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ABSTRACT

It has been shown in experiment that the heat capacity of glass form-

ers has a frequency dependence, this is called the dynamic heat capacity. The

dynamic heat capacity for a simple spin model known to be a glass former,

the east Ising model, is measured by simulation. The result shows stretched

exponential decay like relaxation, and the data is fit to the appropriate form.

For low temperatures, the relaxation time grows proportionally to exponential

inverse temperature squared, which is the theoretical low temperature limit.

Another model is applied where the overall relaxation is made up of the re-

laxations of subdomains that each have their own characteristic times. Using

Markov Chains, these times are computed numerically and symbolically, and

the model is seen to match the simulations for low temperatures and high

frequencies. The dynamics of the east model are tracked very well by this pro-

cedure, and we compare this to the parameters of the stretched exponential fits

showing that a discrete number of relaxation times can give rise to stretched

exponential like behavior.
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CHAPTER 1

INTRODUCTION

1.1 The Glass Transition

Amorphous solids (specifically, glasses and polymers) have compli-

cated viscoelastic properties, meaning that they act like both solids and liquids.

For temperatures and timescales above their glass transition, they bend and

reform shape without readily fracturing. This is because these materials can

be viewed as a liquid with very high viscosity, so they flow very slowly. At the

glass transition, the amount of time required for the material to flow outlasts

the patience of the experimenter - that is, it takes too long for the material to

relax into equilibrium.

One way of observing the glass transition is to track the heat capac-

ity with temperature. The heat capacity typically drops off as temperature

approaches the glass transition. This is because the material is unable to rear-

range itself in experimental time to react to the change of heat or temperature.

This type of experiment is called differential scanning calorimetry (DSC).

With the dynamic heat capacity one can track how long the relax-

ations take. The long time reconfigurations of the system are often called α-

processes, and the short time collisions of the atoms are called β-processes [49].

On timescales shorter then that of the α-processes, the material is glassy, so

when the timescale of an α-process becomes extremely long, the material is

1
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considered a glass.

A subject of considerable debate is whether the timescale of the α-

process, or relaxation time (commonly denoted τ), diverges to infinity at a

nonzero temperature. If it does, then the glass transition is a true phase transi-

tion, and there some good reasons for thinking it might be (e.g. the Kauzmann

paradox [34]). Alternatively, τ could simply be diverging at absolute zero, but

diverging very quickly so that the relaxation time is larger than is measurable.

1.1.1 Relaxation Time

There are a few standard models that are used to relate the relaxation

time τ to the temperature T . The most basic one, and most commonly used

to fit β-processes, is the Arrhenius law. Namely, treating it as an activated

process: in order for the material to rearrange itself, it must go over some type

of energy barrier.

τArrhenius(T ) = τ0 exp

(
B

T

)
(1.1)

where τ0 and B are fitting parameters, and τ diverges at absolute zero.

A non-Arrhenius form, which has a divergence at a critical tempera-

ture Tc is the Vogel-Fulcher-Tammann law [49], given by

τVogel(T ) = τ0 exp

(
B

T − Tc

)
(1.2)

This is just a shifted form of equation (1.1) to put in a phase transition at a

nonzero critical temperature.
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An alternative non-Arrhenius form that has no divergence at nonzero

temperature but has a faster increase of τ with lowering temperature is the

exponential inverse temperature squared (EITS) form [14]. This is given by

τEITS(T ) = τ0 exp

(
B

T 2

)
(1.3)

Since all these forms have relaxation time growing very quickly with

decreasing temperature, it is nearly impossible to tell the difference between

them with experimental or simulation data. One of the advantages of the east

model that we’ll see later is that its τ is exactly solvable, and actually follows

equation (1.3) EITS.

1.2 Linear Response and Relaxation

In the study of amorphous solids one can look at the dynamics of a

system by perturbing it with a mechanical, electromagnetic, or thermodynamic

sinusoidal force and observing how the system responds. Using Fourier theory,

we can relate the dynamics to relaxation behavior in the time domain.

A common result is to get one or more peaks in the frequency domain

data that correspond to exponential-like behavior in the time domain. Each

describes a separate relaxation process, and when multiple peaks are observed,

it is commonly interpreted as cooperative behavior decoupling from collision

behavior. The cooperative behavior is what makes a viscoelastic material soft,

so understanding these dynamics gives an idea of how the material acts on a

macroscopic level.

This section will first discuss the general theory of the dynamic mod-

ulus and how it relates to the time domain, then move on to models commonly
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used in the literature.

1.2.1 Storage and Loss Moduli

The storage and loss moduli are quantities used in the study of the

dynamics of amorphous materials. There are, in general, mechanical, electro-

magnetic, and thermodynamic quantities that can be studied this way [36].

The basic idea is to perturb the material with some sort of sinusoidal driving

force, and measure its reaction.

Definition

Let x be the driving “force”, the input. So, x(t) takes the form

x(t) = A sin(ωt) (1.4)

where ω is the frequency and A is the amplitude of the driving force. In order

to be in the linear response regime, we choose the forcing amplitude A to be

small enough (exactly how small depends on the application). Then, since

we’re assuming linearity, the output (of whatever quantity we want to look at)

is also sinusoidal, but perhaps phase shifted. That is, we measure the output

y(t) as

y(t) = B sin(ωt+ δ) (1.5)

Since we’re assuming that this is a real system, it must be causal, so δ ≥ 0.

Also, since we’re assuming linearity, the amplitude of the output, B, varies

linearly with the amplitude of the input, A, and if A is zero, B must also be

zero. In general, B and δ can depend on the frequency of the input signal ω,
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so equation (1.5) is really

y(t) = Aγ(ω) sin(ωt+ δ(ω)) (1.6)

where Aγ(ω) ≡ B(ω)

From Fourier analysis, we know that the response of a linear system

is the convolution of the input function and the impulse response of the system.

Let g(t) be the impulse response with Fourier transform G(ω). G(ω) in this

context is called the dynamic modulus. Since we’re considering a physical

system, g must be a real valued function, and by using equation (1.4) the

response constructed in this way gives

y(t) = x(t) ∗ g(t) (1.7)

= A sin(ωt) ∗ g(t) (1.8)

= A

∫ ∞
−∞

g(τ) sin(ω(t− τ))dτ (1.9)

= A

∫ ∞
−∞

g(τ)=
{

eiω(t−τ)
}

dτ (1.10)

= A=
{∫ ∞
−∞

g(τ)eiω(t−τ)dτ

}
(1.11)

= A=
{

eiωt

∫ ∞
−∞

g(τ)e−iωτdτ

}
(1.12)

= A=
{

eiωtG(ω)
}

(1.13)

G is generally a complex valued function, so let G(ω) = G′(ω) + iG′′(ω) =

R(ω)eiφ(ω). Then,

y(t) = AR(ω)=
{

ei(ωt+φ(ω))
}

(1.14)

or

y(t) = AR(ω) sin(ωt+ φ(ω)) (1.15)
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Equations (1.6) and (1.15) must be the same, so

R(ω) = γ(ω) (1.16)

and

φ(ω) = δ(ω) (1.17)

So, the dynamic modulus, in terms of the induced forcing function and observed

response above, is

G∗(ω) = γ(ω) cos(δ(ω)) + iγ(ω) sin(δ(ω)) (1.18)

The real part of this is referred to as the storage because it quantifies how much

the output signal is in phase with the input signal, i.e.

G′(ω) = γ(ω) cos(δ(ω)) (1.19)

Similarly, the imaginary part is called the loss, i.e.

G′′(ω) = γ(ω) sin(δ(ω)) (1.20)

The dynamic modulus is often denoted with a ∗ to indicate a complex value

(not a complex conjugate) [15].

Kramers-Kronig Relations

As an aside that will be important later, if we have a complex valued

function F (z) = Fre(z)+iFim(z), z ∈ C, that is analytic in the upper half of the

z-plane and such that lim|z|→∞ f(z) = 0, then there is a relationship between

the real and imaginary parts of the function given by

Fre(x) =
1

π
−
∫ ∞
−∞

Fim(ξ)

ξ − x
dξ (1.21)
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Figure 1.1: Contour path used in the proof of the Kramers-Kronig relations.
The outer semicircle has radius R which is going to infinity, and the smaller
semicircle has radius ε which is approaching zero.

Fim(x) = − 1

π
−
∫ ∞
−∞

Fre(ξ)

ξ − x
dξ (1.22)

where x ∈ R, and the integrals are taken in principal value. These are the

Kramers-Kronig relations [37]. We can prove this using contour integration.

Proof. To get the above integral we consider integrating the function F (ζ)/(ζ−

x) on the contour C shown in figure 1.1 with C = C1∪C2∪C3∪C4, as R→∞

and the radius of the smaller inner circle ε→ 0. Since the function is analytic

is the upper half plane, this contour avoids the only pole at x, so by Cauchy’s

integral theorem from complex analysis we have∫
C

F (ζ)

ζ − x
dζ = 0 (1.23)

Splitting the integral into the four subsections from Figure 1.1, this is∫
C1

F (ζ)

ζ − x
dζ +

∫
C2

F (ζ)

ζ − x
dζ +

∫
C3

F (ζ)

ζ − x
dζ +

∫
C4

F (ζ)

ζ − x
dζ = 0 (1.24)

The large semicircle part of this, C4, can be evaluated by using the substitution

ζ = Reiθ, ∫
C4

F (ζ)

ζ − x
dζ =

∫ π

0

iReiθ

Reiθ − x
F
(
Reiθ

)
dθ (1.25)
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Therefore, ∣∣∣∣∫
C4

F (ζ)

ζ − x
dζ

∣∣∣∣ ≤
∫ π

0

∣∣∣∣ Reiθ

Reiθ − x

∣∣∣∣ ∣∣F (Reiθ
)∣∣ dθ (1.26)

=

∫ π

0

∣∣∣∣∣ 1

1− x
R exp(iθ)

∣∣∣∣∣ ∣∣F (Reiθ
)∣∣ dθ (1.27)

−−−→
R→∞

0 (1.28)

this follows from the assumption that lim|z|→∞ F (z) = 0.

We can do a similar substitution for the smaller semicircle. Let ζ =

x+εeiθ so dζ = iεeiθdθ, then the second integral in equation (1.24) is evaluated,∫
C2

F (ζ)

ζ − x
dζ =

∫ o

π

iεeiθ

x+ εeiθ − x
F
(
x+ εeiθ

)
dθ (1.29)

= −i

∫ π

0

F
(
x+ εeiθ

)
dθ (1.30)

−−→
ε→0

−iπF (x) (1.31)

which follows from F being analytic at x.

The two remaining terms of equation (1.24) are simplified by the

substitution ζ = ξ, ξ ∈ R. That is,∫
C1

F (ζ)

ζ − x
dζ +

∫
C3

F (ζ)

ζ − x
dζ =

∫ x−ε

−R

F (ξ)

ξ − x
dξ +

∫ R

x+ε

F (ξ)

ξ − x
dξ (1.32)

Since we’re letting ε→ 0, we can combine these into a single integral from −R

to R, but we are approaching the pole symmetrically from both sides, so this

is actually the Cauchy principal value. We also let R →∞, meaning that the

bounds of the combined integral approach ±∞; these symmetries both ensure

the convergence of the integral but only in the principal value.

That is,∫
C1

F (ζ)

ζ − x
dζ +

∫
C3

F (ζ)

ζ − x
dζ

ε→0−−−→
R→∞

−
∫ ∞
−∞

F (ξ)

ξ − x
dξ (1.33)
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Therefore, equation (1.24) simplifies to

−
∫ ∞
−∞

F (ξ)

ξ − x
dξ = iπF (x) (1.34)

The imaginary part of equation (1.34) is equation (1.21) and the real part is

equation (1.22).

Toll [55] showed that in any causal linear system the frequency domain

output function in analytic in the upper half of the ω-plane, and since causality

must hold true for any real signal, we can therefore readily apply equations

(1.21) and (1.22) to any physical system. The consequence of this is that

the dynamic modulus G∗(ω) is determined entirely by either one of its real or

imaginary parts alone.

