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ABSTRACT 

 
Soil moisture conditions have an impact upon virtually all aspects of Army activities and are increasingly affecting its 

systems and operations. Soil moisture conditions affect operational mobility, detection of landmines and unexploded 

ordinance, natural material penetration/excavation, military engineering activities, blowing dust and sand, watershed 

responses, and flooding. This study further explores a method for high-resolution (2.7 m) soil moisture mapping using 

remote satellite optical imagery that is readily available from Landsat and QuickBird. The soil moisture estimations are 

needed for the evaluation of IED sensors using the Countermine Simulation Testbed in regions where access is difficult 

or impossible. The method has been tested in Helmand Province, Afghanistan, using a Landsat7 image and a QuickBird 

image of April 23 and 24, 2009, respectively. In previous work it was found that Landsat soil moisture can be predicted 

from the visual and near infra-red Landsat bands1-4. Since QuickBird bands 1-4 are almost identical to Landsat bands 1-

4, a Landsat soil moisture map can be downscaled using QuickBird bands 1-4.  However, using this global approach for 

downscaling from Landsat to QuickBird scale yielded a small number of pixels with erroneous soil moisture values. 

Therefore, the objective of this study is to examine how the quality of the downscaled soil moisture maps can be 

improved by using a data stratification approach for the development of downscaling regression equations for each 

landscape class. It was found that stratification results in a reliable downscaled soil moisture map with a spatial 

resolution of 2.7 m. 
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1. INTRODUCTION 

 
Soil moisture conditions have an impact upon virtually all aspects of Army activities and are increasingly affecting its 

systems and operations. Soil moisture conditions affect operational mobility
[1]

, detection of landmines and unexploded 

ordinance
[2-10]

, military engineering activities, blowing dust and sand, watershed responses
[11-15]

, and flooding
[16, 17]

. Soil 

moisture also determines near-surface atmospheric conditions and the partition of incoming solar and long-wave 

radiation between sensible and latent heat fluxes
[18, 19]

. Atmospheric turbulence can hamper the performance of optical 

and infrared sensors as well as acoustic detection systems. The lack of reliable soil moisture maps for weather prediction 

models can result in significant over- or under-estimation of surface evaporation which results in great uncertainty for 

the predictions of cloud cover, precipitation, air and soil temperature, and humidity
[20]

. Finally, soil moisture is a critical 

factor for prediction of the strength of aircraft landing sites
[21]

 and of helicopter brownout conditions
[22]

. 

Spatial scales of interest range from the theater scale (maneuverability), watershed scale (river crossing), field 

scale (trafficability), and meter to sub-meter scale (IED and land mine detection). Soil moisture at each of these scales is 

a very dynamic variable subject to rapid changes in time as well as with depth and space. Soil moisture fields are not  

continuous but are full of discontinuities caused by many factors, including: strong precipitation gradients, snowfall 

redistribution, topographical divides, slope-aspect, land-use, differences in soil hydraulic properties, fluvial/aeolian 
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deposition, human intervention (irrigation, drainage, flooding), and vegetation cover. The existence of discontinuities in 

soil moisture fields and their temporal variability make it difficult to use statistical interpolation techniques based on a 

limited number of point measurements for the generation of high resolution soil moisture maps. Accurate predictions of 

regional soil moisture distributions require direct remote sensing observations that capture discontinuities in soil 

moisture fields.  

 Near real time information on the spatial distribution of soil moisture will result in (i) significant improvements 

in battlefield decision making capabilities for mobility and trafficability modeling
[23, 24]

, (ii) improved prediction of 

performance of landmine and IED sensors
[4, 10, 25, 26]

 as well as of other electromagnetic and thermal sensors employed by 

the Army, and (iii) greatly improved assimilation of soil moisture data at different scales into hydrologic models for the 

prediction of watershed responses and flooding
[27]

. Building on earlier soil moisture mapping research by our team
[28, 29]

 

using Landsat imagery at 30 m resolution, the objective of this study is to improve a method for soil moisture mapping 

by downscaling the Landsat soil moisture product using QuickBird optical imagery with pixel size of 2.7 m
[30]

.   

 The ultimate goal of this study is to develop a method for meter scale soil moisture retrieval for initialization of 

the ERDC Countermine Simulation Testbed at sites where no ground measurements are available such as Helmand 

Province in southern Afghanistan
[30-33]

. 

 

2. EVAPORATIVE FRACTION METHOD FOR SOIL MOISTURE MAPPING 
 

The evaporative fraction method is based on the long-known relationship between root zone soil moisture and the 

partition of incoming short and long-wave radiation between sensible and latent heat fluxes
[34-37]

. The method became 

feasible only recently after development and validation of algorithms to derive reliable estimates of the fluxes of the 

energy balance from remotely sensed optical and thermal imagery
[28, 38-45]

.  

