:6 Time Fail 3600.26 9.75E-03 6.22E-16 5.41E-02 4.55E-13 6.93E-02 -4.85E-13

neosfbr25 Time Fail 3601.91 4.53E-04 1.10E-16 1.83E-02 1.98E-15 -8.58E-03 3.12E-16

neosfbr30e8 Error Fail

neu1 Time Fail 3600.09 2.36E-02 7.42E-16 8.03E-03 8.17E-13 1.00E+00 3.13E-15

neu1g Time Fail 3600.5 2.32E-01 4.85E-15 5.07E-02 2.48E-12 1.00E+00 1.10E-14
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problem reported status time (s) err1 err2 err3 err4 err5 err6

neu2c Time Fail 3600.22 3.83E-02 1.69E-13 1.98E-02 2.51E-13 1.00E+00 -2.59E-11

neu2 Time Fail 3600.53 2.58E-03 1.08E-16 3.15E-04 7.65E-13 1.00E+00 -8.55E-14

neu2g Time Fail 3600.1 3.92E-01 5.86E-11 4.57E-01 1.06E-09 1.00E+00 -1.86E-09

neu3 Solved Solved 0.91 2.40E-06 0.00E+00 3.06E-04 0.00E+00 1.68E-05 3.39E-20

neu3g Solved Fail 549.63 1.39E-03 1.32E-16 1.01E-04 4.61E-13 2.29E-01 7.16E-13

nonc_500 Solved Fail 19.1 2.69E-03 1.87E-16 1.17E-02 3.58E-16 -2.36E-02 -1.32E-14

p_auss2_3.0 Time Fail 4083.77 0.00E+00 0.00E+00 7.98E-02 0.00E+00 -5.91E-05 0.00E+00

rabmo Solved Acc. 394.48 8.30E-04 2.92E-15 1.56E-03 1.98E-15 -7.68E-02 4.07E-16

reimer5 Solved Acc. 1600.5 1.56E-03 4.11E-14 2.16E-03 2.90E-16 -6.90E-02 -3.97E-15

rendl1_2000_

1e:6

Time Fail 3605.04 5.96E-01 5.83E-15 1.39E+00 1.82E-12 -5.24E-02 9.13E-16

ros_2000 Solved Fail 108.03 3.12E-03 1.23E-16 2.26E-02 6.47E-15 -1.63E-01 -1.06E-15

ros_500 Solved Fail 31.19 2.40E-03 1.03E-15 1.16E-02 7.55E-15 1.65E-01 -2.68E-14

rose13 Solved Fail 1216.17 4.23E-03 3.84E-13 8.56E-04 5.67E-14 9.99E-01 3.79E-09

rose15 Solved Fail 3290.85 4.57E-03 1.95E-12 5.93E-04 1.89E-13 9.98E-01 5.08E-08

sensor_1000 Time Fail 3600.73 2.67E-04 4.52E-15 8.45E-02 1.68E-12 -4.21E-01 4.73E-12
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problem reported status time (s) err1 err2 err3 err4 err5 err6

sensor_500 Solved Fail 457.4 4.47E-04 2.37E-15 3.02E-02 1.99E-13 -5.37E-02 -3.92E-13

shmup3 Solved Fail 761.86 6.22E-03 2.35E-15 1.96E-02 2.45E-16 -4.41E-01 -2.11E-13

shmup4 Solved Fail 983.44 8.91E-03 2.85E-16 2.77E-02 5.90E-17 -6.07E-01 -4.78E-13

shmup5 Time Fail 3614.37 9.70E-07 0.00E+00 1.14E-01 3.17E-17 -2.40E-02 4.39E-15

spar060:020:1

_LS

Solved Acc. 379.87 5.09E-04 2.00E-15 9.08E-03 3.36E-14 -2.44E-03 -1.74E-14

swissroll Time Fail 3600.09 4.45E-01 2.47E-13 7.88E-01 3.93E-11 8.28E-01 1.27E-13

taha1a Solved Acc. 115.41 1.80E-04 8.51E-15 1.48E-03 3.46E-16 -1.24E-03 1.78E-12

taha1b Solved Acc. 473.86 6.14E-04 1.00E-16 1.71E-03 2.72E-14 -1.32E-02 3.18E-14

taha1c Solved Acc. 400.18 1.54E-04 8.29E-15 1.48E-03 5.43E-16 -1.08E-03 -7.83E-13

theta12 Solved Fail 57.51 5.34E-04 2.56E-17 2.97E-01 2.43E-13 -1.30E-03 -3.20E-16

tiger_texture Time Fail 3601.82 3.49E+00 2.57E-14 2.26E+02 4.63E-12 -9.92E-01 -3.84E-13

trto3 Time Fail 3600.08 9.46E-02 2.13E-13 5.36E-02 5.19E-16 -6.42E-01 1.50E-14

trto4 Time Fail 3600.38 9.51E-02 4.22E-14 4.28E-02 3.24E-16 -6.44E-01 6.38E-14

trto5 Time Fail 3600.15 3.16E-01 3.79E-15 4.68E-02 5.71E-16 -3.14E-01 1.01E-14

vibra3 Time Fail 3600.11 8.54E-02 7.00E-14 2.96E-02 5.88E-16 -3.43E-01 1.93E-13
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problem reported status time (s) err1 err2 err3 err4 err5 err6

vibra4 Time Fail 3600.65 2.26E-01 1.53E-14 3.29E-02 7.04E-16 -3.23E-01 4.68E-14

vibra5 Time Fail 3604.1 4.92E-01 8.64E-16 7.45E-02 8.24E-16 -2.71E-01 6.97E-14

yalsdp Time Fail 3600.23 1.35E-02 1.98E-16 3.91E-02 6.73E-14 2.99E-02 -6.93E-14

A.2 MPRW Results

MPRW had an overall shifted geometric mean of 998.59 CPU seconds, with shift 10 s, cut off at 1 hour, treated
as taking 1 hour for failures, including having any error worse than 10−2.

A.2.1 MPRW Results on SDPLIB

On the SDPLIB problems, MPRW had a shifted geometric mean of 710.36 CPU seconds, with shift 10 s, cut off
at 1 hour, treated as taking 1 hour for failures, including having any error worse than 10−2.

problem reported status time (s) err1 err2 err3 err4 err5 err6

arch0 Time Fail 3600.1 1.61E-05 1.27E-17 1.25E-01 3.18E-11 -9.07E-02 -1.84E-11

arch2 Time Fail 3600.09 1.39E-05 1.66E-17 1.55E-01 2.69E-11 -1.30E-01 7.03E-13

arch4 Time Fail 3600.08 1.12E-05 1.74E-17 1.71E-01 2.79E-11 -1.35E-01 1.88E-11
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problem reported status time (s) err1 err2 err3 err4 err5 err6

arch8 Time Fail 3600.08 1.70E-04 1.31E-16 1.39E-01 1.56E-11 -4.86E-01 4.10E-10

control10 Time Fail 3600.1 1.18E+00 6.49E-16 4.13E+02 2.57E-08 9.81E-01 -2.21E-11

control11 Time Fail 3600.11 1.52E+00 6.32E-16 6.99E+02 3.69E-08 9.87E-01 -5.15E-11

control1 Time Fail 3600.04 3.75E-03 4.76E-16 3.87E-01 9.35E-11 -3.79E-01 3.20E-09

control2 Time Fail 3600.06 1.14E-03 6.23E-17 6.57E-01 5.97E-12 -2.72E-01 5.72E-13

control3 Time Fail 3600.05 2.40E-01 2.54E-18 1.64E+00 3.47E-09 9.94E-01 -1.26E-12

control4 Time Fail 3600.33 1.62E-01 2.61E-16 7.29E+00 6.96E-09 9.31E-01 1.12E-10

control5 Time Fail 3600.05 1.83E-01 7.74E-17 6.98E+00 4.35E-09 9.63E-01 1.33E-10

control6 Time Fail 3600.05 8.52E-02 6.96E-16 2.58E+01 6.85E-09 9.26E-01 1.77E-10

control7 Time Fail 3600.05 9.21E-02 4.08E-16 4.73E+01 8.73E-09 9.43E-01 -8.21E-11

control8 Time Fail 3600.07 1.44E-01 6.52E-16 9.13E+01 2.37E-08 9.56E-01 -4.43E-10

control9 Time Fail 3600.1 7.26E-01 5.55E-16 2.90E+02 1.30E-08 9.78E-01 3.41E-11

equalG11 Time Acc. 3600.51 3.05E-03 0.00E+00 5.56E-03 0.00E+00 -1.20E-01 -2.63E-13

equalG51 Time Acc. 3601.11 4.46E-03 0.00E+00 8.24E-03 0.00E+00 -2.43E-02 -1.60E-17

gpp100 Solved Solved 2232.96 3.30E-05 1.95E-15 8.75E-04 3.82E-12 -3.12E-04 1.45E-12

gpp124:1 Solved Solved 1300.27 9.51E-04 4.80E-15 5.94E-04 2.32E-13 -2.21E-03 -3.17E-12
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problem reported status time (s) err1 err2 err3 err4 err5 err6

gpp124:2 Solved Solved 1027.8 5.50E-04 1.94E-15 8.02E-04 3.69E-13 -7.66E-04 -3.60E-13