Transforming from the Time Domain

The impulse response of the system is something that is difficult to

measure. A more physically significant and easier to measure function is a

relaxation function, i.e. how the system moves into equilibrium from a non-

equilibrium state. This is the (negative) step response of the system, where we

“push” on the system in some way out of equilibrium at time t = 0 and watch

what it does. Assuming an input of x(t) = −u(t) a negative unit step function,

the step response f and the impulse response g are related by

f(t) = g(t) ∗ (−u(t)) = −
∫ ∞
−∞

g(τ)u(t− τ)dτ = −
∫ t

−∞
g(τ)dτ (1.35)

Taking the derivative, we have the impulse response in terms of the

more easily measurable step response:

g(t) = −df(t)

dt
(1.36)



10

Of course we are assuming that a real system’s impulse response is causal, so

f(t) is zero for t < 0. So, to move into the frequency domain from a relaxation

function we plug equation (1.36) into G∗(ω) = F(g(t))

G∗(ω) =

∫ ∞
0

−df

dt
e−iωtdt (1.37)

This is a one sided Fourier transform, or equivalently, a pure imaginary Laplace

transform [39]. The inverse transform is [36]

df(t)

dt
=

1

2π

∫ ∞
0

(G∗(ω)−G∞)eiωtdω (1.38)

Applications

In the derivation of the dynamic modulus and the related time domain

relaxation function, the input and output were left generic. In general, there are

mechanical, electromagnetic, and thermodynamic applications of this theory.

The different applications can result in somewhat different results even on the

same material, but they all are ways to investigate fundamentally the same

dynamics.

Mechanical One way to characterize a viscoelastic material is to consider

how it reacts to strain, or deformation. If a strain is applied to a solid, the solid

will “push back”. Whereas, if a strain is applied to a perfect Newtonian liquid,

it will simply flow, not pushing back. So, if the strain is applied sinusoidally,

the stress, or force per unit area, from the solid will be in phase, but with a

liquid the stress does not start to kick in until you try to reverse the flow, so

the stress will then be out of phase with the strain. For viscoelastic materials,
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the behavior is somewhere in between, and it depends on the frequency [15].

How close it is to being solid-like is quantified by the storage modulus, and

how much it is liquid-like is quantified by the loss modulus.

This can be done with a shear instead of a strain or a pressure vari-

ation resulting in a shear or compression modulus, respectively, with a similar

meaning [36].

Electromagnetic When an electric field is applied to a dielectric material,

poles in the material feel a torque to align with that field. By applying a si-

nusoidally varying electric field and looking at the polarization, the analogous

dynamic modulus is the complex dielectric susceptibility, which is related lin-

early to the permittivity [36]. Unfortunately, there is also a dielectric modulus,

which is the multiplicative inverse of the permittivity, but the dielectric mod-

ulus is not directly analogous to the dynamic modulus defined above [33]. The

lag (if any) of the polarization relative to the electric field is due to individual

dipoles in the material not being able to move freely because they are crowded

together.

The magnetic analogy is to induce a magnetic field and look at the

magnetization of the material to measure the analogous quantity: magnetic

susceptibility, which is then linearly related to the magnetic permeability [36].

Thermodynamic The application that is the focus here, dynamic heat ca-

pacity, was first invented independently by Birge and Nagel [5] and by Chris-

tensen [10]. The driving function is temperature (or energy), and we are looking

for response in the total energy (temperature) of the system. In this case, if ∆T
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is the amplitude of the temperature, and ∆E is the amplitude of the energy,

then B
A

= ∆E
∆T

, i.e. how much energy changes per unit change in temperature.

This is the heat capacity, and the complex modulus is a frequency dependent

heat capacity. Experimentally, what is actually measured is the temperature

of the system with a sinusoidally varying heater, but it is more natural in sim-

ulation to vary the temperature because it is more easily controlled [5,21]. The

next major section has further details about the dynamic heat capacity.

1.2.2 Relaxation Models

Time Domain Relaxation

The simplest model for relaxation was proposed by Peter Debye in

1912. He was working on dielectric relaxation, and in his ideal model of spher-

ical non-interacting molecules in a viscous medium predicted that the rate of

depolarization was proportional to the polarization [27, 41, 39]. In the general

notation used above, this is

df

dt
= −f − f∞

τ
(1.39)

This differential equation has the solution

f(t) = f0e−t/τ + f∞ (1.40)

Where f0 is the initial state of the system, f∞ is the equilibrium state, and τ

is the single characteristic decay time.

The parameters f0 and f∞ do not tell us anything about the decay

function itself, only the initial and final states, which is a separate issue. So, it

is common to leave these parameters off in the analysis of decay functions and
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consider rather the normalized decay function [2]. The normalized version of

equation (1.40) is

fn(t) = e−t/τ (1.41)

However, a single exponential quickly fails to work for more compli-

cated systems.

Multiple exponential An easy extension of equation (1.41) is to assume

that there are multiple Debye processes occurring in the material. If there are

two, the relaxation function is

fn(t) = B1e−t/τ1 +B2e−t/τ2 (1.42)

We now have two decay times, τ1 and τ2 each from a different Debye process.

Again, I’ve removed the initial condition parameter, so B1 +B2 = 1 making B1

and B2 the relative “strengths” or distribution of the relaxation times τ1 and

τ2, respectively.

Generalizing on this idea further, if we want to study something that

has multiple simultaneous relaxations, we add as many exponential functions

as needed to fit the data. That is,

fn(t) =
N∑
n=1

Bne−t/τn (1.43)

In this case we have a discrete distribution of relaxation times τn. The B’s have

a similar meaning to above. This gives a very good fit to data where you’d

expect the complexity of the system to result in multiple relaxations. For

example, for a glass under strain you might expect multiple relaxation times
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from the different molecule components of the material, i.e. small molecules

can more easily rearrange themselves than larger ones. The problem with this

approach is that there are simply too many parameters; it is so general with

many terms that it becomes meaningless.

Kohlrausch-Williams-Watts An alternative generalization of simple expo-

nential decay is the stretched exponential decay function.

fn(t) = e−(t/τKWW )β (1.44)

where once again, τKWW is a characteristic decay time, and β is a parameter

between zero and one. This equation was first studied in 1854 by Rudolf

Kohlrausch to describe the discharge of a Leiden jar [35] and was later used by

Williams and Watts to describe decay of a dielectric [56], so it is often referred to

as the Kohlrausch-Williams-Watts or KWW function. It is a popular function

because it fits a wide variety of relaxation data with very few parameters.

Distribution of Relaxation Times

It is now instructive to define the notion of a distribution of relaxation

times. We’ve already seen the discrete version of this, but it is also possible

to define a continuous distribution of relaxation times to describe the KWW

function, for example, as a superposition of Debye processes [39,2].

fn(t) =

∫ ∞
0

e−t/τρ(τ)dτ (1.45)

Lindsey and Patterson [39] showed that by plugging the KWW function (1.44)

into (1.45),

e−(t/τKWW )β =

∫ ∞
0

e−t/τρ(τ)dτ (1.46)
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Figure 1.2: ρ(τ/τKWW ) vs. τ/τKWW for a for a β of 0.9 to 0.1 in 0.1 step
increments [54]

we get

ρ(τ) = −τKWW

πτ 2

∞∑
k=0

(−1)k

k!
sin(kπβ)Γ(kβ + 1)

(
τ

τKWW

)kβ+1

(1.47)

In the limit that β goes to one, this function approaches the delta function, and

as β goes to zero ρ(τ) spreads out, that is covering more varieties of relaxation

times. See Figure 1.2. Therefore β is interpreted as a measure of the spread

of relaxation times are occurring for a given data set, which characterizes the

system in question. In terms of molecular dynamics, the different relaxation

times are attributed to the time it takes for molecules to hit each other and

move past each other in different ways (that is different shapes and sizes of

molecules and translational vs. rotational movement all have an effect) [20].



16

Frequency Domain Relaxation

Debye Relaxation The simplest form of relaxation, a Debye process, can

be moved into the frequency domain plugging (1.41) into (1.37)

G∗(ω) =

∫ ∞
0

−
(
−1

τ
e−t/τ

)
dt (1.48)

=
1

τ

∫ ∞
0

e−iωt−t/τdt (1.49)

= − e−iωt−t/τ

τ(iω + 1/τ)

∣∣∣∣∞
0

(1.50)

=
1

1 + iωτ
(1.51)

If we had used equation (1.40) instead the f0 term would have just carried

through the transform, adding a scaling parameter to the result. Also, since

the full dynamic modulus might be the superposition of multiple behaviors,

we can also add a shifting parameter (that would have to be subtracted off

to transform into the time domain). The resulting general frequency domain

Debye function is

G∗(ω) = G∞ +
G0 −G∞
1 + iωτ

(1.52)

But again, those parameters are not important to the shape of the decay func-

tion, so a normalized decay function is often constructed:

G∗n(ω) =
G∗(ω)−G∞
G0 −G∞

(1.53)

which gives the normalized Debye function

G∗Debye(ω) =
1

1 + iωτ
(1.54)

For the rest of this section I will use the notationG∗name to denote the normalized

version of the frequency domain relaxation function for convenience. Of course,
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Figure 1.3: Log-log plot of the imaginary part of equation (1.54)
with τ = 1, or equivalently, the horizontal axis is ωτ .

in practice, we have to add the G0 and G∞ parameters back in to actually fit

to these functions, but they are not relevant to the discussion at this point.

The normalized Debye function is easily split into real and imaginary

parts

G′Debye(ω) =
1

1 + (ωτ)2
(1.55)

G′′Debye(ω) =
ωτ

1 + (ωτ)2
(1.56)

Also, it’s easily seen by using (1.37) that the frequency domain version

of the distribution of Debye processes (1.45) is [2]

G∗(ω) =

∫ ∞
−∞

τρ(τ)

1 + iωτ
dτ (1.57)

As seen in figure 1.3, the log-log plot of Debye relaxation is symmetric

with a slope of one on each side of the peak.
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Figure 1.4: Log-log plots of the real (left) and imaginary (right) parts of a DFT
of the KWW function for β = 1, 0.75, and 0.5 as labeled. The vertical axes
have been normalized to put the maximum of the Debye function at one, and
the horizontal axis has been normalized with τ = 1.

von Schweidler Law Near the turn of the century von Schweidler discovered

that for the frequency band ω � 1/τ relaxation functions follow the law [20]

G′vS(ω) =
cos(bvS

π
2
)Γ(1 + bvS)

(ωτ)bvS
(1.58)

G′′vS(ω) =
sin(bvS

π
2
)Γ(1 + bvS)

(ωτ)bvS
(1.59)

where 0 < bvS ≤ 1. Plotting the imaginary part on a log-log scale gives

a constant slope of −bvS. This gives the general high frequency non-Debye

relaxation behavior.

Frequency Domain KWW As stated above, the KWW function (1.44)

does not have a analytic Fourier transform, but we can estimate it by discretiz-

ing the function and taking the discrete Fourier transform. The log-log slopes

on the imaginary peak are no longer symmetric, the low frequency side remains

about one, but the high frequency side has a slope of −β (see Figure 1.4).
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Figure 1.5: Log-log plots of the real (left) and imaginary (right) parts of equa-
tion (1.60) with τ = 1, or equivalently, the horizontal axis is ωτ . The solid,
dashed, dash-dotted, and dotted lines correspond to α =1, 0.75, 0.5, and 0.25
respectively.

Generalizations of the Debye Model

In the applications described above, the simple symmetry and slope

of Debye relaxation are not observed in experimental data, and a considerable

amount of work has been done trying to generalize equation (1.54) with as

few parameters as possible to fit experimental data [12,11, 24,18]. The KWW

function has no analytical Fourier transform but fits to time-domain data very

well and has a physically meaningful parameters τKWW and β. These gener-

alizations of the Debye relaxation are often approximations of the DFT of the

KWW function, and their parameters are related to τKWW and β [2,56,39,20]

In 1941, K.S. Cole and R.H. Cole proposed the following generaliza-

tion of equation (1.54) to describe the dielectric properties of various materi-
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Figure 1.6: Log-log plots of the real (left) and imaginary (right) parts of equa-
tion (1.61) with τ = 1, or equivalently, the horizontal axis is ωτ . The solid,
dashed, dash-dotted, and dotted lines correspond to γ =1, 0.75, 0.5, and 0.25
respectively.

als [11]

G∗CC(ω) =
1

1 + (iωτ)α
(1.60)

where 0 < α ≤ 1. This creates a wider imaginary peak (see Figure 1.5). In the

literature, it is often referred to as the Cole-Cole (CC) function.

Ten years later, D.W. Davidson and R.H. Cole proposed an alternative

generalization, also to describe dielectric relaxation, as follows [12]

G∗CD(ω) =
1

(1 + iωτ)γ
(1.61)

where 0 < γ ≤ 1. This equation has an asymmetric peak in the imaginary part

(see Figure 1.6). In the literature, it is often referred to as the Cole-Davidson

(CD) function.