In many agro-hydrological studies root zone soil moisture is used to reduce potential evapotranspiration to 

actual evapotranspiration
[46-50]

. When the soil is wet, most of the available energy (net radiation minus soil heat flux) is 

used for evapotranspiration or latent heat flux (λE) and almost no energy is left for sensible heat flux (H). When the soil 

is dry, most of the available energy is used to heat the soil so that latent heat flux (evapotranspiration) becomes small. 

One way to express this partitioning of radiant energy is the evaporative fraction (Λ) that is defined as the latent heat 

flux divided by the net available energy
[51, 52]

. The net available energy equals net radiation (Rn) minus the soil heat flux 

(G).  
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The energy partitioning calculated with the evaporative fraction  is primarily related to the soil moisture content
[53]

. 

Using in situ root zone soil moisture measurements and validated evaporative fraction data from the Surface Energy 

Balance for Algorithm for Land (SEBAL) obtained during field experiments in Kansas and Spain, the following 

empirical relationship was determined
[40]

: 
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where S is degree of saturation, θ is volumetric water content, and θs is volumetric water content at saturation. Eq. [2] 

was derived from soil moisture measurements obtained on grazed and un-grazed grassland in Kansas on alluvial soils 

and loess
[54]

 as well as from rainfed (vineyard, barley, wheat) and irrigated crops (maize, alfalfa) in Central Spain on 

sandy loams
[39, 55]

. Using evaporative fraction (Λ) estimates obtained from the remote sensing algorithms Surface Energy 

Balance Algorithms for Land (SEBAL)
[45]

 or Mapping EvapoTranspiration at High Resolution with Internalized 

Calibration (METRIC)
[56]

 Eq. [2] can be used to obtain estimates of degree of saturation (S) in the root zone from optical 

satellite imagery such as Landsat and MODIS. 

 A validation of Eq. [2] was conducted using soil moisture data from irrigated fields in Pakistan and Mexico. 

Equation [2] predicted soil moisture with a root mean square error of 0.05 cm
3
cm

-3
; the error is less than 0.07 cm

3
cm

-3
 in 

90% of cases. Given the wide range of conditions used to derive and to validate Eq. [2] it was concluded that Eq. [2] is 

minimally affected by vegetation type or soil type and may have general applicability
[38]

.  

 Figure 1 presents a Landsat7 image covering a typical area of approximately 16×12 km in Helmand Province 

(Afghanistan) on April 23, 2009. This area is taken from the center of a Landsat7 image (Path 155, Row 38) that doesn’t 

contain any stripes. The pixel size is 30×30 m. This image is converted into a soil moisture map by first calculating the 
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latent and sensible heat fluxes using METRIC and then the degree of soil moisture saturation using Eq. [2] (Figure 2). 

Similar soil moisture maps have been validated quantitatively
[38, 40, 57]

 as well as qualitatively
[28, 29]

. 

 

3. PREVIOUS RESEARCH: DOWNSCALING LANDSAT SCALE SOIL MOISTURE MAP TO 

QUICKBIRD SCALE WITHOUT STRATIFICATION 
 

The soil moisture map in Fig. 2 has a spatial resolution of 30 m that is often too coarse for the initialization of the 

Countermine Simulation Testbed since the typical dimension of an IED will be on the order of one meter or less. 

Therefore, it is necessary to downscale the Landsat soil moisture map. A Landsat image has 3 visual bands (1, 2, and 3), 

one near-infrared band (4), two mid-infrared bands (5, 7) and one thermal infrared band (6). All these bands are needed 

to implement METRIC for evaluation of the evaporative fraction and soil moisture using energy balance physics. Of 

special importance is the thermal band 6 since without it METRIC cannot be employed. QuickBird has only four bands: 

three visual (1, 2, 3) and one near-infrared (4) that are almost identical to Landsat bands 1-4. Since QuickBird has no 

thermal infra-red band it is impossible to derive a soil moisture map from QuickBird imagery using METRIC. Instead 

the challenge is to predict soil moisture using only bands 1-4. 

 In previous research we found that Landsat soil moisture can be predicted from the digital values of Landsat 

bands 1-4 using a simple linear regression equation. Figure 3 shows the excellent agreement between METRIC soil 

moisture and the soil moisture predicted from Landsat bands 1-4. It is “proof of concept” that soil moisture can be 

predicted from the digital values of Landsat bands 1, 2, 3, and 4 and, therefore, most likely also from the digital values of 

bands 1, 2, 3, and 4 of QuickBird imagery. Indeed, using the same regression equation with the digital values of 

QuickBird bands 1-4 (QuickBird image of April 24, 2009) resulted in quite reliable soil moisture predictions in most of 

our study area but in some locations the soil moisture predictions were not correct
[30]

. For example, dry hot asphalt roads 

showed elevated moisture contents while moist cool sandbars in the river were predicted to have no soil moisture at all. 