gpp124:3 Solved Solved 818.24 3.74E-04 2.23E-15 9.18E-04 8.45E-13 -3.20E-04 -9.30E-13

gpp124:4 Solved Solved 1277.13 5.67E-04 3.66E-15 1.00E-03 1.61E-12 -2.46E-04 2.14E-12

gpp250:1 Time Acc. 3600.23 2.46E-03 3.77E-15 1.62E-03 6.31E-13 -6.22E-03 -3.38E-12

gpp250:2 Time Acc. 3600.38 1.58E-04 7.55E-15 2.11E-03 8.94E-12 -1.82E-03 1.34E-10

gpp250:3 Time Acc. 3600.07 1.36E-03 3.95E-15 1.57E-03 2.48E-12 -6.07E-04 -7.54E-13

gpp250:4 Time Acc. 3600.1 1.16E-03 3.90E-15 2.66E-03 9.40E-13 -5.51E-04 1.80E-12

gpp500:1 Time Fail 3600.13 8.50E-03 8.47E-15 1.63E-02 8.42E-13 -5.27E-02 1.49E-13

gpp500:2 Time Fail 3600.14 9.74E-03 5.28E-15 2.45E-02 4.20E-13 -2.27E-02 3.65E-13

gpp500:3 Time Fail 3600.1 4.94E-03 5.15E-15 2.84E-02 8.33E-13 -1.06E-02 -4.69E-13

gpp500:4 Time Fail 3600.04 5.60E-03 5.25E-15 3.05E-02 5.67E-13 -5.96E-03 3.98E-14

hinf10 Solved Solved 7.14 2.58E-04 2.30E-15 1.00E-03 1.62E-14 -1.87E-02 3.49E-13

hinf11 Solved Solved 3.9 2.41E-04 6.07E-16 1.00E-03 2.82E-14 -2.19E-02 3.65E-13

hinf12 Solved Solved 13.95 2.67E-04 1.52E-15 1.00E-03 5.06E-14 -1.04E-01 5.74E-12

hinf13 Time Acc. 3600.1 1.11E-04 1.15E-13 1.66E-03 1.26E-14 -2.23E-01 2.01E-11

hinf14 Solved Solved 249.79 4.09E-05 7.44E-15 1.00E-03 1.04E-13 -3.51E-02 1.11E-11
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problem reported status time (s) err1 err2 err3 err4 err5 err6

hinf15 Solved Solved 2458.27 4.61E-05 5.56E-14 1.00E-03 2.97E-13 -9.37E-02 7.69E-11

hinf1 Solved Solved 0.87 3.76E-04 2.25E-16 9.98E-04 1.33E-14 -2.59E-03 2.13E-14

hinf2 Solved Solved 123.66 2.17E-05 1.68E-14 1.00E-03 2.97E-13 -2.69E-02 -7.38E-12

hinf3 Solved Solved 155 8.56E-05 4.39E-14 1.00E-03 1.62E-15 -4.98E-02 -4.80E-14

hinf4 Solved Solved 6.01 2.24E-04 7.58E-16 1.00E-03 1.35E-15 -2.14E-03 1.52E-12

hinf5 Solved Solved 1337.49 1.28E-04 4.67E-14 1.00E-03 7.90E-13 -1.54E-02 1.87E-11

hinf6 Solved Solved 989.29 1.72E-04 7.06E-14 1.00E-03 1.55E-12 -7.13E-02 -6.27E-11

hinf7 Solved Solved 99.26 1.92E-05 2.83E-16 1.00E-03 1.02E-13 -1.93E-02 -1.63E-12

hinf8 Solved Solved 2640.2 1.23E-05 1.73E-14 1.00E-03 1.74E-12 -6.60E-02 2.72E-10

hinf9 Solved Solved 0.58 1.59E-04 2.75E-16 1.00E-03 1.30E-15 -7.58E-04 9.38E-15

maxG11 Time Fail 3600.09 1.76E-06 0.00E+00 5.33E-02 0.00E+00 -4.20E-03 1.79E-14

maxG32 Time Fail 3604.8 4.65E-04 0.00E+00 1.28E+00 0.00E+00 -4.21E-02 1.43E-14

maxG51 Time Fail 3600.76 1.09E-05 0.00E+00 3.74E-02 0.00E+00 -8.33E-03 -2.61E-14

maxG55 Time Fail 3606.58 0.00E+00 0.00E+00 8.66E+00 0.00E+00 -3.63E-02 0.00E+00

maxG60 Time Fail 3810.73 0.00E+00 0.00E+00 1.03E+01 0.00E+00 -1.12E-02 0.00E+00

mcp100 Solved Solved 207.4 1.22E-07 2.38E-15 7.82E-04 4.51E-14 -9.79E-05 1.97E-14
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problem reported status time (s) err1 err2 err3 err4 err5 err6

mcp124:1 Solved Solved 804.43 3.69E-08 3.58E-15 5.94E-04 5.27E-14 -1.25E-04 5.55E-16

mcp124:2 Solved Solved 415.89 9.70E-08 3.30E-15 8.02E-04 1.09E-13 -1.11E-04 -3.92E-14

mcp124:3 Solved Solved 402.25 9.89E-08 3.56E-15 9.17E-04 1.33E-13 -8.04E-05 -4.88E-14

mcp124:4 Solved Solved 410.97 6.63E-08 2.77E-15 1.00E-03 9.94E-14 -9.14E-05 -3.63E-14

mcp250:1 Time Acc. 3600.08 5.55E-08 8.14E-15 1.75E-03 1.90E-13 -3.62E-04 5.42E-14

mcp250:2 Solved Solved 3307.7 2.95E-08 3.84E-15 7.17E-04 2.01E-13 -8.95E-05 4.65E-14

mcp250:3 Solved Solved 3045.65 3.25E-08 3.05E-15 9.30E-04 5.09E-13 -9.56E-05 1.21E-13

mcp250:4 Time Acc. 3600.12 2.67E-08 4.87E-15 1.41E-03 3.20E-13 -1.41E-04 2.13E-13

mcp500:1 Time Fail 3600.2 4.29E-07 3.13E-15 1.69E-02 5.32E-13 -3.15E-03 -1.18E-14

mcp500:2 Time Fail 3600.18 5.26E-07 6.57E-15 2.33E-02 6.61E-13 -3.19E-03 6.16E-14

mcp500:3 Time Fail 3600.1 5.11E-07 5.24E-15 2.88E-02 8.69E-13 -3.03E-03 -1.59E-14

mcp500:4 Time Fail 3600.19 5.09E-07 3.67E-15 3.33E-02 1.01E-12 -2.89E-03 1.37E-13

qap10 Solved Solved 77.6 3.20E-05 1.90E-18 9.99E-04 2.62E-14 -5.25E-04 2.11E-15

qap5 Solved Solved 2.26 2.37E-04 2.59E-17 2.96E-04 0.00E+00 -1.80E-04 6.65E-15

qap6 Solved Solved 21.98 5.09E-05 8.61E-18 1.00E-03 3.12E-15 -9.40E-04 4.30E-15

qap7 Solved Solved 39 3.23E-05 5.56E-18 1.00E-03 2.74E-14 -7.22E-04 -5.22E-15
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problem reported status time (s) err1 err2 err3 err4 err5 err6

qap8 Solved Solved 22.45 7.29E-05 3.88E-18 9.99E-04 4.75E-14 -9.73E-04 -6.74E-15

qap9 Solved Solved 69.23 2.69E-05 6.43E-18 1.00E-03 2.94E-14 -2.96E-04 1.61E-16

qpG11 Time Fail 3601.64 2.24E-04 0.00E+00 6.79E-01 0.00E+00 -1.07E-02 -2.82E-14

qpG51 Time Fail 3604.16 1.04E-03 0.00E+00 5.91E+00 0.00E+00 -7.81E-02 -3.05E-14

ss30 Time Fail 3600.09 4.62E-03 8.85E-16 7.89E-02 4.25E-12 -2.31E-01 2.01E-11

theta1 Solved Solved 0.78 6.42E-05 5.62E-17 9.56E-04 1.99E-14 8.49E-05 6.44E-15

theta2 Solved Solved 5.72 6.25E-06 3.30E-17 9.98E-04 2.30E-14 -7.75E-06 1.78E-16

theta3 Solved Solved 8.9 2.74E-06 1.58E-17 9.93E-04 6.29E-14 -6.80E-06 6.49E-16

theta4 Solved Solved 15.72 1.86E-06 1.33E-17 9.89E-04 9.36E-14 -2.26E-06 6.73E-16

theta5 Solved Fail 1.78 5.00E-01 0.00E+00 4.44E-14 0.00E+00 9.89E-01 0.00E+00

theta6 Solved Fail 2.22 5.00E-01 0.00E+00 4.40E-14 0.00E+00 9.91E-01 0.00E+00

thetaG11 Time Fail 3600.23 3.83E-04 0.00E+00 1.19E-01 0.00E+00 -1.36E-02 -1.49E-13

thetaG51 Time Fail 3601.03 6.09E-03 0.00E+00 3.49E-01 0.00E+00 1.12E-01 1.63E-11

truss1 Solved Solved 0.63 7.49E-04 3.15E-16 6.59E-04 1.67E-15 -1.86E-03 -1.64E-15

truss2 Solved Acc. 24.97 9.40E-04 4.77E-15 4.16E-04 5.74E-14 1.56E-03 5.46E-14

truss3 Solved Solved 3.32 3.88E-05 3.69E-16 6.63E-04 3.63E-16 -2.40E-04 9.24E-16
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truss4 Solved Solved 0.68 6.09E-04 3.78E-16 6.64E-04 6.22E-15 -1.68E-03 -1.83E-15

truss5 Solved Solved 407.65 2.33E-05 1.02E-14 4.12E-04 1.48E-16 -4.64E-05 9.47E-14

truss6 Solved Acc. 602.78 3.06E-03 1.34E-15 6.59E-04 2.62E-11 4.04E-03 2.62E-11

truss7 Solved Acc. 408.07 2.95E-03 7.79E-16 6.67E-04 5.67E-12 3.80E-03 -4.21E-13

truss8 Solved Solved 1693.93 8.41E-06 9.35E-15 4.07E-04 2.22E-16 -1.56E-04 5.43E-14