Combining equations (1.60) and (1.61), Havriliak and Negami used
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used the following equation to describe dielectric and mechanical relaxation [24]

G∗HN(ω) =
1

(1 + (iωτ)α)
γ (1.62)

where α and γ are defined as above. In the literature, it is often referred to

as the Havriliak-Negami (HN) function. α and γ are shape parameters with γ

being a symmetry parameter and α a spreading parameter. The Debye, CC,

and CD functions are all special cases of the HN function, by setting one or

both of the parameters to one. The HN equation is more general, and in some

cases can provide a better fit, but at the cost of an additional parameter.

It can be shown that the associated distribution of relaxation times

is [2]

ρ(τ ′) =
1

π

(τ ′/τ)αγ sin(γψ)(
1 + 2 (τ ′/τ)α cos (απ) + (τ ′/τ)2α)γ/2 (1.63)

with

ψ = arctan

∣∣∣∣ sin(απ)

(τ ′/τ)α + cos(απ)

∣∣∣∣ (1.64)

For the CD function, this simplifies to [39]

ρ(τ ′) =

{
sin(γπ)
πτ ′

(
τ ′

τ−τ ′

)γ
, τ ′ < τ

∞ , otherwise
(1.65)

In practice, we need the real and imaginary parts of equation (1.62).

First, we want to express the denominator as a complex exponential.

1 + (iωτ)α = 1 + eiαπ/2 (ωτ)α (1.66)

= 1 + (ωτ)α cos
(
α
π

2

)
+ i (ωτ)α sin

(
α
π

2

)
(1.67)

=

√(
1 + (ωτ)α cos

(
α
π

2

))2

+
(

(ωτ)α sin
(
α
π

2

))2

× exp

(
i arctan

(
(ωτ)α sin(απ/2)

1 + (ωτ)α cos(απ/2)

))
(1.68)
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or

1 + (iωτ)α =
(

1 + 2 (ωτ)α cos
(
α
π

2

)
+ (ωτ)2α

)1/2

eiθHN (1.69)

where

θHN = arctan

(
(ωτ)α sin(απ/2)

1 + (ωτ)α cos(απ/2)

)
(1.70)

substituting (1.69) and (1.70) into (1.62) gives

G∗HN(ω) =
(

1 + 2 (ωτ)α cos
(
α
π

2

)
+ (ωτ)2α

)−γ/2
e−iγθHN (1.71)

which is easily split into real and imaginary parts

G′HN(ω) =
cos(γθHN)(

1 + 2 (ωτ)α cos
(
απ

2

)
+ (ωτ)2α)γ/2 (1.72)

G′′HN(ω) =
sin(γθHN)(

1 + 2 (ωτ)α cos
(
απ

2

)
+ (ωτ)2α)γ/2 (1.73)

The Cole-Cole (γ = 1) version of this is easily derived from equations (1.60)

and (1.67)

G′CC(ω) =
1 + (ωτ)α cos

(
απ

2

)
1 + 2 (ωτ)α cos

(
απ

2

)
+ (ωτ)2α (1.74)

G′′CC(ω) =
(ωτ)α sin

(
απ

2

)
1 + 2 (ωτ)α cos

(
απ

2

)
+ (ωτ)2α (1.75)

The Cole-Davidson (α = 1) equation has a simple form. First, θ simplifies to

θCD = arctan (ωτ) (1.76)

So, equation (1.71) becomes

G∗CD(ω) =
(
1 + tan2(θCD)

)−γ/2
e−iγθCD (1.77)

= cosγ(θCD)e−iγθCD (1.78)
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which has real and imaginary parts

G′CD(ω) = cosγ(θCD) cos(γθCD) (1.79)

G′′CD(ω) = cosγ(θCD) sin(γθCD) (1.80)

Cole-Cole Plots Also in their 1941 paper, K.S. Cole and R.H. Cole intro-

duced a method of visualizing and fitting data that doesn’t make an explicit

assumption as to which model is being used [11,36]. By plotting the real part

of the dynamic modulus against the imaginary part, we can take advantage of

the common terms in the above equations and cancel them out in high and low

frequency limits. These are so-called Cole-Cole plots [36]. Of course, we have

to assume we’re in a frequency band where there is only one imaginary peak.

For high frequencies ω � 1/τ , G′HN(ω) → 0 and G′′HN(ω) → 0 by (1.62), and

θHN ≈ απ
2

by (1.70), so
G′′HN

G′HN

≈ tan
(
αγ

π

2

)
(1.81)

which indicates that parametrically near the G′G′′ origin, the HN function has

a constant slope of tan
(
αγ π

2

)
. Which means that the angle the HN function

makes with the G′ axis near the origin is αγ π
2
.

For low frequencies ω � 1/τ , G′HN(ω) → 1 and G′′HN(ω) → 0 by

(1.62), and θHN ≈ (ωτ)α sin(απ/2) ≈ 0 by the first term in the Taylor series of

equation (1.70). So, without any approximations

G′′HN

G′HN − 1
=

sin(γθHN)

cos(γθHN)−
(
1 + 2 (ωτ)α cos

(
απ

2

)
+ (ωτ)2α)γ/2 (1.82)
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Since ω is small, (ωτ)2α is small compared to 2 (ωτ)α cos
(
απ

2

)
, so we drop the

former. Then, using the binomial approximation, we have

G′′HN

G′HN − 1
≈ sin(γθHN)

cos(γθHN)− 1− γ (ωτ)α cos
(
απ

2

) (1.83)

And since θHN ≈ 0, we approximate sin(γθHN) ≈ γθHN and cos(γθHN) ≈ 1 by

taking the first terms of their Taylor series’. Therefore, we have

G′′HN

G′HN − 1
≈ γθHN

1− 1− γ (ωτ)α cos
(
απ

2

) (1.84)

or

G′′HN

G′HN − 1
≈ −

γ (ωτ)α sin
(
απ

2

)
γ (ωτ)α cos

(
απ

2

) (1.85)

≈ − tan
(
α
π

2

)
(1.86)

which indicates that near (1,0) on the G′G′′-plane, the HN function has a

constant slope of − tan
(
απ

2

)
, meaning the (acute) angle made on that end is

απ
2
.

This method of fitting α and γ independently of τ is referred to as

Davidson’s method in the literature because he used it to fit γ in the 1951

paper [12, 39]. See Figure 1.7 for a synthetic example of this method for the

Debye, CC, CD, and HN functions.

We can use this fitting method even if the relaxation function is not a

form of the HN equation. As noted earlier, the high and low frequency log-log

slopes of the HN function are αγ and α, respectively. This corresponds to the

angles of αγπ/2 and απ/2 found above. So, regardless of the relaxation function

used, if it has slopes of −b for low frequencies and a for high frequencies, then in
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Figure 1.7: Cole-Cole plots for the HN function with α = γ = 1 (top left),
α = 0.75 and γ = 1 (top right), α = 1 and γ = 0.5 (bottom left), and α = 0.75
and γ = 0.5 (bottom right). The tangent lines are drawn in with angles of
αγπ/2 on the left hand side and απ/2 on the right hand side of each plot.
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the Cole-Cole plot it will approach straight lines with angles bπ/2 at (0, 0) and

aπ/2 at (1, 0). The rest of the shape could be different, but those parameters

can be fit even without knowing the functional form.

We can see this in the context of the von Schweidler law (1.58) and

(1.59). Its ratio of imaginary to real parts is

G′′vS

G′vS

= tan
(
bvS

π

2

)
(1.87)

Comparing to equation (1.81), we have

bvS = αγ (1.88)

Therefore, any equation that follows the von Schweidler law at high frequencies

with log log slope bvS can have that parameter fit with a Cole-Cole plot.

For example, we can fit the parameter β from the KWW function in

this manner. As noted earlier, the low and high log-log slopes are 1 and −β,

so the angles made with the G′ axis are βπ/2 and π/2, respectively (see Figure

1.8). Therefore, the parameters for the HN and KWW functions are related by

αγ = β (1.89)

when fit in this manner.

Another Approach: Defining Only the Imaginary Part As mentioned

above, the Kramers-Kronig relations imply that G′ and G′′ are Hilbert trans-

forms of one another, so just the imaginary part, the loss, contains as much

information as the full dynamic modulus.
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Figure 1.8: Cole-Cole plots for the DFT of the normalized KWW function with
β = 1, 0.75, and 0.5 as labeled.

In 1941, Fuoss and Kirkwood [18] used the equation

G′′FK(ω) =
2G′′p(ωτ)m

1 + (ωτ)2m
(1.90)

which is a generalization of the imaginary part of the Debye equation (1.56)

that gives the symmetric log-log slopes of ±m. Note that the form here is no

longer normalized, but includes a fit parameter for the peak height G′′p. This is

the Fuoss-Kirkwood (FK) equation.

A more general version of this is the Jonscher equation [32]

G′′Jonscher(ω) =
K

(ω/ω1)−m + (ω/ω2)n
(1.91)

which has low and high frequency log-log slopes of m and −n, respectively.

The parameter K is proportional to the peak height.

The FK and Jonscher’s equation are similar in behavior at low and

high frequencies to the CC and HN equations, respectively. But, comparing
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equations (1.74) and (1.72) to the above, it’s clear that they are not the same.

The difference is the shape at the peak itself.

A simple frequency domain relaxation function was proposed by R.

Bergman [4]. As discussed previously, because of causality, the entire complex

modulus is determined completely by the loss. And, exponential decay appears

as a peak in the loss with in general two different slopes on a log-log plot. So,

starting with that very general idea

G′′p
G′′(ω)

= Aω−a +Bωb + C (1.92)

where G′′p is the loss at the peak. Then, with some simple manipulation assum-

ing there to be a peak at ωp Bergman obtains a very general five parameter

equation,

G′′(ω) =
G′′p

1−C
a+b

[b(ω/ωp)−a + a(ω/ωp)b] + C
(1.93)

It can be shown [4] that with the correct choices of the parameters, equations

(1.75), (1.90), and (1.91) are special cases of (1.93). To approximate a KWW

function, he sets a = 1 and C = 1− b, resulting in

G′′(ω) =
G′′p

1− b+ b
b+1

[b(ωp/ω) + (ω/ωp)b]
(1.94)

A log-log plot of this function produces a line with slope 1 for low frequencies,

and slope b for high frequencies, which is similar in behavior to the DFT of

the KWW function. Also, except for relatively small β < 0.3 or so, b ≈ β. An

inverted KWW function (one that has the variable slope in the low frequencies)

is similarly constructed,

G′′(ω) =
G′′p

1− a+ a
a+1

[(ω/ωp)−a + a(ω/ωp)]
(1.95)
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Overview

Following the discussion about Cole-Cole plots and the von Schweidler

law above, we can relate all the shape parameters described above by

bvS = β = αγ = n = b (1.96)

and analogously

α = m = a (1.97)

The peak location on the frequency axis has been described in two equivalent

ways

ω ∝ 1/τ (1.98)

The peak height has also been describe in two equivalent ways

G′′p ∝ G0 −G∞ (1.99)

the exact proportions here depend on the units used for ω.

1.2.3 Summary

In the study of amorphous solids, working in the linear response

regime opens up a broad, powerful mathematical tool-set, Fourier theory. Us-

ing this we can relate how a material relaxes into equilibrium to how a material

reacts to a sinusoidal “force” applied to it. So, looking at frequency domain

data, which is sometimes more convenient, is equivalent to looking at time

domain data.

The specific models used to fit the resultant transfer function are

curve fits initially designed to fit specific data sets but were found to be gen-

erally useful. All the models described in this chapter were initially used to
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describe electromagnetic phenomena, but were later used to fit mechanical and

thermodynamic data as well, which speaks to the power of the theory.

However, there is no theoretical basis for the models presented, and

it is a common practice in the literature to simply use whichever form best fits

the data with the fewest number of parameters.

Also, we have seen that the similarity in the low and high frequency

limits leads to the shape parameters in the models actually being the same,

and the remaining scale and location parameters are easily related. With the

use of Cole-Cole plots, we can then fit the shape parameters without need of

a functional form. All of this suggests that the shape parameters are intrinsic

to the system. However, once one makes an assumption about which model to

use, then after doing a least squares fit, one can often get drastically different

(as much as a 50% difference) results for the shape parameters [39]. This is

because by choosing one model or another, one makes an assumption for the

form of the data, which it might not follow exactly.