A.2.2 MPRW Results on Mittelmann Library

On the Mittelmann Library problems, MPRW had a shifted geometric mean of 1503.26 CPU seconds, with shift
10 s, cut off at 1 hour, treated as taking 1 hour for failures, including having any error worse than 10−2.

problem reported status time (s) err1 err2 err3 err4 err5 err6

1dc.1024 Time Acc. 3600.82 2.62E-06 0.00E+00 2.77E-03 0.00E+00 -1.13E-05 2.36E-15

1et.1024 Time Acc. 3600.16 1.32E-06 0.00E+00 1.77E-03 0.00E+00 -5.69E-06 2.71E-14

1tc.1024 Time Acc. 3600.92 3.08E-06 0.00E+00 5.54E-03 0.00E+00 -1.49E-05 -2.22E-15

1zc.1024 Solved Fail 21.2 5.00E-01 0.00E+00 0.00E+00 0.00E+00 9.96E-01 0.00E+00

Bex2_1_5 Solved Solved 253.61 2.21E-05 5.40E-18 9.66E-04 1.25E-14 -1.50E-04 2.26E-15
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biggs Time Fail 3600.09 8.48E-01 3.98E-13 1.24E+00 2.34E-12 -1.00E+00 6.85E-15

broyden25 Time Acc. 3600.3 5.96E-03 8.66E-16 3.88E-03 2.69E-14 -2.20E-01 -3.90E-14

Bst_jcbpaf2 Solved Solved 710.44 3.60E-06 1.81E-17 1.00E-03 8.63E-16 -3.55E-04 3.00E-16

buck3 Time Fail 3600.1 1.69E-01 6.44E-14 4.22E-02 1.02E-13 -3.78E-01 1.43E-11

buck4 Time Fail 3600.23 1.99E-01 0.00E+00 3.62E-02 0.00E+00 -3.33E-01 8.88E-14

buck5 Time Fail 3603.07 7.71E-01 0.00E+00 5.69E-02 0.00E+00 -1.80E-01 -1.68E-14

butcher Time Acc. 3600.12 4.81E-05 4.02E-15 4.59E-03 7.66E-16 -9.84E-02 4.75E-16

cancer_100 Time Fail 3600.21 1.50E-04 8.53E-14 5.55E-02 0.00E+00 -2.56E-04 2.46E-13

checker_1.5 Time Fail 3611.47 7.85E-05 0.00E+00 5.40E-02 1.30E-17 -1.14E-02 5.84E-18

chs_5000 Solved Solved 62.39 2.30E-06 9.54E-17 9.95E-04 2.22E-16 -1.44E-05 2.87E-14

cnhil10 Solved Acc. 25.47 1.04E-03 1.12E-16 4.04E-04 9.40E-15 -5.22E-04 5.34E-16

cnhil8 Solved Acc. 6.83 1.03E-03 1.64E-16 4.81E-04 2.45E-15 -2.13E-04 4.51E-15

cphil10 Solved Solved 1.16 3.88E-16 0.00E+00 5.27E-16 0.00E+00 1.72E-16 0.00E+00

cphil12 Solved Solved 1.89 5.75E-16 0.00E+00 6.25E-16 0.00E+00 -2.47E-16 0.00E+00
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e_moment_

quadknap_

17_100_

0.5_2_2

Time Acc. 3600.09 1.59E-05 2.80E-16 3.09E-03 2.44E-16 -4.18E-02 1.08E-16

e_moment_

stable_17_

0.5_2_2

Solved Solved 1573.43 2.99E-06 3.95E-16 1.66E-04 1.09E-15 -3.20E-03 7.82E-15

foot Time Fail 3605.67 6.53E+00 3.49E-15 2.50E+02 6.26E-12 -9.57E-01 -5.28E-16

G40_mb Time Fail 3605 3.26E-01 3.92E-15 6.83E-01 6.58E-13 -7.74E-02 -7.89E-15

G40mc Time Fail 3601.45 2.19E-04 4.37E-15 6.77E-01 3.18E-13 -7.30E-02 2.13E-14

G48_mb Time Fail 3621.33 6.82E-04 3.34E-15 7.62E+00 1.46E-15 -1.85E-01 -2.07E-16

G48mc Time Fail 3602.05 4.17E-04 6.49E-15 1.01E+01 1.91E-15 -8.20E-02 -9.09E-17

G55mc Time Fail 3669.6 0.00E+00 0.00E+00 9.30E+00 0.00E+00 -4.77E-02 0.00E+00

G59mc Time Fail 3609.58 5.45E-03 7.80E-15 7.71E+00 1.06E-15 -7.59E-01 -9.74E-17

hand Time Fail 3600.24 1.84E-01 2.76E-14 3.37E+00 5.00E-12 -2.70E-02 3.64E-13

ice_2.0 Time Fail 3776.53 3.77E-15 0.00E+00 2.71E-02 0.00E+00 -3.69E-04 0.00E+00
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inc_1200 Time Fail 3600.14 1.04E-04 0.00E+00 8.00E-02 2.82E-13 -2.02E-01 3.55E-13

inc_600 Time Fail 3600.17 2.23E-05 0.00E+00 2.30E-02 4.12E-13 -2.08E-01 -9.92E-14

mater:3 Solved Solved 1648.32 7.14E-04 1.86E-15 5.00E-04 9.05E-14 -1.57E-03 2.25E-13

mater:4 Time Fail 3600.34 1.95E-02 2.18E-16 1.12E-02 4.55E-13 -3.79E-02 -4.30E-13

mater:5 Solved Fail 33.07 5.05E+00 1.03E-17 4.92E-04 5.46E-16 -8.82E-01 -1.43E-17

mater:6 Solved Fail 85.67 5.06E+00 1.11E-17 4.92E-04 2.53E-16 -8.58E-01 6.21E-17

neosfbr25 Time Fail 3600.81 3.89E-05 9.26E-17 3.04E-02 2.39E-15 -1.10E-02 -1.06E-15

neosfbr30e8 Error Fail

neu1 Solved Solved 116.35 5.82E-04 1.97E-16 6.61E-04 3.62E-14 -1.50E-01 -2.33E-12

neu1g Solved Solved 1259.18 1.34E-04 5.30E-16 1.09E-04 2.58E-14 -2.51E-04 2.33E-13

neu2c Time Fail 3600.15 5.20E-04 7.70E-16 1.40E-02 6.45E-13 -3.98E-03 -5.44E-14

neu2 Solved Solved 487.57 1.90E-04 2.33E-16 7.01E-04 4.82E-14 -3.38E-02 1.57E-13

neu2g Time Fail 3600.12 5.54E-04 1.51E-16 7.14E-02 2.64E-12 6.52E-02 3.17E-11

neu3 Solved Solved 1.03 1.17E-04 0.00E+00 2.92E-04 6.28E-16 8.15E-04 -8.16E-15

neu3g Solved Solved 202.32 1.32E-05 3.56E-16 4.01E-04 8.87E-17 -1.44E-03 -2.15E-15

nonc_500 Solved Solved 1688.78 1.77E-05 9.35E-17 9.99E-04 1.12E-14 -4.45E-03 -2.35E-14
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p_auss2_3.0 Time Fail 3813.79 1.11E-16 0.00E+00 7.98E-02 0.00E+00 -5.23E-04 0.00E+00

rabmo Time Acc. 3600.14 7.76E-06 2.82E-15 2.01E-03 9.87E-17 -8.48E-02 -1.10E-17

reimer5 Time Acc. 3600.05 3.99E-05 2.04E-15 7.75E-03 2.13E-16 -7.62E-02 8.90E-16

rendl1_2000_

1e:6

Time Fail 3600.07 4.22E-01 4.55E-15 2.15E+00 1.76E-12 -7.38E-02 -1.98E-14

ros_2000 Solved Solved 446.34 1.98E-05 6.11E-17 9.98E-04 2.36E-14 -9.83E-05 2.28E-14

ros_500 Solved Solved 97.13 4.52E-04 2.31E-16 8.07E-04 2.19E-15 -1.91E-03 -1.71E-15

rose13 Solved Solved 383.97 1.23E-06 2.94E-16 1.18E-04 1.34E-15 -8.88E-04 -2.57E-13

rose15 Solved Solved 600.49 8.35E-07 4.46E-16 1.55E-04 2.57E-15 -2.06E-02 6.36E-12

sensor_1000 Time Fail 3600.38 1.14E-04 0.00E+00 1.24E-01 2.34E-12 -3.91E-01 1.01E-12