There is some debate about the usefulness of the distribution of relax-

ation times; some view it purely as a mathematical tool [39, 2, 4]. But it does

seem plausible that some sort of distribution of relaxation times is the root

cause of the observed phenomena, given the success of the models described

above. The problem with this idea is that the distributions vary drastically

between models. For example, the CD and KWW functions have the same

number of parameters, similar Cole-Cole plots at the far ends, and even some-

what similar looking frequency domain forms, but the distributions of their

relaxation times are very different. The KWW distribution is spread smoothly
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over a range of times, whereas the CD distribution function is suddenly cut off

at τ .

Quite simply, the major problem in this field is too many models that

seem plausible and fit the data.

1.3 Dynamic Heat Capacity

As mentioned above, the dynamic heat capacity is a linear response

function that tracks the relationship between energy, temperature, and fre-

quency (or time). As such, all the tools described in the previous section are

applicable and are widely used.

Specifically, the connection between the time and frequency domain

is given by the fluctuation dissipation theorem [7,43]. This states that

CV (ω) = − 1

kBT 2

∫ ∞
0

(
d

dt
〈∆E(t)∆E(0)〉

)
e−iωtdt (1.100)

at constant volume, where E is the energy, ∆E = E − Eeq is the energy fluc-

tuation from equilibrium, and 〈〉 denotes an average. This has the equivalent,

more convenient, form

CV (ω) =
〈∆E2〉
kBT 2

− iω

kBT 2

∫ ∞
0

〈∆E(t)∆E(0)〉 e−iωtdt (1.101)

At constant pressure this is

CV (ω) =
〈∆H2〉
kBT 2

− iω

kBT 2

∫ ∞
0

〈∆H(t)∆H(0)〉 e−iωtdt (1.102)

where H is the enthalpy.

Also, as mentioned previously, a major advantage of looking at dy-

namic specific heat spectra is that all the modes of the system should be probed.

It is probing the system at a fundamental thermodynamic level [5].
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1.3.1 Experiment

The experimental work in this area is very large, so only a brief

overview of the main points is presented here.

As mentioned above, the technique was first introduced by Birge and

Nagel [5] and by Christensen [10] in 1985. Both papers considered the dynamic

heat capacity of glycerol, and measured the dynamic heat capacity using a mod-

ulating thermostat. Birge and Nagel fit the spectrum with the KWW function,

equation (1.44), and tracked the relaxation time with the Vogel-Fulcher law

(1.2). They observe similarity to other types of susceptibility functions (me-

chanical and dielectric) but also note that their peaks in the loss were wider

because the dynamic specific heat probes all modes in the system, which is not

necessarily the case for other susceptibilities (e.g. the dielectric susceptibility

only sees motions tied to electric fields). This universality of the technique

makes it useful in the study of any glass forming system.

Another similar experimental methodology is where the frequency of

the modulating thermostat is held fixed, but the mean temperature is varied

instead. The peak in the loss and the drop in the storage of the dynamic heat

capacity move to lower frequencies for lower temperatures and higher frequen-

cies for higher temperatures, so one is able to trace out the relaxation function

by fixing the frequency and varying the temperature. If the shape of the func-

tion does not vary with temperature, then you can reconstruct the relaxation

behavior. In any case, you can define a glass transition at that frequency by

the temperature at which the storage part of the dynamic heat capacity drops.

This technique is primarily utilized in experiment because temperature is rel-
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atively easily changed, whereas to fully measure the dynamic heat capacity in

frequency space might take many orders of magnitude of frequencies beyond

the capabilities of a modulated calorimeter [28]. For example, a study of glu-

cose and fructose by Ike, Seshimo, and Kojima uses Cole-Cole plots and fits

with the Havriliak-Negami and KWW functions [28]. (See for example Figures

2 and 3 from reference [28].)

1.3.2 Simulation

Dynamic heat capacity has not been explored as thoroughly in sim-

ulation as it has in experiment. The author is only aware of a few studies

other than the present one. Some molecular dynamic studies include Grest

and Nagel on a binary Lennard-Jones mixture with parameters selected to

model glycerol [22]; Scheidler, Kob, Latz, Horbach, and Binder on a binary

Buckingham plus Columbic mixture with parameters selected for silica [51];

Yu and Carruzzo on a binary, repulsive, soft-sphere mixture [57]; and Brown

(this author), McCoy, and Adolf on a bead spring Lennard-Jones mixture [6].

A typical result of most of the above works is similar to the one in

Figure 1.9. The low frequency limit of the storage is the standard thermody-

namic heat capacity. For somewhat higher frequencies, the storage drops to

another plateau, and there is a peak in the loss. This is indicative of relaxation

behavior as discussed above. The change in the specific heat capacity at these

timescales is associated with a configurational contribution. The next major

drops in the storage and peaks in the loss are on timescales that correspond

to unbonded and bonded interactions and appear to be about a 10 times more

significant contribution to the heat capacity. These peaks are associated with
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Figure 1.9: Sample specific heat capacity spectrum for the bead-spring system.
The real part (storage) is on the left, and the imaginary part (loss) is on the
right. The top is the full spectrum, and the bottom is a zoom in of the con-
figurational part of the spectrum. The system is at a fixed mean temperature,
volume, and number of particles.
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exciting the bonds as harmonic oscillators, and appear fairly spread out due to

the disorder of the system [51]. In the high frequency limit, the loss decays to

zero, and the storage approaches a value of 3/2, which is the ideal gas limit.

That is, on those timescales, the interactions of the particles are not important

and the fluctuations in the energy are just in the kinetic energy, or tempera-

ture. Further, as temperature is decreased (or density is increased) the peaks

move farther from one another, potentially diverging. And, as temperature is

increased (or density is decreased) the peaks move together, eventually merging

at the caging transition [6].

Also worth mentioning is the work of Hentschel et. al. [25, 26]. They

compute the thermodynamic heat capacity of a two dimensional simulated bi-

nary mixture (i.e. a mixture of two sized of particles) of repulsive soft spheres

and note two peaks in the heat capacity at different temperatures. The peaks,

they say, are associated with the formation of close packed clusters of like par-

ticles. They extend this idea to dynamic heat capacity by assigning a cluster

size a lifetime and working out the contribution of such clusters to the total

dynamic heat capacity by saying that each cluster size gives rise to a Debye

process. Their analysis, however, does not account for the large high frequency

peak in the loss due to fast time processes, and it is unclear the amount of

predictive power the idea has, other than looking approximately correct for

well chosen lifetimes because measuring those lifetimes is difficult. See for ex-

ample Figures 8 and 9 in reference [26], where appropriately chosen parameters

approximate the response of glycerol.

Another interesting simulation study is the energy landscape model
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of Chakrabarti and Bagchi [9]. They consider two potential energy meta basins

that are made up of independent two level systems, where transfers between

the meta basins are only allowed if all the constituent two level systems are

excited. Despite the huge difference between this model and the MD studies

above, the results are quite similar to Figure 1.9 (see for example Figures 3

and 4 from reference [9]). They see two distinct peaks in the loss that move

apart for decreasing temperature, and merge for increasing temperature. Also,

the fast-time process (the two level systems) contributes about ten times more

to the specific heat than the long time process (moving between meta basins).

However, because of the simplicity of the model, fitting these peaks showed

that they were both due to Debye (i.e. single exponential) processes [9].

Also of interest is a study on the dynamic heat capacity of a Ising

spin system by Li et. al. [38]. They noted that the mean field approximation

did not fully represent the dynamics, but as expected did not see evidence of

a phase transition at nonzero temperature for a one dimensional system.

The east model, as we will see in the next section, lacks explicitly

defined β-processes, so we don’t expect to see the double peak, only the single

configurational peak.

1.4 The East Model

The Ising model was initially created in 1924 as a model of magne-

tization with interaction between particles. In one dimension, we have a line

or loop of spins (up or down) that interact ferromagnetically or antiferromag-

netically. That is, high and low energy states are defined by whether adjacent
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spins are aligned or antialigned [29].

It is notable because the statistical mechanics and thermodynamics of

it is exactly solvable in one and two dimensions, and there is a phase transition

in two dimensions but none in one dimension [45, 29]. A generalization of the

Ising model to add time so as to apply to glassy systems was put forth in the

mid 1980s [16, 17, 46]. The east model, proposed later, is the simplest of such

systems in terms of analysis, and its total relaxation time has been solved.

These models have thermodynamics identical to the standard Ising model but

complex dynamics.

1.4.1 Kinetically Constrained Ising Models

One theory of the glass transition, why the dynamics of a system

become extremely slowed down, has to do with a local constraint on the motion

of individual parts (atoms/molecules) of the system. In this way of thinking,

when a liquid is supercooled parts of the material get stuck in some local

potential energy well, unable to rearrange themselves into a crystal, and there

are high energy defects in the structure that are mobile. For the system to

react to some outside force, the stuck places may only move if they interact

with a defect. The defects, in effect, sweep through the system equilibrating it.

For lower temperatures, the defects become slower and/or more rare leading to

a slowing of the dynamics [14]. We can take advantage of the simplicity of the

Ising model to model these defect/stuck systems by adding dynamical rules.

The initial kinetically constrained model, the Fredrickson and An-

dersen model, took the one dimensional Ising model and added time with the
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constraint that spins were only mobile if they were adjacent to a high energy

juncture on either side [16, 17]. More generally, in higher dimensions, sites are

mobile if adjacent to a specific number of high energy junctures. Since these

become sparse for lower temperatures, and since flips that put the system into

a higher energy state also become less likely for lower temperature, the dynam-

ics of the system slow down very quickly for low temperature. This model is

usually classified as a strong glass former because the relaxation time follows

the Arrhenius equation (1.1) [14]. The east model is similarly defined, but the

constraint is only in one direction [31].

In the same year as the Fredrickson and Andersen paper, a more

general class of models were defined by Palmer et. al. called hierarchically

constrained models [46]. Here, spins are only mobile if a specific set of neighbors

are active, as opposed to a specific number of neighbors. They find that in the

long and continuous time limit, these models show KWW relaxation. This

is a remarkable result, since a stretched exponential like relaxation function is

practically universally seen in experimental work on glasses and this is a simple

model. However, they don’t believe that relaxation times are discrete, or that

the distribution of relaxation times necessarily has meaning [46]. Rather, they

were showing that a hierarchical constraint can give rise to a KWW relaxation,

and that a continuous analogue could be the underlying mechanism. The east

model is one of the simplest in the class of models defined by Palmer et. al. [31].

1.4.2 Definition and Basic Properties

In the standard one dimensional Ising model, we have a lattice of

spins αi, i = 1, 2, ..., N that can take either one of two states, up or down, 1



39

or -1 [40]. The initial purpose is to model particle interactions by magnetic

dipoles, so the energy or Hamiltonian of the system is given by

E = −
N∑
i=1

αiαi+1 (1.103)

where we generally have periodic boundary condition so that α1 ≡ αN+1. That

is, the energy contribution of the adjacent aligned spins is -1, and the energy

contribution of anti-aligned spins is +1. We could also make aligned the high

energy state and anti aligned the low energy state (i.e. antiferromagnetic in-

stead of ferromagnetic), but it doesn’t matter much here.

The East model reinterprets the interactions somewhat [31]. The

aligned spins, areas of low energy, become a region where the system has no

mobility. The exact interpretation is unclear, this is is considered to be a

region with low temperature or perhaps a localized potential energy well, where

the atoms are just jammed together in some way that is hard to break out

of [19]. Such structures, areas where there are high and low mobility are called

dynamic heterogeneities in the literature, and how they evolve is a way to

characterize the glass transition [30, 19, 42]. What becomes important, then

are the interfaces. Instead of the standard lattice of spins, we define a new

lattice of “spins” (representing interfaces) si, i = 1, 2, ..., N that take values of

up or down (with associated occupation numbers 1 or 0) for an interface with

or without a change in direction, respectively. The energy is now (up to some

constant shift),

E =
N∑
i=1

si (1.104)
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It is useful now to frame the analysis of this system in the canon-

ical ensemble, that is fixed temperature, number of particles/sites, and vol-

ume. Under these conditions, it can be shown by statistical mechanics that the

probability distribution of the microstates of the system follows a Boltzmann

distribution [40]. Namely, the probability that the system is at state i with

energy Ei is

pi =
1

Z
e−βEi (1.105)

where β = 1
kBT

, kB is the Boltzmann constant, and Z is the normalization

constant. The normalization constant Z is also referred to as the canonical

partition function.