sensor_500 Solved Solved 1702.08 3.42E-06 2.95E-15 9.99E-04 1.91E-12 -5.94E-04 -5.91E-12

shmup3 Time Fail 3600.07 1.07E-05 0.00E+00 3.03E-02 1.29E-16 -4.52E-01 -2.27E-15

shmup4 Time Fail 3603.98 1.61E-10 8.60E-17 3.50E-02 2.06E-17 -6.50E-01 5.87E-16

shmup5 Time Fail 3627.71 1.34E-06 0.00E+00 8.50E-02 2.78E-17 -1.69E-01 -2.84E-16

spar060:020:1

_LS

Time Acc. 3600.12 1.99E-14 1.85E-15 2.38E-03 3.96E-14 -4.93E-05 1.17E-13
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swissroll Time Fail 3600.16 2.25E-02 1.61E-14 5.22E+00 4.86E-11 -1.00E+00 -1.94E-12

taha1a Solved Solved 169.26 2.73E-05 5.33E-17 9.70E-04 7.58E-16 -5.75E-04 1.18E-15

taha1b Solved Solved 1075.78 5.05E-04 5.91E-17 1.00E-03 6.02E-15 -1.17E-02 -4.86E-15

taha1c Solved Solved 499.21 4.60E-05 4.25E-17 9.70E-04 4.02E-16 -4.78E-04 2.68E-15

theta12 Solved Fail 8.8 5.00E-01 0.00E+00 1.02E-13 0.00E+00 9.94E-01 0.00E+00

tiger_texture Time Fail 3602.83 2.93E+01 1.18E-14 8.02E+01 6.29E-13 -9.79E-01 1.30E-14

trto3 Time Fail 3600.09 1.47E-01 3.38E-13 5.13E-02 1.41E-15 -6.29E-01 -1.39E-14

trto4 Time Fail 3600.26 1.22E-01 0.00E+00 4.15E-02 1.07E-15 -6.49E-01 -7.22E-14

trto5 Time Fail 3600.96 2.32E-01 0.00E+00 3.72E-02 2.74E-16 -3.72E-01 -3.70E-15

vibra3 Time Fail 3600.18 7.01E-02 5.51E-14 2.81E-02 3.81E-15 -3.38E-01 3.24E-14

vibra4 Time Fail 3600.11 1.16E-01 0.00E+00 2.89E-02 7.92E-16 -3.09E-01 3.93E-14

vibra5 Time Fail 3600.31 5.90E-01 0.00E+00 4.87E-02 1.68E-15 -2.05E-01 6.30E-14

yalsdp Time Fail 3600.32 6.34E-07 9.48E-17 3.55E-02 2.11E-13 -1.93E-02 2.08E-13
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A.3 SDPAD Results

SDPAD had an overall shifted geometric mean of 926.59 CPU seconds, with shift 10 s, cut off at 1 hour, treated
as taking 1 hour for failures, including having any error worse than 10−2.

A.3.1 SDPAD Results on SDPLIB

On the SDPLIB problems, SDPAD had a shifted geometric mean of 559.97 CPU seconds, with shift 10 s, cut off
at 1 hour, treated as taking 1 hour for failures, including having any error worse than 10−2.

problem reported status time (s) err1 err2 err3 err4 err5 err6

arch0 Time Fail 3600.12 4.59E-03 4.44E-17 3.46E-02 1.78E-12 -6.41E-02 1.88E-11

arch2 Solved Solved 1972.02 7.26E-04 2.40E-17 9.92E-04 2.56E-14 -1.66E-03 -2.79E-14

arch4 Time Acc. 3600.09 8.97E-04 4.36E-17 1.71E-03 1.07E-13 -3.49E-03 2.04E-12

arch8 Time Fail 3600.1 7.42E-01 3.15E-16 4.04E-01 1.09E-11 8.59E-01 5.02E-11

control10 Time Fail 3600.15 2.68E+02 1.87E-14 1.66E+01 2.71E-10 7.53E-01 6.30E-11

control11 Time Fail 3600.1 3.91E+02 7.37E-15 1.56E+01 4.98E-10 7.10E-01 -3.44E-11

control1 Time Fail 3600.09 2.51E-02 1.59E-15 2.13E-03 3.02E-11 2.61E-02 7.64E-12

control2 Time Fail 3600.08 7.72E-02 1.26E-15 4.74E-03 4.75E-11 1.80E-01 -3.68E-11

control3 Time Fail 3600.1 2.52E-01 2.52E-15 2.01E-02 1.29E-10 2.76E-01 -8.24E-11
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control4 Time Fail 3600.11 7.65E-01 1.31E-15 1.23E-01 1.35E-10 -2.08E-01 -9.61E-11

control5 Time Fail 3600.08 5.06E-01 2.13E-15 2.47E-01 6.33E-11 -1.80E-01 -4.19E-11

control6 Time Fail 3600.11 3.35E+00 5.71E-15 9.28E-01 6.64E-11 -1.31E-01 1.82E-10

control7 Time Fail 3600.09 4.40E+00 2.84E-15 1.39E+00 6.13E-11 2.78E-02 1.06E-10

control8 Time Fail 3600.07 2.22E+01 1.01E-14 2.64E+00 2.17E-10 3.44E-01 1.98E-10

control9 Time Fail 3600.11 1.01E+02 1.12E-14 9.62E+00 7.58E-10 6.70E-01 -6.39E-11

equalG11 Time Fail 3600.42 1.84E-02 6.49E-15 6.86E-05 3.41E-15 -2.24E-03 1.99E-14

equalG51 Time Fail 3600.64 1.50E-01 1.13E-14 1.45E-04 9.88E-16 -1.85E-03 7.40E-15

gpp100 Solved Solved 204.7 1.00E-03 2.56E-15 7.94E-04 3.84E-13 -2.96E-04 -7.17E-13

gpp124:1 Solved Solved 913.79 1.00E-03 2.47E-15 8.19E-04 3.75E-13 -2.93E-03 -1.79E-12

gpp124:2 Solved Solved 589.44 1.00E-03 3.79E-15 3.74E-04 1.79E-12 -2.00E-04 -1.17E-12

gpp124:3 Solved Solved 274.82 1.00E-03 3.52E-15 6.37E-04 4.11E-13 -2.03E-04 2.90E-12

gpp124:4 Solved Solved 363.09 1.00E-03 3.48E-15 5.03E-04 6.80E-12 -3.22E-05 3.17E-13

gpp250:1 Time Acc. 3600.08 2.34E-03 6.41E-15 1.83E-03 7.19E-13 -6.74E-03 -1.14E-12

gpp250:2 Time Acc. 3600.11 1.13E-03 7.38E-15 1.31E-03 1.15E-12 -1.18E-03 2.57E-12

gpp250:3 Time Acc. 3600.13 1.41E-03 4.24E-15 1.44E-03 1.23E-12 -5.64E-04 -6.94E-13
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gpp250:4 Time Acc. 3600.15 5.74E-04 5.14E-15 1.10E-03 8.08E-13 -2.37E-04 -1.46E-13

gpp500:1 Time Fail 3600.15 1.75E-02 5.92E-15 1.03E-02 2.15E-13 -4.66E-02 4.63E-13

gpp500:2 Time Fail 3600.16 1.37E-02 6.58E-15 1.09E-02 6.04E-13 -1.02E-02 3.47E-13

gpp500:3 Time Acc. 3600.13 9.21E-03 5.52E-15 6.41E-03 1.07E-12 -2.42E-03 -8.28E-13

gpp500:4 Time Acc. 3600.2 5.27E-03 6.94E-15 3.87E-03 4.61E-12 -8.08E-04 -1.93E-12

hinf10 Solved Solved 13.44 1.00E-03 7.19E-15 3.56E-04 3.76E-14 -3.98E-02 -3.21E-13

hinf11 Solved Solved 13.4 1.00E-03 1.86E-15 1.75E-04 3.66E-15 -4.28E-02 2.57E-13

hinf12 Solved Solved 18.87 1.00E-03 2.28E-15 3.61E-04 3.35E-15 -1.70E-01 5.53E-12

hinf13 Solved Solved 3194.3 1.00E-03 2.14E-13 3.84E-04 3.87E-14 -1.24E-01 5.08E-11

hinf14 Solved Solved 35.45 1.00E-03 3.34E-15 4.29E-04 9.53E-14 -1.85E-02 -3.26E-12

hinf15 Solved Solved 3008.6 7.45E-04 6.43E-13 7.12E-04 2.08E-14 -2.42E-01 -6.82E-11

hinf1 Solved Solved 1.28 1.00E-03 1.91E-17 1.49E-04 3.16E-15 -5.71E-03 1.77E-15

hinf2 Solved Solved 13.61 1.00E-03 4.78E-15 8.03E-04 3.30E-15 -3.12E-02 1.11E-12

hinf3 Solved Solved 34.5 1.00E-03 1.72E-14 4.56E-04 1.33E-13 -2.73E-02 -1.60E-12

hinf4 Solved Solved 11.33 1.00E-03 9.66E-16 4.86E-05 1.62E-13 -1.25E-04 -2.77E-13

hinf5 Solved Solved 534.04 6.96E-04 2.46E-14 8.36E-04 2.52E-14 -1.63E-02 1.16E-11
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hinf6 Solved Solved 362.76 1.00E-03 4.46E-15 3.58E-04 1.47E-12 -2.97E-02 -8.64E-11