We can solve for the canonical partition function in the usual way:

Z =
∑
states

e−βEstate (1.106)

Since the energy of each site is independent of the other sites, this

sum can be factored as

Z =

( ∑
s1=0,1

e−βs1

)( ∑
s2=0,1

e−βs2

)
· · ·

( ∑
sN=0,1

e−βsN

)
(1.107)

or

Z =
(
1 + e−β

)N
(1.108)

The ensemble average or expected value of the energy is

〈E〉 =
∑
states

Estatepstate (1.109)

plugging in equation (1.105), this is

〈E〉 = −d lnZ

dβ
(1.110)
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Specifically, using equation (1.108) this is

〈E〉 =
N

1 + eβ
(1.111)

The energy per site 〈E〉 is just the concentration of up spins c. That

is,

c = 〈E〉 =
1

1 + eβ
(1.112)

The thermodynamic specific heat per site CV = d〈E〉/dT is easily

computed to be [40]

CV =
1

4kBT 2 cosh2( 1
2kBT

)
(1.113)

The above discussion is just for the one dimensional Ising model,

whose statistical mechanics are exactly solvable. Making this a model for a

glass forming system is done by incorporating time and evolving the system

using Monte Carlo. We enforce the mobility interpretation by only allowing

spins whose neighbor to the left is up to flip [31]. The one sided constraint is

incorporated to put in cooperative behavior; up spins are free to move right,

but to move left, another up spin to its left has to move over and flip it [31].

If flipping decreases energy (that is, we have an up to the left of an up), then

we perform the flip and move on. If flipping would increase energy (that is

an up to the left of a down), then we only perform the flip with probability

p = exp(−1/T ), where T is the temperature. The probability comes from

the Boltzmann distribution with kB = 1 (this essentially just sets the units

of temperature), and the fact that we are working in the canonical ensemble.

That is,
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P(11→ 10) = 1 (1.114)

P(10→ 11) = exp(−1/T ) ≡ p (1.115)

where I’ve used the occupation numbers for the spin states for clarity and

convenience. Note that, by substituting kB = 1 into equation (1.112), the

probability of a site being up is

c =
1

1 + e1/T
=

p

p+ 1
(1.116)

An alternative, and in fact original, definition is where the probability

of an active up flip relaxing is 1−p instead of just 1, this occasionally condenses

two of the above steps into one [31]. However, in the low temperature limit

p << 1 and the two versions become identical; they differ mainly for high

temperatures where the version in equations (1.114) and (1.115) gives the 1/2

concentration of up spins for infinite temperature like in equation (1.116) and

in the other version that concentration is one. Further, one could chop up the

time scale by introducing a time step ∆t and multiply the flip probabilities by

that, so in the definition shown above, that will be used throughout this work,

∆t = 1. The version of the east model used here is due to Sollich and Evans

and is also used in other recent work [14,53,30,19].

1.4.3 Spin Autocorrelation

Much of the work on the east model has focused on finding a model

for the spin autocorrelation function. That is, for a generic state s starting at
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time t = 0 the spin autocorrelation is

C(t) =
〈∆s(t)∆s(0)〉
〈(∆s(0))2〉

(1.117)

where the zero time point is arbitrary, the averages are taken in equilibrium,

and the fluctuations are given by ∆s = s− c, where c is the probability a site

is up from equation (1.116).

Recall from equation (1.100) and the definition of energy in the east

model equation (1.104), that the Laplace transform of the derivative of this

equation is related to the dynamic heat capacity, so working with the spin

autocorrelation is mathematically equivalent to working with the dynamic heat

capacity.

See Figure 1.10 for an example of the energy autocorrelation function

simulated for the east model. This plot is similar in shape to ones in the

literature of the spin autocorrelation and spin persistence (fraction of up spins

still up after a given time) functions.

The initial paper on the east model fit this to a KWW (1.44) form

with limited success [31]. At early timescales the autocorrelation function ap-

pears exponential, only switching to a stretched exponential form for limited

timescales later (see Figures 4, 5, and 6 from reference [31]).

A later study by Pitts, Young, and Andersen also employed Monte

Carlo to investigate the spin autocorrelation of the east model [48]. They, too,

found that the KWW form only works in certain timescales. The autocorrela-

tion function seems to jump suddenly from one βKWW to another (see Figure

2 in reference [48]).
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Figure 1.10: Sample energy autocorrelation for the east model. The left plots
are for T = 0.35 and the right two plots are for T = 0.2. The top two plots are
log autocorrelation vs. log time. The bottom two are -loglog autocorrelation
vs. log time, and on this type of plot a stretched exponential function would
be a straight line.



45

The explanation for this behavior initially arose from mode coupling

approximations and effective medium approximations, but those proved ulti-

mately inadequate to explain the behavior at all time scales [13, 47, 48]. For

example, see Figure 10 from reference [47].

1.4.4 Domains

A better method for modeling the relaxation is by a so-called cluster

approximation [13, 14, 53]. Here, we take a larger view of the system, instead

of looking at an average spin in an average environment, we consider the local

structure. The basic structures are domains of continuous down spins that are

between two up spins. That is, we chop up the domain every time we see an

up spin. Schematically,

110000101000101→ 1|1|00001|01|0001|01

Let D be the number of spins in a domain, including the terminating

up spin on the right hand side. It is implicitly assumed that each domain is

immediately adjacent to the next, so immediately to the left of any domain is an

up spin that terminates the previous domain. In equilibrium the distribution of

the up spins is random since no configuration is preferred. Therefore, starting

from an up spin and moving right, the probability of each site being up is c

from (1.116) - this can be thought of as independent Bernoulli trials - so the

number of sites you visit before coming to an up spin (the domain length) has a

geometric distribution with Bernoulli parameter c. Specifically, the probability

that a domain has a length d is

P(D = d) = c(1− c)d−1 =
p

(1 + p)d
(1.118)
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The average domain length is the expected value of the geometric distribution.

i.e.

davg =
1

c
= 1 +

1

p
(1.119)

The independence of the state of each spin in equilibrium also implies that the

lengths of any two domains are uncorrelated.

Now we can consider the dynamics of a domain as if we can pick it out

of a hat and treat it independently. This is at least approximately true because

from equations (1.114) and (1.115) we can completely disregard anything to the

right of the domain. Also, in the low temperature limit, up spins tend to be

very isolated, so we can treat the up spin to the left of the domain as being

fixed.

The insight of Sollich and Evans with regard to these dynamics was to

consider the energy barrier that a domain has to go over in order to relax [14,53].

The simplest cases are where we have d = 2n for some n. In order to make the

transition,

1 · · · 1→ 1 · · · 0

(where the dots indicate some string of down spins) one can flip the site halfway

across up and use that as a way of accessing the sites on the right half of the

domain. i.e.

1 · · · 0 · · · 1→ 1 · · · 1 · · · 1→ 1 · · · 1 · · · 0→ 1 · · · 0 · · · 0

To accomplish each of the transitions above, you must at least flip up the spin

halfway in between each of the subdomains (but not necessarily at the same

time). Continuing in this manner, one eventually reaches a subdomain length
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of one, and we’re done. Not counting the terminal up spins on the right and

left hand sides of the domain, the minimum number of spins that have to be up

at a particular time in the process of the domain relaxing is n. We can think

of this as a recurrence relation, with En = En−1 + 1 and E1 = 0, which has

solution En = n.

More generally, if 2n−1 < d ≤ 2n, the first up spin we have to place is

still in the 2n−1 place, and the rest of the analysis proceeds as above (on the

left hand subdomain) to get from totally unrelaxed to that first up spin. Thus,

the minimum energy barrier is

Ebarrier(d) = n (1.120)

Treating this as an activated process, the rate of removal of a domain is given

by an Arrhenius law. That is,

Γ(d) ∝ exp

(
−Ebarrier(d)

kBT

)
= exp(−n/T ) (1.121)

The inverse of this is the relaxation time, and plugging in p = exp(−1/T ), we

have

τd ∝ exp(n/T ) = p−n (1.122)

where 2n−1 < d ≤ 2n.

Noting that n − 1 < log2 d ≤ n, Sollich and Evans approximate the

energy barrier as

Ebarrier(d) ≈ ln d

ln 2
(1.123)

That is, their approximation of the lifetime of a domain, τd, is

τd ≈ d
1

T ln 2 (1.124)
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1.4.5 Relaxation Time

A simple consequence of the above discussion of the dynamics of

a particular domain, is that we can now approximate the average equilibra-

tion/relaxation time of the east model.

Combining equations (1.119) and (1.124), we have davg ≈ exp(1/T )

and τd ∝ d1/(T ln 2), so

τavg ∝ exp

(
1

T 2 ln 2

)
(1.125)

More rigorous work on the relaxation time keeps the EITS form, but

the factor B from equation (1.3) becomes less clear. This was first done by

Aldous and Diaconis and they derived the form

ln τ ≤
(

1

ln 2
+ o(1)

)
1

T 2
(1.126)

and

ln τ ≥
(

1

2 ln 2
+ o(1)

)
1

T 2
(1.127)

in the low temperature limit [1]. Their methodology was specific to the east

model. A later proof of this fact was done by Cancrini et. al. and was based

on more general techniques and they get that

ln τ =
1

T 22 ln 2
(1.128)

in the low temperature limit. This, they say, disproves equation (1.125) [8].

1.5 Overview of this Work

The primary focus of this work is to find and model the dynamic heat

capacity of the east Ising model. First the east model is simulated with Monte
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Carlo techniques. The temperature is modulated sinusoidally, and the energy

is monitored. From that, the dynamic heat capacity is computed.

We apply common frequency domain relaxation models, namely the

HN (1.62) and KWW (1.44) functions and a series of Debye relaxations (1.43).

Because the KWW function lacks a closed form frequency domain version, we

instead apply the approximation due to Bergman (1.94). The b, τ , and C ′′peak

parameters from equation (1.43) are fit to simulation data.

Next, expanding on the work of Sollich and Evans, we model the

relaxation process as a series of Debye relaxations, each due to the relaxation

of a different length domain. We hone the relaxation time predicted in equation

(1.122) by equating τd to the mean first passage time from an unrelaxed state

to the completely relaxed state. We do this by computing the Markov Chain

transition matrix on a restriction of the model to the domain length d. Then, τd

can be computed symbolically and numerically from this matrix. The resultant

model for the dynamic heat capacity fits the Monte Carlo simulations very well.

One of the major advantages of this technique is that small wobbles

in the time domain spin autocorrelation function, are seen to become distinct

peaks in the dynamic heat capacity for low enough temperatures. The sepa-

rate relaxation times computed with the Markov Chain techniques explain this

behavior perfectly. This model is also useful for comparing with the KWW

fits, to give an underlying reason for the behavior of those parameters. We are

able, to a good degree of precision, to solve for the dynamics of a known glass

former.



CHAPTER 2

METHODOLOGY

2.1 Dynamic Heat Capacity Simulation

In order to fit the HN and KWW functions and the Markov Chain

model to the East Ising Model, we performed a Monte Carlo simulation.

2.1.1 Simulation

The simulation itself is just an application of the rules of the game,

equations (1.114) and (1.115). A random starting configuration was chosen for

all the sites, with the correct frequency of up spins, then time was iterated. At

each step, frozen sites were skipped over and active sites were flipped with the

correct probabilities. At each step, after an equilibration period, the tempera-

ture was recomputed to follow a sinusoidal form T (t) = T0 + ∆T sin(ωt), and

the flip probability was computed as in equation (1.115), i.e. p = exp(−1/T ).

The state of the system (step, temperature, and energy per site) was dumped

and saved for post processing at regular intervals.

The Monte Carlo scheme was run for a range of 39 temperatures

between 0.2 and 10, and for each temperature, runs for logarithmically spaced

(twelve per order of magnitude) periods of 10 to at most 109 were done as

needed. From this we are able to compute a dynamic heat capacity spectrum

by post processing.

50
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The amplitude of oscillations used were ∆T = 0.05T0, and the number

of sites used was N = 100, 000. However, in order to check that the results

were not just an anomaly of these chosen parameters, both ∆T and N were

varied for a more limited range of temperatures.

2.1.2 Dynamic Heat Capacity Computation

Returning to the general case, assuming the output function of equa-

tion (1.5) at a particular frequency ω, a simple computation shows∫ 2π
ω

0

g(t) sin(ωt)dt =
πB cos(δ)

ω
(2.1)

But by equation (1.19), B cos δ = AG′, which gives us a way to compute G′

from y(t),

G′ =
ω

Aπ

∫ 2π
ω

0

y(t) sin(ωt)dt (2.2)

Similarly,

G′′ =
ω

Aπ

∫ 2π
ω

0

y(t) cos(ωt)dt (2.3)

As discussed earlier, the results from actual simulation are not as

clean. The actual energy is quite noisy, so to clean it up, we take an average

over many periods. See Figure 2.1 for an example. And since the model

is inherently in discrete time, instead of setting the frequency of oscillation,

the period N is varied, and equations (2.2) and (2.3) have to be evaluated

numerically. That is,

C ′V (N) =
2

AN

N∑
n=1

(En − Ē) sin

(
2π

N
n

)
(2.4)

C ′′V (N) =
2

AN

N∑
n=1

(En − Ē) cos

(
2π

N
n

)
(2.5)



52

0.48
0.49
0.5
0.51
0.52

0.116
0.118
0.12
0.122
0.124

0.116
0.118
0.12
0.122
0.124

0 500 1000 1500 2000 2500 3000

Monte Carlo Step

T
e

m
p

e
ra

tu
re

A
v
g

. 
E

n
e

rg
y

E
n

e
rg

y

Figure 2.1: Sample output from an oscillatory experiment on the east model
with T=0.5 at a period of 1000 MC steps. Top: the input temperature vari-
ation. Middle: the raw total energy output. Bottom: the average period of
the total energy. The vertical line has been added to emphasize the phase lag
between the temperature and energy.
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Figure 2.2: Example specific heat for T = 0.4 (left) and T = 1.0 (right) against
frequency. The real part are the squares and the imaginary part are the circles.

where En is the sequence of averaged energy terms, and Ē is the overall average

energy. The average energy, i.e. the DC component, is removed for accuracy

since it should cancel out anyway in the integration.

It is worth noting that equations (2.4) and (2.5) are just one of the

discrete Fourier transform (DFT) terms for the time series En, but it’s unnec-

essary to compute the full DFT because the rest of it should just be zero or

noise.

See Figure 2.2 for an example of spectra for the east model obtained

from this procedure.

2.2 Nonlinear Least Squares Fitting Procedure

We fit the dynamic specific heat data generated from the east model

as described above to the HN and KWW forms using nonlinear least squares

procedures. Specifically, to minimize the square residuals and find the op-

timal parameters, a Levenberg-Marquardt routine was implemented with a
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few modifications [3, 44]. The following sections detail how complex-valued

data, bounded parameters, widely varying parameters, and an only approxi-

mate functional form were dealt with.

2.2.1 Converting a complex problem to a real one

In general, if we want to fit complex data yi ∈ C, i = 1, 2, ...,m with

associated real independent variables xi ∈ R and errors σi ∈ C to a function

φ(m) : R→ C where m ∈ Rn is the vector of parameters of φ, the least squares

solution is the one that minimizes the l2-norm of the residuals. The weighted

residuals ri(m), i = 1, 2, ...,m are given by

ri(m) =
<(yi − φ(m;xi))

<σi
+ i
=(yi − φ(m;xi))

=σi
(2.6)

Minimizing the l2-norm is the same as minimizing the function [52],

f(m) =
1

2

m∑
i=1

|ri(m)|2 (2.7)

This can be written as,

f(m) =
1

2

m∑
i=1

[
<(ri(m))2 + =(ri(m))2

]
(2.8)

So, if we can find a function ψ(m) : R → R and bijective mappings

g1, g2 : R→ R such that

φ(m;x) = ψ(m; g1(x)) + iψ(m; g2(x)) (2.9)

for all x in the domain of φ, then we can map this problem to a real

nonlinear least squares problem with 2m data points. The new data is
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ỹi =

{
<(yi) , i = 1, 2, ...,m
=(yi) , i = m+ 1,m+ 2, ..., 2m

(2.10)

with associated real independent variables

x̃i =

{
g1(xi) , i = 1, 2, ...,m
g2(xi) , i = m+ 1,m+ 2, ..., 2m

(2.11)

and errors

σ̃i =

{
<(σi) , i = 1, 2, ...,m
=(σi) , i = m+ 1,m+ 2, ..., 2m

(2.12)

The residuals are now

r̃i(m) =
ỹi − ψ(m; x̃i)

σ̃i
(2.13)

Therefore, by combining equations (2.7), (2.9) and (2.13), we have

f(m) =
1

2

2m∑
i=1

(r̃i(m))2 (2.14)

This f is exactly the same as the one above, so solving the modified

real-valued nonlinear regression is identical to solving the complex valued one

that we stared out with.

Modified HN

Finding modified versions of the HN function is simple. The domain

is restricted to the positive reals, so if we define

g1(x) = x (2.15)
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and

g2(x) = −x (2.16)

Then the ψ functions can be defined on the whole real line by

ψ(x) =

{
<(φ(x)) , T > 0
=(φ(−x)) , T < 0

(2.17)

This is accomplished by directly using equations (1.72) and (1.73).

The gradient vectors that are needed depend only on the gradients

with respect to m of φ, and were derived from the equations for the real and

imaginary parts of the HN function using Maple. The explicit form is compli-

cated and not instructive to the discussion here.

A modified version of the KWW function is unnecessary because the

approximation that we have is only defined for the imaginary part, so we will

only need to fit that using the standard Levenberg-Marquardt method.

2.2.2 Bounded parameters

The parameters of both the HN and the KWW functions have to meet

some physical constraints. Namely,

1 ≥ α, γ, b ≥ 0 (2.18)

since if these parameters were greater than one, this would correspond to faster

then exponential decay. And

C1, C2, τ ≥ 0 (2.19)

since specific heat and time cannot be negative, and where C1 ≡ G∞ and

C2 ≡ G0 −G∞.
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To deal with this, we implement an active set method [44], with the

constraints [
I
−I

]
m ≥

[
l
−u

]
(2.20)

where l and u are the lower and upper bounds, with elements in R ∪ {∞}. In

an active set method, we turn on or turn off equality constraints as necessary

to keep the parameters in the feasible region. Let A(m) be the set of active

constraints, that is which variable are already at their limit and cannot be

increased/decreased any further. The null space of unconstrained variable, in

this case is simply

Z = [ej1 , ej2 , · · · , ejl ] (2.21)

where

j1, j2, . . . , jl ∈ A(mk) (2.22)

where A(mk) is the complement of the active set at mk.

When computing the LM steps, we use the effective gradient

∇efff(m) = ZTJ(m)Tr̃(m) (2.23)

where J(m) denotes the Jacobian of f(m). And the effective Gauss-Newton

approximate Hessian is

∇2
efff(m) = ZTJ(m)TJ(m)Z (2.24)

That is, we simply turn on/off variables, the structure of Z is such that the

LM step is computed in the same way as if the active constraint variables were

not even present.
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To add constraints to the active set, compute an LM step pk with the

effective gradient and Hessian and let

Il = {i|mk
i + pki < li} (2.25)

and

Iu = {i|mk
i + pki > ui} (2.26)

then take

αk = min

(
min
i∈Il

li −mk
i

pki
,min
i∈Iu

mk
i − ui
pki

, 1

)
(2.27)

then add the minimizing index, if any, to the active set, and update mk+1 =

mk + αkZpk, where multiplying by Z correctly formats the step so it can be

added to all of the parameters.

Also, we drop an active constraint j if moving into the feasible region

is downhill, that is

mk
j = lj (2.28)

and
∂f(mk)

∂mj

< 0 (2.29)

or if

mk
j = uj (2.30)

and
∂f(mk)

∂mj

> 0 (2.31)
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2.2.3 Multistart

As can be seen in Figure 2.2, the peak in the loss, which directly gives

the value for τ , varies over many orders of magnitude for different temperatures,

so a single good initial guess for τ that will be close enough to miss any potential

local minima does not exist. The solution to this problem is multistart; we

run the described modified LM algorithm with several starting values for τ

logarithmically equally spaced from τ = 10 to τ = 108 and simply take the

lowest residual result as the optimal solution. The other parameters do not

vary as widely over the dataset, so multistart was found to be unnecessary for

those parameters.

2.2.4 Cropped data

The high frequency side of that data shows some wobbly features that

cannot be represented by the KWW or HN functions. These features are within

error bars and so cannot be ignored as just random noise. Instead, to get a

reasonable fit to the data, we cut off the worst of the high frequency data. An

example of this is shown in Figure 2.3.

2.3 Domain Model

The other method that we will be considering is to consider the system

to be a series of domains of down spins with an up spin on either side.
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Figure 2.3: Example data for for T = 0.4 (left) and T = 1.0 (right), the solid
line shows where data was cropped off.

2.3.1 Markov Chains

Each domain length will have a specific relaxation time associated

with it. That is, we are looking for the mean first passage time for

10 · · · 01→ 10 · · · 00

where the dots represent some chain of down spins. This is done with Markov

Chain analysis [23]. Fix a domain of length d, and let P be the transition

matrix, where we have implicitly assumed that there is an up spin to the left

of the domain that does not relax and we use the convention that Pij is the

probability that state i transitions to state j. Notice that this matrix is 2d×2d

and sparse since each row can have only as many as 2bd/2c nonzero elements,

typically much less.

To measure the mean first passage time in question, we make the

relaxed state of the system an absorbing state and calculate the mean absorbing

time. We can do this because equation (1.125) implies that the real chain is

ergodic and this would make the relaxed state the only absorbing state and
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connected to all the others, the transient states. We can rewrite the transition

matrix P in block form as

P =

[
1 0
R Q

]
(2.32)

where R is a (2d− 1)× 1 matrix and Q is a (2d− 1)× (2d− 1) ergodic matrix.

It follows that

P n =

[
1 0
∗ Qn

]
(2.33)

where ∗ denotes some nonzero function of Q and R. Since the elements of P n

are the transition probabilities in n steps, and the chain must eventually be

absorbed, Qn −−−→
n→∞

0. From this fact, and since (I+Q+Q2+. . .+Qn)(I−Q) =

I −Qn+1, we have

(I −Q)−1 = I +Q+Q2 + . . . (2.34)

But it can be shown by equation (2.33) that the elements (I −Q)−1
ij

are the mean number of times the chain passes through state j before being

absorbed given that it starts at state i. Therefore, the mean first passage time

is the sum of the elements on the appropriate row of (I −Q)−1. Equivalently,

it is the appropriate element of the vector ~τ that is the solution of the linear

system

(I −Q)~τ = ~v (2.35)

where ~v is a vector of all ones.

Methods for Solving the system of equations

Again, by simple application of equations (1.114) and (1.115), we

can compute Pd, for relatively small values of d. By the Symbolic package

in MATLAB, the mean passage time was computed as above for an arbitrary
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temperature. Since it is extremely computationally intensive to solve large

symbolic systems, the same problem was solved numerically at the specific

temperatures that were run in the MC simulations. For moderate length chains,

this was done directly, but for larger chains this was done with the GMRES

iterative solver up to an accuracy of 10−3 or better [50]. This allows us to, for

the most part cover at least the same time range that is accessible through MC

simulation. The I − Q matrices are in general ill conditioned, so the Jacobi

preconditioner was used to speed up the iterative solver.

2.3.2 Markov Chain Multiexponential Model

Next, under the approximation that the up spins are isolated enough

that the up spin on the left hand side of the domain does not relax, we can treat

the system as if it were a population of independent domains. Let N(d) be the

number of sites of length d. By equation (1.118), in equilibrium, Neq(d) =

Nc(1− c)d−1.

In the time domain, what we are interested in is the average fluctua-

tions of the energy from equilibrium, ∆E. Focusing on a single domain length,

d, the contribution to ∆E is just ∆N(d) = N(d) − Neq(d). The mean time

for a domain to relax is τd, and since the time rate of change of the number

of domains is proportional to how many such domains there are, we can rea-

sonably model this with Debye relaxation for domains of at least size two. For

the d = 1 case, the relaxation always happens in a single step, so there is no

imaginary/loss part to it. Also, for the d = 2 case, the relaxation happens in

exactly two steps with probability p, there is no loss part in this case either.

The individual Debye forms are weighted by how many domains there should



63

be in equilibrium.