hinf7 Solved Solved 22.72 5.00E-04 1.41E-14 7.24E-04 1.04E-15 -3.72E-02 3.99E-13

hinf8 Solved Solved 162.79 1.00E-03 2.87E-14 5.87E-04 3.63E-13 -4.70E-02 -3.72E-11

hinf9 Solved Solved 4.95 1.00E-03 9.71E-15 5.20E-04 2.05E-15 -1.60E-02 -5.14E-14

maxG11 Time Acc. 3600.26 2.06E-05 1.03E-14 6.35E-03 6.53E-14 -6.23E-04 3.77E-15

maxG32 Time Fail 3601.2 1.16E-03 8.48E-15 2.38E-01 1.67E-13 -1.01E-02 1.03E-15

maxG51 Time Acc. 3600.68 6.94E-05 1.87E-14 1.27E-03 5.76E-15 -7.67E-04 4.68E-15

maxG55 Time Fail 3755.08 7.98E-02 4.11E-15 2.68E+00 1.02E-13 -4.01E-02 -8.36E-17

maxG60 Time Fail 3793.04 2.47E-01 4.53E-15 5.52E+00 1.15E-15 -6.70E-02 1.78E-17

mcp100 Solved Solved 45.98 9.27E-06 2.07E-15 1.00E-03 0.00E+00 -1.23E-04 7.64E-15

mcp124:1 Solved Solved 119.83 6.97E-06 2.68E-15 1.00E-03 8.98E-15 -2.01E-04 -2.73E-15

mcp124:2 Solved Solved 77.45 1.08E-05 2.31E-15 1.00E-03 1.12E-14 -1.41E-04 -1.30E-15

mcp124:3 Solved Solved 44.8 1.53E-05 2.78E-15 9.99E-04 9.65E-15 -8.80E-05 -2.91E-15

mcp124:4 Solved Solved 29.7 2.21E-05 4.34E-15 1.00E-03 7.79E-15 -9.19E-05 1.99E-15

mcp250:1 Solved Solved 500.62 1.79E-05 5.83E-15 1.00E-03 1.36E-14 -1.99E-04 -3.70E-15

mcp250:2 Solved Solved 345.79 1.61E-05 4.92E-15 1.00E-03 1.63E-14 -1.27E-04 -3.16E-15
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mcp250:3 Solved Solved 229.83 2.11E-05 6.18E-15 1.00E-03 5.47E-15 -1.04E-04 3.36E-15

mcp250:4 Solved Solved 195.74 2.68E-05 3.87E-15 1.00E-03 1.55E-14 -9.30E-05 -3.50E-15

mcp500:1 Solved Solved 2240.98 5.66E-05 1.96E-14 1.00E-03 2.20E-14 -2.11E-04 -4.38E-15

mcp500:2 Solved Solved 1664.98 4.47E-05 8.12E-15 1.00E-03 3.20E-14 -1.56E-04 -3.54E-15

mcp500:3 Solved Solved 1135.73 3.79E-05 9.41E-15 1.00E-03 2.20E-14 -1.02E-04 2.60E-15

mcp500:4 Solved Solved 802.4 4.63E-05 6.49E-15 1.00E-03 2.27E-14 -9.09E-05 -1.52E-15

qap10 Solved Solved 84.05 1.00E-03 1.93E-17 6.29E-06 3.74E-15 -5.27E-03 -5.26E-16

qap5 Solved Solved 0.81 9.99E-04 7.02E-17 1.26E-04 2.37E-16 -2.45E-03 8.16E-18

qap6 Solved Solved 20.09 1.00E-03 3.58E-17 1.41E-05 2.07E-15 -5.75E-03 -1.12E-15

qap7 Solved Solved 23.66 1.00E-03 2.32E-17 1.29E-05 1.33E-15 -5.67E-03 -1.85E-16

qap8 Solved Solved 50.04 1.00E-03 1.91E-17 8.87E-06 2.46E-15 -5.90E-03 1.19E-15

qap9 Solved Solved 84.46 1.00E-03 1.68E-17 7.88E-06 4.72E-15 -4.08E-03 -8.11E-17

qpG11 Time Fail 3601.1 2.31E-03 5.79E-15 1.47E-01 1.51E-13 -3.07E-03 1.44E-15

qpG51 Time Fail 3602.53 5.13E-02 1.03E-13 2.15E+00 7.04E-13 -9.70E-02 -2.97E-14

ss30 Time Fail 3600.13 2.27E-02 4.81E-15 7.80E-02 7.62E-12 -4.52E-01 -4.88E-11

theta1 Solved Solved 1.32 1.00E-03 2.11E-16 3.43E-04 6.69E-15 -1.12E-03 -6.32E-16
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problem reported status time (s) err1 err2 err3 err4 err5 err6

theta2 Solved Solved 49.87 1.00E-03 1.99E-16 6.32E-05 1.51E-14 -3.20E-03 8.92E-16

theta3 Solved Solved 128.54 9.99E-04 2.46E-16 4.78E-05 3.01E-14 -2.84E-03 6.12E-17

theta4 Solved Solved 254.68 1.00E-03 2.38E-16 5.22E-05 3.51E-14 -2.44E-03 1.13E-15

theta5 Solved Solved 492.43 9.89E-04 2.00E-16 4.48E-04 4.46E-14 -2.51E-03 1.86E-15

theta6 Solved Solved 716.7 1.00E-03 2.06E-16 4.75E-05 5.66E-14 -2.12E-03 9.31E-16

thetaG11 Time Fail 3600.34 6.99E-04 1.46E-14 4.09E-02 1.32E-13 -6.06E-03 -4.28E-15

thetaG51 Time Fail 3601.86 3.92E-01 1.99E-14 1.46E-01 1.86E-13 -8.79E-04 6.08E-13

truss1 Solved Solved 1.06 9.29E-04 0.00E+00 5.98E-04 4.94E-15 -8.49E-04 -3.47E-15

truss2 Solved Solved 43.77 7.13E-04 7.43E-04 1.56E-04 1.16E-14 1.00E-03 -2.96E-04

truss3 Solved Solved 7.54 4.53E-05 3.47E-16 4.41E-04 3.63E-16 -2.00E-04 3.33E-15

truss4 Solved Solved 1.3 3.22E-04 1.69E-16 4.55E-04 5.28E-15 -2.88E-05 2.11E-15

truss5 Solved Solved 156.31 8.53E-04 7.99E-04 9.48E-05 2.93E-16 1.00E-03 -2.97E-04

truss6 Solved Solved 3235.08 1.00E-03 3.05E-14 1.82E-04 3.18E-13 -1.68E-03 3.72E-13

truss7 Solved Solved 1885.27 1.00E-03 2.24E-14 2.64E-04 1.20E-13 -1.77E-03 3.88E-13

truss8 Solved Solved 360.05 7.58E-04 7.86E-04 2.03E-04 1.93E-16 7.39E-04 -2.91E-04
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A.3.2 SDPAD Results on Mittelmann Library

On the Mittelmann Library problems, SDPAD had a shifted geometric mean of 2028.13 CPU seconds, with shift
10 s, cut off at 1 hour, treated as taking 1 hour for failures, including having any error worse than 10−2.

problem reported status time (s) err1 err2 err3 err4 err5 err6

1dc.1024 Time Fail 3601.82 0.312 1.79E-15 0.00122 1.15E-13 0.994 -8.95E-14

1et.1024 Time Fail 3601.49 0.463 3.24E-15 0.000143 2.43E-13 0.997 -2.15E-13

1tc.1024 Time Fail 3601.03 0.482 3.32E-15 1.9E-05 2.93E-13 0.997 -2.65E-14

1zc.1024 Time Fail 3601.87 0.281 2.01E-15 3.32E-07 1.09E-12 0.996 -3.33E-13

Bex2_1_5 Solved Solved 3563.7 0.00096 9.99E-16 0.000322 1.24E-14 -0.00541 1.96E-13

biggs Time Fail 3600.16 5.49 7.73E-10 7.62 9.69E-11 -1 -9E-09

broyden25 Time Acc. 3600.17 0.00858 4.57E-15 0.000945 1.21E-14 -0.0695 -1.67E-13

Bst_jcbpaf2 Solved Solved 1420.23 0.000992 4.68E-16 0.000218 9.85E-16 -0.005 1.07E-15

buck3 Time Fail 3600.26 0.0984 2.9E-14 0.0586 7.64E-16 -0.423 1.88E-14

buck4 Time Fail 3600.24 0.106 7.66E-15 0.0501 9.76E-16 -0.312 5E-14

buck5 Time Fail 3601.27 2.2 2.24E-15 0.0646 1.4E-15 -0.346 1.05E-13

butcher Time Acc. 3600.1 0.00328 5.28E-15 0.00408 3.52E-16 -0.105 2.63E-15

cancer_100 Time Acc. 3600.31 0.00235 1.13E-13 0.00123 0 -9.01E-05 1.2E-13
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problem reported status time (s) err1 err2 err3 err4 err5 err6

checker_1.5 Time Fail 3606.77 0.352 1.69E-14 0.00733 1.6E-16 -0.0237 4.21E-15

chs_5000 Solved Solved 39.23 1.88E-05 2.42E-16 5.84E-05 1.67E-16 -7.04E-07 -9.97E-14

cnhil10 Error Fail

cnhil8 Error Fail

cphil10 Error Fail

cphil12 Error Fail

e_moment_

quadknap_

17_100_

0.5_2_2

Solved Solved 213.77 1.87E-05 4.71E-16 0.000708 7.39E-17 -0.000906 2.26E-16

e_moment_

stable_17_

0.5_2_2

Solved Solved 1318.54 3.04E-05 1.05E-14 0.000239 2.1E-16 -0.00473 -1.74E-13

foot Time Fail 3603.63 1200 7.62E-13 31.7 7.97E-12 -0.0865 -3.2E-14

G40_mb Time Fail 3603.52 2.2 9.17E-15 0.167 8.2E-14 -0.0279 6.76E-15

G40mc Time Fail 3604.4 0.00359 1.19E-14 0.0994 3.96E-14 -0.0188 1.58E-15
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problem reported status time (s) err1 err2 err3 err4 err5 err6

G48_mb Time Fail 3628.51 0.00552 7.5E-15 1.97 2.52E-13 -0.203 1.29E-14

G48mc Time Fail 3621.98 0.0167 9.96E-15 1.43 2.07E-13 -0.0177 -1.71E-15

G55mc Time Fail 3735.52 0.155 4.65E-15 2.19 6.69E-14 -0.0358 -3.69E-16

G59mc Time Fail 3628.01 0.304 5.05E-15 1.64 3.02E-14 -0.101 -1.32E-15

hand Time Fail 3602.28 2.01 1.6E-13 0.607 1.88E-12 -0.00743 4.03E-14

ice_2.0 Time Fail 3674.2 4.19 9.31E-15 0.0122 7.86E-18 0.387 -6.5E-17

inc_1200 Time Fail 3602.18 0.00504 2.25E-15 0.0223 3.95E-14 -0.203 2.95E-13

inc_600 Time Acc. 3600.41 0.00179 3.4E-15 0.00475 2.43E-14 -0.169 1.1E-13

mater:3 Time Acc. 3600.16 0.00219 1.88E-15 0.000383 3.08E-14 -0.00363 1.19E-13

mater:4 Time Fail 3600.07 0.116 7.2E-16 0.0199 2.27E-13 -0.133 -1.94E-13

mater:5 Time Fail 3600.27 0.393 2.01E-16 0.0508 8.56E-15 -0.259 4.43E-16

mater:6 Time Fail 3600.74 0.908 2.38E-16 0.0222 2.84E-14 -0.29 -2.04E-14

neosfbr25 Error Fail

neosfbr30e8 Time Fail 3600 NaN NaN NaN NaN NaN NaN

neu1 Solved Solved 333.52 0.000338 1.35E-16 0.000889 2.71E-14 -0.379 8.7E-12

neu1g Solved Solved 723.49 0.001 5.19E-16 0.000674 1.13E-13 -0.00192 5.98E-13

76



problem reported status time (s) err1 err2 err3 err4 err5 err6

neu2c Time Acc. 3600.43 0.00493 1.33E-14 0.00294 4.31E-14 -0.0106 3.09E-12

neu2 Solved Solved 936.5 0.000149 6.79E-16 0.000721 2.1E-14 -0.0462 -9.83E-13

neu2g Time Fail 3600.17 0.00946 3.31E-14 0.0302 5.43E-12 1 5.34E-11

neu3 Solved Solved 2.47 5.66E-05 0 0.000524 0 0.000396 0

neu3g Solved Solved 634.08 6.36E-06 3.15E-16 0.000999 3.96E-17 -0.00315 3.5E-14

nonc_500 Solved Solved 1102.43 0.000252 2.68E-15 0.000118 2.52E-16 -0.000752 6.06E-14

p_auss2_3.0 Time Fail 4484.81 6.14 1.11E-14 0.038 1.22E-17 0.093 1.03E-14

rabmo Solved Solved 2591.14 0.000776 3.98E-15 0.000766 2.26E-15 -0.0447 -3.94E-15

reimer5 Time Acc. 3600.21 0.000943 2.07E-15 0.0087 2.75E-16 -0.0795 -6.05E-16

rendl1_2000_

1e:6

Time Fail 3610.7 94.4 9.65E-14 0.00184 5.73E-15 0.00577 8.47E-16

ros_2000 Time Acc. 3600.32 0.00378 1.47E-15 0.000253 9.57E-16 -0.153 -4.33E-14

ros_500 Solved Solved 200.75 0.000998 1.15E-15 9.42E-05 8.52E-16 -0.00308 -1.82E-14

rose13 Solved Solved 190.21 9.4E-06 3.32E-16 0.001 2.78E-15 -0.00446 1.71E-12

rose15 Solved Solved 358.88 1.03E-05 7.38E-16 0.000997 2.93E-15 -0.11 5.18E-11

sensor_1000 Time Fail 3600.7 0.00742 8.3E-15 0.0186 9.08E-14 -0.376 1.16E-12
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problem reported status time (s) err1 err2 err3 err4 err5 err6

sensor_500 Solved Solved 590.18 0.000998 2.94E-15 0.000585 1.13E-13 -0.000495 -3.65E-13

shmup3 Time Fail 3602.44 0.00519 6.96E-15 0.0124 2.43E-16 -0.382 1.07E-14

shmup4 Time Fail 3602.33 0.0967 8.96E-15 0.0138 1.26E-16 -0.456 -2.65E-15

shmup5 Time Fail 3711.79 0.439 1.02E-15 0.066 1.02E-16 -0.639 -2.82E-13

spar060:020:1

_LS

Solved Solved 90.46 0.00078 1.48E-15 0.000387 1.51E-15 -3.75E-05 -1.04E-15

swissroll Time Fail 3600.63 0.026 1.72E-14 1.68 8.27E-12 -0.472 -5.08E-13

taha1a Solved Solved 461.23 1.69E-05 2.01E-16 0.000282 6.05E-16 -0.000223 -1.26E-15

taha1b Solved Solved 2648.16 0.000595 5.8E-16 0.000238 1.46E-15 -0.0111 -9.03E-16

taha1c Solved Solved 1153.1 2.85E-05 4.15E-16 0.000285 4.25E-16 -0.000185 -3.47E-15

theta12 Time Acc. 3600.57 0.00235 2.2E-16 7.41E-05 1.06E-13 -0.000994 -2.36E-15

tiger_texture Time Fail 3601.27 34.8 1.6E-14 0.152 2.49E-13 -0.287 -2.66E-13

trto3 Time Fail 3600.23 0.0383 8.65E-14 0.0628 2.37E-16 -0.647 -7.37E-14

trto4 Time Fail 3600.81 0.0629 1.98E-14 0.0492 9.23E-17 -0.589 3.79E-14

trto5 Time Fail 3600.88 0.397 1.65E-15 0.0464 2.64E-16 -0.309 5.98E-14

vibra3 Time Fail 3600.31 0.0303 9.52E-15 0.0404 1.7E-15 -0.34 -3.21E-14
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problem reported status time (s) err1 err2 err3 err4 err5 err6

vibra4 Time Fail 3600.75 0.0405 1.14E-14 0.0337 3.47E-16 -0.302 2.75E-16

vibra5 Time Fail 3602.36 1.29 4.05E-15 0.0492 9.31E-16 -0.311 -1.31E-14

yalsdp Solved Solved 665.6 0.000968 2.33E-16 0.000672 7.27E-15 -0.000771 2.19E-14

A.4 SCS Results

SCS had an overall geometric mean of 513.23 CPU seconds, with shift 10 s, cut off at 1 hour, treated as taking 1
hour for failures, including having any error worse than 10−2.

A.4.1 SCS Results on SDPLIB

On the SDPLIB problems, SCS had a geometric mean of 189.01 CPU seconds, with shift 10 s, cut off at 1 hour,
treated as taking 1 hour for failures, including having any error worse than 10−2.