The above argument is summarized as

CV (ω) =
1

4T 2 cosh(1/(2T ))

(
c+ pc(1− c) +

(1− p)c(1− c)
1 + iωτ2

+
∞∑
d=3

c(1− c)d−1

1 + iωτd

)
(2.36)

2.3.3 Truncated Markov Chain Multiexponential Model

Equation (2.36) has the advantage of being based only on numerically

accurate calculations instead of fitting parameters, but its weakness is that it

ignores domain-domain interactions. A simple modification to try to solve this

problem is to suppose that there is some maximum relaxation time τmax and

all domains that have an isolated relaxation time longer than the maximum

will relax at the maximum time. This happens because domains that are

long enough to relax slower than the maximum will be necessarily nonisolated.

Therefore, the far left up spin will tend to be relaxed by the adjacent domain

in about time τmax, this will often have the effect of shrinking the domain in

question because it will likely have flipped up an intermediate spin, which will

become the new terminal left spin for the domain. The exact process of how

this happens is complicated, but we can modify the above to incorporate a

maximum relaxation time by adding the fitting parameter dmax, the maximum

effective domain length, and forcing all domains larger than dmax to relax at

its relaxation time.
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That is,

CV (ω) = CV

(
c+ pc(1− c) +

(1− p)c(1− c)
1 + iωτ2

+
dmax∑
d=3

c(1− c)d−1

1 + iωτd
+

(1− c)dmax

1 + iωτdmax

)
(2.37)

where CV = 1/(4T 2 cosh(1/(2T ))) as in equation (1.113).

For clarity, I will refer to equation (2.36) as the Markov chain model,

and equation (2.37) as the truncated Markov chain model.



CHAPTER 3

RESULTS

This chapter presents the raw results of the KWW and HN fits using

the method described above as well as the results for the symbolic and numer-

ical versions of the Markov Chain model. The raw dynamic specific heat data

from simulation are in Appendix A, this chapter will focus on the fit and model

results.

3.1 Simulation

Some general examples of the simulation results have already been

shown in the previous chapter’s discussion of fitting procedures (see Figure

2.2). The chosen simulation temperature amplitude ∆T and number of sites N

did not affect the results of the simulation. The simulations with varying ampli-

tudes were within error bars of each other, but the lower amplitude simulation

had considerably more noise in the data (see Figure 3.1). The simulations with

varying number of sites were indistinguishable (see Figure 3.2).

3.2 HN and KWW fits

The fits for the example spectra from the previous chapter are shown

in Figure 3.3. Both fit the data reasonably well in the low frequency range, but

the KWW fit seems to track the high frequency data (that was ignored in the

65
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Figure 3.1: Dynamic heat capacity spectrum from simulation with T0 = 0.5
and N = 100, 000, where ∆T = 0.05T0 are squares for storage and inverted
triangles for loss and ∆T = 0.01T0 are diamonds for storage and triangles for
loss.
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Figure 3.2: Dynamic heat capacity spectrum from simulation with T0 = 0.5
and ∆T = 0.05T0, where N = 100, 000 are squares for storage and inverted
triangles for loss, N = 33, 001 are circles for storage and right triangles for loss,
and N = 10, 000 are diamonds for storage and triangles for loss.
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Figure 3.3: Sample nonlinear regression fits for T = 0.42 (left) and T = 1.0
(right). The KWW fits are on the top and the HN fits are on the bottom. The
plot scale is log-log.

actual fitting procedure) better than the HN version.

In analogy to equation (1.52) with equation (1.62), the thermody-

namic or zero frequency specific heat is found by summing the shifting C1 and

scaling C2 parameters. That is,

CV,0 = C1 + C2 ≡ G0 (3.1)

This is a reasonable sanity check on the fits performed, and the result of this

can be seen in Figure 3.4. There is good agreement between the theoretical and

measured thermodynamic specific heat, with a larger amount of error at low

temperatures, where the data is not quite as good due to the large timescales
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Figure 3.4: Shifting C1 and scaling C2 parameters from the HN fits in units of
specific heat against temperature. The inverted triangles are the shift factor,
the diamonds are the scale factors, and the squares are the sum of those two.
The theoretical specific heat, equation (1.113), is the solid line. Inset: zoomed
in on the peak with just the sum and equation (1.113) plotted

involved to see the full spectrum. It’s also interesting to note that the shifting

parameter peaks and then dies off as the shortest relaxation time moves into

testable frequencies. The only reason why the shifting factor is necessary is

because for the lowest period experiments (10 MC steps per cycle), for higher

temperatures, some domains will have relaxed in less time, so we move up the

real part of the specific heat to adjust for that.

A similar plot for the KWW fits is the peak height shown in Figure

3.5, but since we have not fit the real part at all, the thermodynamic specific
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Figure 3.5: Plot of the peak height G′′p from equation (1.94) in units of specific
heat against temperature.

heat cannot be recovered from this data, specifically the shifting factor on the

real part is missing. The peak height follows the same general shape as the

thermodynamic specific heat has a lower value and peaks somewhat earlier, at

about T = 0.45 instead of about T = 0.42.

Next, the fitted shape parameters are shown in Figure 3.6. For ei-

ther fitting procedure, we see two plateaus and a relatively smooth transition

between them. For high temperatures, all three parameters are approximately

one, meaning the relaxation is nearly Debye. Then for low temperature, high

τ , b and γ decrease and plateau to a somewhat low value, indicating non-Debye

relaxation stretched over more and more timescales. γ seems to have reached
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Figure 3.6: Shape parameters α (inverted triangles), γ (diamonds), and b
(squares) plotted against temperature (left) and log(τ) from the same type of
fit (right) with fitting error bars.

a plateau of a bit under 0.3 in the temperatures studied, but it is unclear what

the KWW b’s eventual behavior is.

Finally, comparing log time against inverse temperature squared (see

Figure 3.7), for low temperatures, the data seems to be approaching a straight

line, as is expected from equation (1.125). Note that we only expect agreement

for low temperatures since the theories of Sollich and Evans, Aldous and Diaco-

nis, and Cancrini et. al. only apply in the low temperature limit (see Chapter

1). Therefore, we fit the relaxation time at low temperature with equation

(1.3). For HN this results in τ0 = 171.47 ± 21.906 and B = 1.136 ± 0.013045,
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Figure 3.7: Plot of log relaxation time τ against inverse temperature squared
for the KWW fits (squares). The dashed lines are the fits to the EITS form
discussed in the text. The solid lines are for comparison to the theoretical
slopes of 1/ ln 2 and 1/2 ln 2.

and for KWW τ0 = 38.094±3.0373 and B = 1.1425±0.0081525. This is statis-

tically significantly smaller than the Sollich and Evans value of B = 1/ ln 2 ≈

1.4427 from equation (1.125) and larger than the Cancrini et. al. value of

B = 1/2 ln 2 ≈ 0.7213 from equation (1.128). The large difference between the

τ ’s from the HN and KWW, especially at low temperatures, comes from the

fact that the shape parameters (α, γ, and b) in this range are low; this changes

the relative peak location and τ value for both functions and is a well known

property of these functions [2]. Although the exact numerical value for τ is

different, both methods have similar asymptotic behavior for low temperature.
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3.3 Markov Chain Model

The two parts discussed are the symbolic and numerical values for τd

and the resulting specific heat spectra.

3.3.1 Symbolic Results

The first four symbolic τd’s as a function of flip probability p, in full

form are

τ1 = 1 (3.2)

τ2 =
p+ 1

p
(3.3)

τ3 =
−2 p+ p3 − 1

p2 (−1 + p)
(3.4)

τ4 =
p9 − 2 p7 + 5 p6 + 8 p5 − 5 p4 − 9 p3 + 2 p2 + 6 p+ 2

p2 (p7 − p6 − p5 + 3 p4 − 3 p2 + p+ 1)
(3.5)

It gets much more complicated from there, so the truncated series representa-

tion for the first eight are

τ1 = 1 (3.6)

τ2 = p−1 + 1 (3.7)

τ3 = p−2 + 3 p−1 + 3 +O (p) (3.8)



74

τ4 = 2 p−2 + 4 p−1 + 4 +O (p) (3.9)

τ5 =
1

2
p−3 +

15

4
p−2 +

71

8
p−1 +

163

16
+O (p) (3.10)

τ6 =
6

7
p−3 +

37

7
p−2 +

90

7
p−1 +

818

49
+O (p) (3.11)

τ7 =
3

2
p−3 +

27

4
p−2 +

289

12
p−1 +

751

144
+O (p) (3.12)

τ8 = 4 p−3 − 40 p−2 +
2509

2
p−1 − 477655

16
+O (p) (3.13)

Unfortunately, this as far as could be computed in a reasonable time frame.

This does, however, give strong evidence for the truth of the approximation

by Evans in equation (1.122) [14]. There is no obvious pattern for even the

leading coefficient, and solving that problem, if there is a solution, for the p−n

terms would essentially completely determine the dynamics of the east model.

Interestingly, running the Markov Chain analysis in the reverse direc-

tion, that is the mean first passage time from relaxed to two isolated up spins

of a specific domain size d, yields that the creation time for a domain of size d

is

τcreate,d =
τd
p

(3.14)

for all the domain lengths probed symbolically.
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3.3.2 Numerical Results

Examples of the results of the Markov Chain model are shown in

Figures 3.8, 3.9, 3.11, 3.12, and 3.13. Where the primary result of this model

is that we are able to fit the wobbles on the high frequency side that were

impossible to treat with just the HN or KWW functions.

For low temperatures (below T = 0.3), such as T = 0.2 and 0.25

in Figures 3.8 and 3.9, the Markov Chain model is able to capture the entire

behavior of the dynamic specific heat that was possible to simulate with Monte

Carlo. Computing the full spectrum with Monte Carlo at these temperatures

is well beyond what is possible to do with today’s computers, so we cannot

compare this model with simulation any further then that. Note how far from

equilibrium frequencies these cases are: for T = 0.2, CV ≈ 0.166 by equation

(1.113), but the real part of the simulation results only goes as high as 0.01;

and for T = 0.25, CV ≈ 0.283, but the real part only gets as high as 0.07 in

the simulation.

Next, in the intermediate cases (temperatures between T = 0.3 and

T = 0.5 or so), such as T = 0.32 and T = 0.42 in Figures 3.11 and 3.11, the

full spectrum can be simulated, and the problem here is the number of Markov

Chain τd’s that can be computed. For the range that it is possible to compute

enough τd’s the agreement is very good, but there are diminishing returns from

equation (2.36), where each successive term matters less but is several times

harder to compute. The result is promising, and explains the high frequency

structure, but is incomplete. A near-infinite number of terms would be required

to fill this out.
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Figure 3.8: Sample Markov chain model (lines) compared to the MC data for
T = 0.2. The top (squares) is the real part and the middle (inverted triangles)
is the imaginary part of the dynamic heat capacity. The bottom is the phase
lag δ. The model was computed with τd’s for domains with sizes up to d = 14.
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Figure 3.9: Sample Markov chain model (lines) compared to the MC data for
T = 0.25. The top (squares) is the real part and the middle (inverted triangles)
is the imaginary part of the dynamic heat capacity. The bottom is the phase
lag δ. The model was computed with τd’s for domains with sizes up to d = 12.
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Figure 3.10: Sample Markov chain model (lines) compared to the MC data for
T = 0.32. The top (squares) is the real part and the middle (inverted triangles)
is the imaginary part of the dynamic heat capacity. The bottom is the phase
lag δ. The model was computed with τd’s for domains with sizes up to d = 16.



79

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

ω

C
v’

(ω
)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.02

0.04

0.06

0.08

ω

C
v"

(ω
)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

ω

δ

Figure 3.11: Sample Markov chain model (lines) compared to the MC data for
T = 0.42. The top (squares) is the real part and the middle (inverted triangles)
is the imaginary part of the dynamic heat capacity. The bottom is the phase
lag δ. The model was computed with τd’s for domains with sizes up to d = 18.
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Figure 3.12: Sample Markov chain model (lines) compared to the MC data for
T = 0.7. The top (squares) is the real part and the middle (inverted triangles)
is the imaginary part of the dynamic heat capacity. The bottom is the phase
lag δ. The model was computed with τd’s for domains with sizes up to d = 20.
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Figure 3.13: Sample Markov chain model (lines) compared to the MC data for
T = 1.0. The top (squares) is the real part and the middle (inverted triangles)
is the imaginary part of the dynamic heat capacity. The bottom is the phase
lag δ. The model was computed with τd’s for domains with sizes up to d = 14.
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Finally for high temperatures (above about T = 0.5), such as T = 0.7

and 1 in Figures 3.12 and 3.13, both the full dynamic heat capacity spectrum

is able to be simulated and enough τd’s are able to be computed to cover the

full range of dynamics. Here, however, there is not as much of a good fit. The

prediction of the Markov Chain model shows a CV spectrum that is too spread

out, as a result of the domains actually being completely nonisolated for higher

temperatures.