problem reported status time (s) err1 err2 err3 err4 err5 err6

arch0 Solved Solved 385.26 7.17E-05 1.73E-19 1.09E-07 3.26E-22 -4.69E-09 3.84E-13

arch2 Solved Solved 444.52 6.94E-05 2.76E-19 1.20E-07 7.70E-22 -7.38E-10 3.61E-13

arch4 Solved Solved 668.7 6.33E-05 1.94E-19 1.32E-07 2.82E-11 -2.10E-09 -5.07E-13
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problem reported status time (s) err1 err2 err3 err4 err5 err6

arch8 Solved Solved 1566.79 5.24E-05 3.46E-19 8.06E-08 1.48E-11 5.01E-10 -3.15E-13

control10 Time Fail 3600 NaN NaN NaN NaN NaN NaN

control11 Time Fail 3600 NaN NaN NaN NaN NaN NaN

control1 Time Fail 3600 NaN NaN NaN NaN NaN NaN

control2 Time Fail 3600 NaN NaN NaN NaN NaN NaN

control3 Time Fail 3600 NaN NaN NaN NaN NaN NaN

control4 Time Fail 3600 NaN NaN NaN NaN NaN NaN

control5 Time Fail 3600 NaN NaN NaN NaN NaN NaN

control6 Time Fail 3600 NaN NaN NaN NaN NaN NaN

control7 Time Fail 3600 NaN NaN NaN NaN NaN NaN

control8 Time Fail 3600 NaN NaN NaN NaN NaN NaN

control9 Time Fail 3600 NaN NaN NaN NaN NaN NaN

equalG11 Time Fail 3600 NaN NaN NaN NaN NaN NaN

equalG51 Time Fail 3600 NaN NaN NaN NaN NaN NaN

gpp100 Solved Solved 8.32 1.96E-05 3.68E-15 1.78E-05 5.26E-10 1.50E-06 -7.20E-10

gpp124:1 Solved Solved 48.44 5.44E-05 3.30E-15 2.69E-05 2.30E-09 6.28E-07 2.27E-07
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problem reported status time (s) err1 err2 err3 err4 err5 err6

gpp124:2 Solved Solved 11.38 4.37E-05 2.50E-15 3.05E-05 6.26E-10 4.25E-06 2.98E-10

gpp124:3 Solved Solved 11.35 2.97E-05 3.68E-15 3.87E-05 6.60E-10 -6.85E-07 -3.84E-10

gpp124:4 Solved Solved 17.19 5.01E-05 1.80E-15 4.12E-05 2.74E-09 2.19E-06 -1.57E-09

gpp250:1 Solved Solved 139.07 4.83E-05 4.76E-15 3.71E-05 1.10E-09 3.28E-06 2.22E-10

gpp250:2 Solved Solved 85.13 7.44E-05 5.47E-15 5.84E-05 5.91E-10 5.59E-06 -1.91E-09

gpp250:3 Solved Solved 84.43 7.02E-05 6.75E-15 7.33E-05 6.50E-10 4.81E-06 -6.36E-10

gpp250:4 Solved Solved 83.6 7.09E-05 4.11E-15 8.63E-05 5.00E-10 5.36E-07 2.83E-10

gpp500:1 Solved Acc. 1256.39 1.16E-04 1.76E-14 5.56E-05 3.88E-10 2.65E-06 -5.71E-09

gpp500:2 Solved Solved 708.36 8.57E-05 1.05E-14 4.67E-05 8.01E-10 -2.42E-07 2.01E-09

gpp500:3 Solved Acc. 376.1 1.09E-04 1.13E-14 7.16E-05 1.00E-10 -1.78E-07 -1.04E-10

gpp500:4 Solved Acc. 411.73 1.12E-04 8.06E-15 9.60E-05 6.23E-11 -1.68E-07 3.80E-12

hinf10 Solved Solved 1503.47 6.32E-06 4.90E-16 1.74E-05 3.00E-06 -1.69E-06 6.83E-05

hinf11 Solved Solved 97.38 1.00E-05 3.33E-16 1.24E-05 1.11E-05 1.17E-07 -4.24E-05

hinf12 Solved Solved 0.41 3.70E-07 3.20E-18 1.19E-05 0.00E+00 2.23E-06 8.49E-05

hinf13 Solved Acc. 2866.07 9.77E-06 1.05E-13 1.94E-05 0.00E+00 2.37E-06 4.20E-04

hinf14 Solved Solved 2061.73 9.12E-06 4.29E-14 1.37E-05 9.61E-08 6.73E-07 -2.91E-06
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problem reported status time (s) err1 err2 err3 err4 err5 err6

hinf15 Time Fail 3600 NaN NaN NaN NaN NaN NaN

hinf1 Solved Fail 8.01 4.15E-06 2.53E-17 1.04E-05 2.88E-02 1.50E-06 -2.43E-03

hinf2 Solved Solved 0.6 5.63E-06 7.11E-15 8.01E-06 2.21E-08 1.74E-07 -2.09E-07

hinf3 Solved Solved 1.27 4.22E-06 1.72E-14 6.11E-06 7.93E-08 3.21E-07 5.98E-06

hinf4 Solved Solved 11.35 7.21E-06 3.41E-16 8.12E-06 1.23E-05 1.26E-09 3.36E-06

hinf5 Solved Solved 5.54 7.72E-06 1.33E-13 9.39E-06 8.83E-07 1.46E-07 -6.76E-05

hinf6 Solved Solved 139.9 8.79E-06 1.87E-14 5.35E-06 4.07E-07 1.39E-07 -1.63E-05

hinf7 Solved Fail 0.8 9.72E-06 2.27E-12 1.68E-05 9.64E-06 -3.41E-08 1.17E-02

hinf8 Solved Solved 14.37 5.81E-06 4.74E-14 3.91E-06 1.14E-07 5.93E-08 -1.62E-06

hinf9 Solved Solved 27.08 8.08E-06 1.92E-12 1.73E-05 5.02E-06 1.51E-07 -3.45E-02

maxG11 Solved Acc. 1184.37 1.10E-04 7.64E-14 3.09E-07 5.57E-12 -2.26E-07 7.48E-13

maxG32 Time Fail 3600 NaN NaN NaN NaN NaN NaN

maxG51 Solved Solved 175.4 6.89E-05 2.90E-14 6.26E-08 2.35E-12 -1.56E-07 -3.56E-12

maxG55 Time Fail 3600 NaN NaN NaN NaN NaN NaN

maxG60 Time Fail 3600 NaN NaN NaN NaN NaN NaN

mcp100 Solved Solved 1 4.17E-05 2.31E-15 1.14E-06 1.53E-11 -1.13E-06 7.28E-12
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problem reported status time (s) err1 err2 err3 err4 err5 err6

mcp124:1 Solved Solved 3.27 2.70E-05 4.47E-15 5.01E-07 1.96E-11 -1.50E-06 6.06E-12

mcp124:2 Solved Solved 1.91 1.78E-05 3.10E-15 3.22E-07 1.22E-11 -1.10E-06 1.70E-12

mcp124:3 Solved Solved 1.67 1.52E-05 2.25E-15 3.03E-07 1.76E-11 3.90E-07 1.02E-11

mcp124:4 Solved Solved 1.28 4.04E-05 2.68E-15 1.32E-06 2.85E-11 -6.19E-07 6.97E-12

mcp250:1 Solved Solved 16.25 2.95E-05 6.49E-15 2.43E-07 1.34E-11 -8.57E-08 -2.77E-12

mcp250:2 Solved Solved 8.85 3.68E-05 3.37E-15 3.86E-07 1.36E-11 9.08E-07 -5.68E-12

mcp250:3 Solved Solved 6.34 5.85E-05 2.99E-15 7.59E-07 1.93E-11 -1.34E-06 -1.27E-12

mcp250:4 Solved Solved 5.18 3.66E-05 6.41E-15 5.92E-07 2.71E-11 9.43E-07 5.75E-12

mcp500:1 Solved Solved 177.41 6.29E-05 1.47E-14 2.30E-07 7.55E-12 3.51E-07 1.16E-14

mcp500:2 Solved Solved 53.05 7.63E-05 7.28E-15 5.36E-07 1.16E-11 -9.40E-07 -2.76E-12

mcp500:3 Solved Solved 35.45 7.19E-05 7.05E-15 4.00E-07 1.45E-11 9.34E-07 -6.77E-13

mcp500:4 Solved Solved 38.33 4.25E-05 1.38E-14 2.60E-07 1.48E-11 4.67E-07 -1.99E-12

qap10 Solved Acc. 82.13 1.18E-05 2.18E-18 1.92E-04 4.96E-09 -6.21E-06 -1.51E-10

qap5 Solved Solved 0.33 2.64E-06 3.42E-17 4.07E-06 0.00E+00 1.22E-07 3.95E-11

qap6 Solved Solved 16.99 1.40E-05 7.31E-18 5.84E-05 6.20E-09 -9.92E-06 -1.55E-10

qap7 Solved Solved 22.91 1.27E-05 6.27E-18 9.21E-05 4.00E-09 3.73E-07 4.74E-10
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problem reported status time (s) err1 err2 err3 err4 err5 err6

qap8 Solved Acc. 41.68 7.42E-06 5.08E-18 1.07E-04 4.58E-09 -7.95E-06 7.50E-10

qap9 Solved Acc. 62.85 1.33E-05 4.31E-18 1.35E-04 3.75E-09 2.95E-07 -2.69E-10

qpG11 Time Fail 3600 NaN NaN NaN NaN NaN NaN

qpG51 Time Fail 3600 NaN NaN NaN NaN NaN NaN

ss30 Solved Solved 2023.58 7.49E-05 3.10E-17 4.81E-08 6.55E-12 2.00E-07 3.70E-12

theta1 Solved Solved 0.89 4.00E-06 3.10E-17 3.83E-05 8.61E-10 1.54E-06 2.02E-11

theta2 Solved Solved 15.22 9.31E-06 3.64E-17 8.79E-05 6.49E-10 -1.92E-07 5.36E-12

theta3 Solved Acc. 22.82 5.72E-06 1.92E-17 1.99E-04 8.75E-10 1.70E-06 -1.58E-12

theta4 Solved Acc. 56.35 7.16E-06 1.13E-17 2.97E-04 9.79E-10 -6.50E-06 -3.90E-12

theta5 Solved Acc. 83.55 9.55E-06 1.11E-17 2.60E-04 1.12E-09 2.23E-06 1.43E-12

theta6 Solved Solved 136.85 1.70E-06 1.47E-17 6.47E-05 1.25E-09 -1.96E-06 4.84E-12

thetaG11 Solved Acc. 2619.85 1.98E-04 1.51E-13 7.54E-07 0.00E+00 4.19E-08 3.22E-11

thetaG51 Time Fail 3600 NaN NaN NaN NaN NaN NaN

truss1 Solved Solved 0.27 7.81E-07 1.85E-17 2.69E-07 1.60E-16 -1.07E-08 -1.51E-16

truss2 Solved Solved 1.18 1.44E-05 2.49E-15 1.21E-06 5.64E-09 2.01E-08 -1.29E-09

truss3 Solved Solved 0.72 6.90E-06 2.07E-16 2.43E-06 4.67E-10 1.89E-07 -1.08E-10
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problem reported status time (s) err1 err2 err3 err4 err5 err6

truss4 Solved Solved 0.28 1.12E-07 1.00E-16 3.32E-08 7.62E-10 5.90E-09 -2.39E-10

truss5 Solved Solved 568.42 1.46E-05 1.08E-16 6.44E-07 2.44E-09 1.06E-08 9.77E-11

truss6 Solved Solved 657.07 9.31E-06 1.21E-17 2.34E-06 4.98E-08 -3.73E-10 5.62E-09

truss7 Solved Solved 0.64 7.87E-06 9.25E-18 1.58E-06 4.96E-14 -1.96E-10 1.21E-15

truss8 Time Fail 3600 NaN NaN NaN NaN NaN NaN

A.4.2 SCS Results on Mittelmann Library

On the Mittelmann Library problems, SCS had a geometric mean of 1667.92 CPU seconds, with shift 10 s, cut
off at 1 hour, treated as taking 1 hour for failures, including having any error worse than 10−2.

problem reported status time (s) err1 err2 err3 err4 err5 err6

1dc.1024 Time Fail 3600 NaN NaN NaN NaN NaN NaN

1et.1024 Time Fail 3600 NaN NaN NaN NaN NaN NaN

1tc.1024 Time Fail 3600 NaN NaN NaN NaN NaN NaN

1zc.1024 Time Fail 3600 NaN NaN NaN NaN NaN NaN

Bex2_1_5 Infeasible Fail 23.23 8.22E-01 0.00E+00 NaN NaN NaN NaN
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problem reported status time (s) err1 err2 err3 err4 err5 err6

biggs Time Fail 3600 NaN NaN NaN NaN NaN NaN

broyden25 Time Fail 3600 NaN NaN NaN NaN NaN NaN

Bst_jcbpaf2 Time Fail 3600 NaN NaN NaN NaN NaN NaN

buck3 Time Fail 3600 NaN NaN NaN NaN NaN NaN

buck4 Time Fail 3600 NaN NaN NaN NaN NaN NaN

buck5 Time Fail 3600 NaN NaN NaN NaN NaN NaN

butcher Time Fail 3600 NaN NaN NaN NaN NaN NaN

cancer_100 Solved Acc. 2048.5 6.38E-04 9.75E-14 2.20E-05 1.67E-07 -7.55E-07 1.09E-08

checker_1.5 Time Fail 3600 NaN NaN NaN NaN NaN NaN

chs_5000 Solved Solved 8.77 9.76E-06 5.05E-17 6.21E-06 5.09E-11 -4.10E-06 -3.44E-10

cnhil10 Solved Solved 87.08 2.37E-05 9.90E-17 6.13E-12 1.17E-18 -1.16E-13 -7.08E-18

cnhil8 Solved Solved 29.04 2.32E-05 8.59E-17 8.89E-12 2.48E-18 -2.59E-14 1.49E-17

cphil10 Solved Solved 2.39 1.27E-10 0.00E+00 3.69E-17 8.29E-19 -1.05E-17 -2.04E-18

cphil12 Solved Solved 6.75 5.86E-09 0.00E+00 1.90E-15 7.43E-19 -2.15E-16 -4.32E-19
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problem reported status time (s) err1 err2 err3 err4 err5 err6

e_moment_

quadknap_

17_100_

0.5_2_2

Time Fail 3600 NaN NaN NaN NaN NaN NaN

e_moment_

stable_17_

0.5_2_2

Time Fail 3600 NaN NaN NaN NaN NaN NaN

foot Time Fail 3600 NaN NaN NaN NaN NaN NaN

G40_mb Time Fail 3600 NaN NaN NaN NaN NaN NaN

G40mc Time Fail 3600 NaN NaN NaN NaN NaN NaN

G48_mb Time Fail 3600 NaN NaN NaN NaN NaN NaN

G48mc Time Fail 3600 NaN NaN NaN NaN NaN NaN

G55mc Time Fail 3600 NaN NaN NaN NaN NaN NaN

G59mc Time Fail 3600 NaN NaN NaN NaN NaN NaN

hand Time Fail 3600 NaN NaN NaN NaN NaN NaN

ice_2.0 Time Fail 3600 NaN NaN NaN NaN NaN NaN
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problem reported status time (s) err1 err2 err3 err4 err5 err6

inc_1200 Time Fail 3600 NaN NaN NaN NaN NaN NaN

inc_600 Time Fail 3600 NaN NaN NaN NaN NaN NaN

mater:3 Time Fail 3600 NaN NaN NaN NaN NaN NaN

mater:4 Time Fail 3600 NaN NaN NaN NaN NaN NaN

mater:5 Time Fail 3600 NaN NaN NaN NaN NaN NaN

mater:6 Time Fail 3600 NaN NaN NaN NaN NaN NaN

neosfbr25 Time Fail 3600 NaN NaN NaN NaN NaN NaN

neosfbr30e8 Time Fail 3600 NaN NaN NaN NaN NaN NaN

neu1 Time Fail 3600 NaN NaN NaN NaN NaN NaN

neu1g Time Fail 3600 NaN NaN NaN NaN NaN NaN

neu2c Time Fail 3600 NaN NaN NaN NaN NaN NaN

neu2 Time Fail 3600 NaN NaN NaN NaN NaN NaN

neu2g Time Fail 3600 NaN NaN NaN NaN NaN NaN

neu3 Solved Solved 0.99 1.64E-13 0.00E+00 5.98E-14 6.33E-18 -5.34E-14 3.38E-16

neu3g Solved Solved 942.64 1.38E-05 1.52E-16 1.02E-06 3.12E-13 -2.61E-09 -1.23E-12

nonc_500 Solved Solved 231.22 5.44E-05 6.21E-17 4.69E-05 4.90E-11 -7.78E-06 7.14E-10
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problem reported status time (s) err1 err2 err3 err4 err5 err6

p_auss2_3.0 Time Fail 3600 NaN NaN NaN NaN NaN NaN

rabmo Time Fail 3600 NaN NaN NaN NaN NaN NaN

reimer5 Time Fail 3600 NaN NaN NaN NaN NaN NaN

rendl1_2000_

1e:6

Time Fail 3600 NaN NaN NaN NaN NaN NaN

ros_2000 Solved Solved 98.83 6.84E-06 8.61E-18 4.15E-05 1.94E-10 3.08E-06 -8.65E-11

ros_500 Solved Solved 18.77 6.49E-05 7.32E-17 3.46E-05 1.68E-10 6.25E-06 -9.12E-11

rose13 Solved Solved 1265.64 4.06E-05 1.36E-16 3.71E-06 1.31E-10 -2.22E-06 5.47E-09

rose15 Time Fail 3600 NaN NaN NaN NaN NaN NaN

sensor_1000 Time Fail 3600 NaN NaN NaN NaN NaN NaN

sensor_500 Solved Solved 1595.92 1.63E-05 5.30E-16 9.68E-06 4.71E-11 -1.08E-07 -1.33E-12

shmup3 Time Fail 3600 NaN NaN NaN NaN NaN NaN

shmup4 Time Fail 3600 NaN NaN NaN NaN NaN NaN

shmup5 Time Fail 3600 NaN NaN NaN NaN NaN NaN

spar060:020:1

_LS

Solved Solved 1193.32 6.87E-06 6.90E-16 6.06E-05 6.87E-10 7.07E-08 -9.56E-11

89



problem reported status time (s) err1 err2 err3 err4 err5 err6

swissroll Time Fail 3600 NaN NaN NaN NaN NaN NaN

taha1a Time Fail 3600 NaN NaN NaN NaN NaN NaN

taha1b Time Fail 3600 NaN NaN NaN NaN NaN NaN

taha1c Time Fail 3600 NaN NaN NaN NaN NaN NaN

theta12 Solved Acc. 427.51 9.35E-06 2.10E-17 2.78E-04 1.04E-09 5.21E-06 -6.55E-13

tiger_texture Time Fail 3600 NaN NaN NaN NaN NaN NaN

trto3 Solved Solved 130.69 1.56E-07 3.83E-18 1.23E-10 3.67E-12 9.53E-10 -2.71E-13

trto4 Solved Solved 1147.15 2.11E-07 6.77E-18 5.56E-11 1.82E-12 -4.02E-09 2.51E-12

trto5 Time Fail 3600 NaN NaN NaN NaN NaN NaN

vibra3 Time Fail 3600 NaN NaN NaN NaN NaN NaN

vibra4 Time Fail 3600 NaN NaN NaN NaN NaN NaN

vibra5 Time Fail 3600 NaN NaN NaN NaN NaN NaN

yalsdp Solved Solved 121.86 3.41E-06 4.54E-17 4.66E-05 4.62E-11 -1.85E-06 4.43E-11
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