Truncated Markov Chain Numerical Results

We can do better with the truncated Markov chain version, equation

(2.37). This fills out the relaxation for domains too large to compute the

relaxation for directly, and crops off any relaxation times that are too long by

forcing them down to the best fit dmax. Figures 3.14, 3.15, and 3.16 are the

truncated Markov chain model fits for T = 0.42, 0.7, and 1. Again, we are

limited by the number of terms that can be computed, and it was only possible

to do this analysis in the temperature range 0.42 ≤ T ≤ 1.

Since dmax is a fitting parameter, tracking it tells us something about

the system as well, See Figure 3.17. dmax seems to grow approximately propor-

tionately to the mean domain length.
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Figure 3.14: Sample truncated Markov chain model (lines) compared to the
MC data for T = 0.42 with dmax = 18. The top (squares) is the real part
and the middle (inverted triangles) is the imaginary part of the dynamic heat
capacity. The bottom is the phase lag δ.
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Figure 3.15: Sample truncated Markov chain model (lines) compared to the
MC data for T = 0.42 with dmax = 8. The top (squares) is the real part
and the middle (inverted triangles) is the imaginary part of the dynamic heat
capacity. The bottom is the phase lag δ.
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Figure 3.16: Sample truncated Markov chain model (lines) compared to the
MC data for T = 0.42 with dmax = 5. The top (squares) is the real part
and the middle (inverted triangles) is the imaginary part of the dynamic heat
capacity. The bottom is the phase lag δ.
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CHAPTER 4

DISCUSSION

4.1 Simulation

In the previous chapters, we saw that the dynamic heat capacity of

the east model could be measured using Monte Caro simulation by comparing

the sinusoidally varying temperature with the resultant sinusoidally varying

energy. The resultant spectra for fixed temperatures and widely varying fre-

quencies in and of themselves are somewhat of a new result for the east model.

However, the mathematically equivalent time domain version of the dynamic

heat capacity, spin autocorrelation functions, have been measured many times

before and used as a primary tool for analyzing relaxation behavior in the

model [31,13,53,47,48]. The wiggles in the short time spin autocorrelations in

these papers correspond to the wiggles in the storage and peaks in the loss seen

in this study for low temperatures. In neither case does a stretched exponential

fully explain the behavior.

4.2 KWW and HN

As mentioned above, the fits of the simulation data to the KWW

or HN forms are not strictly valid because there are features in the data that

simply do not exist in the KWW or HN functional forms. However, by avoiding

the trouble spots, we can come up with estimates for the relaxation time τ and

87
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the shape parameters α, γ, and b give more information on how the system

relaxes.

First, as mentioned in the previous chapter, for the HN fits, where we

fit the real part of the dynamic heat capacity which asymptotically approaches

the thermodynamic heat capacity, we confirm the validity of fits by recovering

the thermodynamic specific heat (see Figure 3.4).

τ is a trickier subject. The fitted τ ’s asymptotically approach the

EITS form, which is agreed to be the theoretical limit. However, when the

value for B in the EITS form, equation (1.3), is fit to the computed τ ’s, the

error is very large compared to what would be expected from the accuracy of

the data and the fits. See Figure 3.7. There are several possible reasons for

this difference. First and foremost, this could be approaching the more recently

established value of B = 1/2 ln 2, but the simulations were not done at cold

enough temperatures to see this.

There is also the possibility that the lowest temperature fits are some-

what flawed. A large potential problem resides in the cropping step in the fit;

for the coldest half of the temperatures that could be fit there is at least one

high frequency peak that has to be cropped off, and for the coldest 9 temper-

atures there are two peaks that have to be cropped off. Cropping the high

frequency side of things at somewhat arbitrary data points could greatly af-

fect the shape parameters, which are determined by high frequency data (see

Chapter 1), and this could have a very large effect on the eventually fitted

τ ’s since the parameters are related in a nontrivial matter [2]. For lower and

lower temperatures, less and less of the high frequency data is reasonably fit
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by these functions, leading to a potentially very large error that is not directly

accounted for.

The shape parameters α, γ, and b drop with decreasing temperature;

meaning a more spread out relaxation function. This supports the idea that the

system does not have a single relaxation that gets slower with temperature (as

in time temperature superposition), but potentially many relaxations that get

slower with temperature at different rates. The Markov Chain model explains

how and why this happens.

4.3 Markov Chain

The results of the Markov Chain model have two important conse-

quences.

First, the symbolic solutions, to first order, agree with the approxima-

tion that gives rise to the form of the overall relaxation time of the system due

to Sollich and Evans, namely that τd ∝ p−n where 2n−1 < d ≤ 2n [53,14]. This

relationship, in effect, explains the decrease we see in the shape parameters in

the KWW and HN fits because for low temperatures, p = exp(−1/T ) becomes

very small making the difference between p−n and p−(n+1) very large. However,

it remains an open question as to a general form for the τd’s. The exact form

is extraordinarily complicated; τ8 is a ratio of two roughly 250 degree polyno-

mials. But, the p−k, k ≥ 0, are the important terms in the low temperature

limit, so finding a pattern in these terms would be enough to essentially nail

down the entire relaxation function for low temperature and domain size.

Secondly, we see that the numerical Markov Chain results match the
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simulation data very well for high frequencies, where the high frequency wiggles

in the dynamic heat capacity (and therefore also the short time wiggles in the

spin autocorrelation) are matched perfectly by this model. This model for

the relaxation function relies only on the approximation that the relaxation

of the individual domains is Debye, which is only approximately true. The

biggest problems with that approximation will be in extremely short timescales,

where the discrete nature of the model is more important, but especially at low

temperatures when timescales become much larger, this approximation is valid

for most of the dynamic heat capacity spectra.

Since these relaxation times for low temperature become significantly

spread out as to become distinct in the CV spectra, we are able to compute these

times numerically and exactly and match this with simulation in a meaningful

way. That is, if all relaxations were lost in a single peak, fitting relaxation time

is an underdetermined problem greatly complicated by data noise, but since

we see the peaks separate for low temperatures, we can tell that the model

relaxation times work.

A weakness of this model for long timescales is the assumption of

domain isolation. Short domains are essentially isolated since, especially for low

temperatures, they have a considerable lower relaxation time than the average

domain, so the local dynamics are as if no other up spins exist to the left of

the terminal left spin. For very long domains, the terminal left up spin is likely

to be flipped down by the adjacent domain at some point. Now, recalling that

τd = O(p−n) and τcreate,d = O(p−(n+1)), the interdomain dynamics are composed

of slow creation and rapid collapse of small subdomains, which occasionally
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extends out far enough to relax the terminal right up spin. So, when the

left terminal up spin in a long domain relaxes, this speeds up the dynamics

because the subdomains can not collapse as far back. This is complicated by

the fact that if no subdomains exist or they are relaxed as well, the domain is

absorbed into the domain to its left, increasing relaxation time. This is why

the isolated model works great for short timescales (and thus small domains) at

low temperature (see Figures 3.8 and 3.9), but for higher temperatures where

we should be able to cover the entire simulation range with the Markov chain

model, it is too spread out (see Figures 3.12 and 3.13).

The truncated version of the Markov chain model does a remarkably

good job fitting the data and fixing the problems of the isolated domain model

(see Figures 3.14, 3.15, and 3.16). However, it requires a fitting parameter, and

rigidly cutting down the long relaxation times to a single value is unrealistic.

To do this right, one would need to find a way to spread out the contribution

of the larger domains over shorter timescales in a way based more firmly on

the dynamics of the east model.

4.4 Summary

The first main result of this work is based on Monte Carlo simulations

of the east Ising model; we can compute the dynamic heat capacity of the model

and fit it to relaxation functions to extract relaxation time and form. The

relaxation time is seen to fit the general form that it should from theoretical

arguments from the literature.

Secondly, we make a connection between the rules of the east model
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and its structure (domains of down spins with up spin on either side) to a

Markov chain model of those domains to get a discrete set of relaxation times.

These relaxation times explain the shape of the dynamic specific heat spectra

at low temperature and high frequency. Also, recall that the Markov Chain

model is essentially an expansion of the work of Sollich and Evans, which leads

to τ ∝ exp(1/T 2 ln 2) for low temperatures, the isolated domain limit. However,

in our Monte Carlo simulations, we find that T 2 ln τ ≈ 1/1.3 ln 2 at the lowest

temperatures, which is consistent with domain-domain interactions introducing

faster dynamics.

A full description of the dynamics would require us to model the

domain-domain interactions. Such a model would speed up the relaxation

times based on the (probabilistic) size of the domain to the left. This would

result in a gradual isolated/nonisolated domain transition, where timescales

near the relaxation time of the median domain size would dominate the long

time behavior. Since simply plugging in the mean (or median) domain size

into τd ≈ p−n results in τ ∝ exp(1/T 2 ln 2), a more general form of τd (per-

haps derived from the isolated Markov Chain method used above) with correct

coefficients and second order terms (effectively spreading out the domain re-

laxations across the relevant powers of 2) might need to be used to agree with

τ ∝ exp(1/T 22 ln 2). Note that the HN fits show α < 1 especially for low

temperatures, supporting these ideas.

In a broader sense, the whole purpose of the East model is to replicate

a real system. For a remarkable number of real systems and experiments,

we see relaxations that for at least certain timescales appears to be stretched
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exponential, or in the frequency domain HN. For these functions to be exactly

correct, this would require that there was a continuous distribution of relaxation

times in the system; a claim that is not necessarily physical [39, 2]. Discrete

models, such as the east model, also show relaxation behavior that, for certain

timescales at least, is very similar to the KWW or HN forms, but since they are

discrete we do not need to invoke a continuous distribution of relaxation times

to generate them. It is not such a huge leap to suppose that a similar mechanism

is at work in real systems as well. That is, certain jammed structures have

certain (temperature dependent) times associated with them and the sum of

all their relaxations give rise to the macro level experimental results. What

exactly these are, and how they evolve with time is a much more complicated

question.



APPENDIX A

RAW SIMULATION DATA

The following are plots of the results for CV at all simulated frequen-

cies and temperatures. All horizontal axes are the same, but the vertical axes

for the dynamic heat capacity are set to the maximum real part measured

(often the thermodynamic limit).
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Figure A.1: C ′V (squares), C ′′V (circles), and δ (points) from simulations at the
marked temperatures.
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Figure A.2: C ′V (squares), C ′′V (circles), and δ (points) from simulations at the
marked temperatures.

96



0

0.01

0.02

T =3

0

0.2

0.4

0

0.02

T =2.5

C
V

0

0.2

0.4

δ

10
−10

10
−5

10
0

0

0.05

T =2

ω
10

−10
10

−5
10

0
0

0.2

0.4

ω

Figure A.3: C ′V (squares), C ′′V (circles), and δ (points) from simulations at the
marked temperatures.
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Figure A.4: C ′V (squares), C ′′V (circles), and δ (points) from simulations at the
marked temperatures.
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Figure A.5: C ′V (squares), C ′′V (circles), and δ (points) from simulations at the
marked temperatures.
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Figure A.6: C ′V (squares), C ′′V (circles), and δ (points) from simulations at the
marked temperatures.
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Figure A.7: C ′V (squares), C ′′V (circles), and δ (points) from simulations at the
marked temperatures.
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Figure A.8: C ′V (squares), C ′′V (circles), and δ (points) from simulations at the
marked temperatures.
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Figure A.9: C ′V (squares), C ′′V (circles), and δ (points) from simulations at the
marked temperatures.
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Figure A.10: C ′V (squares), C ′′V (circles), and δ (points) from simulations at the
marked temperatures.
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Figure A.11: C ′V (squares), C ′′V (circles), and δ (points) from simulations at the
marked temperatures.
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Figure A.12: C ′V (squares), C ′′V (circles), and δ (points) from simulations at the
marked temperatures.
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Figure A.13: C ′V (squares), C ′′V (circles), and δ (points) from simulations at the
marked temperatures.
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Figure A.14: C ′V (squares), C ′′V (circles), and δ (points) from simulations at the
marked temperature.
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