Although promising, such a result is not acceptable for an operational soil moisture map at the m-scale. Therefore, the 

objective of this study is to test whether the downscaled soil moisture map can be improved by first classifying the study 

area in different landscape units and then to develop a regression equation for each of those units. 

 

4. DOWNSCALING LANDSAT SCALE SOIL MOISTURE MAP  

TO QUICKBIRD SCALE WITH STRATIFICATION 
 

There are many different ways to stratify an area into different landscape units. One proven method is to classify the 

geo-morphological units on the basis of landscape features observed on high-resolution aerial or satellite imagery
[58]

. 

Another method is to use unsupervised classification algorithms available in most remote sensing processing 

software
[59]

. We have work in progress with both approaches but in this study we report on the latter. Using ERDAS 

Imagine 2011 we classified our study areas in ten different classes based on the Normalized Difference Vegetation Index 

(NDVI), albedo and surface temperature obtained from the Landsat image applying METRIC as well as the digital 

values of bands 1-4 of the QuickBird image. The spatial scale of the classified image is 2.7 m equal to the spatial scale of 

the QuickBird image. 

 As expected the landscape classes show a similar pattern (Fig. 4) to those shown on the original false color 

Landsat image (Fig. 1) and the Landsat soil moisture image (Fig. 2). However, the details of the landscape classification 

map shown over a 1300×800 m area (Fig. 5) indicate that changes in class do also occur within one field and over short 

distances and are not always related to the overall patterns shown on Figure 4. In this respect, the unsupervised 

classification approach deviates from a traditional geo-morphological landscape classification map since the 

unsupervised classification map seems to identify with high accuracy all anomalies within a traditional geo-

morphological landscape unit.  

 Next, we determined for each unit the most relevant regression equation for the prediction of the soil moisture 

status on each 2.7×2.7 m pixel from Landsat bands 1-4, NDVI, albedo and surface temperature from METRIC as well as 

the digital values of QuickBird bands 1-4. The regression equations were all significant at a level of less than 0.0001 and 

their R
2
 varied between 77 and 83 percent which indicates that they explain a major part of the variability within each 

landscape class. We do not report any regression equation since they are all site and time specific and, therefore, cannot 

be used for any other time or site. 

 The final step is to plot and regress the Quickbird predicted soil moisture (PSM) with stratification against the 

Landsat soil moisture (SM). Figure 6 clearly demonstrates that the stratification greatly improves the downscaled soil  
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Figure 1. Landsat7 Image on April 23, 2009, in false colors. Vegetation is colored 

red. Spatial resolution is 30 m pixel size. Image area is about 16x12 km. The area 

is located in the center of the image that doesn’t contain stripes. 

Figure 2. Landsat7 Soil Moisture Map on April 23, 2009. Spatial resolution is 30 m pixel 

size. Image area is about 16x12 km. Soil moisture expressed as degree of soil saturation: 

0.0-0.2 red; 0.2-0.4 yellow; 0.4-0.6 light green; 0.6-0.8 green; 0.8-1.0 light blue. Water is 

colored blue. This map is slighlty different from the one presented in 2010[30]. 
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Figure 3. Regression between Landsat Soil Moisture (SM) from METRIC and its prediction (PSM) using Landsat bands 1-4. The 

cut-off at soil moisture of 0.09 is an artifact of Eq. [2] that yields a minimum soil moisture degree value at 0.09. The number of 

outliers is very small considering that this figure represents 3,000 pixels. 
 

 

moisture map as compared to the global approach with only one regression equation that we used before (see Fig. 8 

of Hendrickx et al.
[30]

). 

 

5. INSPECTION OF QUICKBIRD SCALE SOIL MOISTURE MAP 
 

A strong correlation and significant regression does exist between the METRIC Landsat scale soil moisture map and 

the downscaled Quickbird soil moisture map (Fig. 6) but the final proof of the quality of the downscaled map using 

stratification is found by comparison of the stratification with the global downscaling approach. We will do this by 

inspection of the same two 3×3 km areas reported on by Hendrickx et al. in 2010
[30]

.  

 The first area covers contiguous irrigated fields interspersed with almost bare dry lands; the most important 

feature for our inspection is an asphalt road going from East to West. Figure 7 shows the QuickBird image, Landsat 

soil moisture map and the downscaled soil moisture maps using, respectively, the global and stratification approach. 

Whereas the dry hot asphalt road contains erroneous elevated moisture contents on the global approach image, it is 

almost dry on the stratification approach image.  

 The second area covers contiguous irrigated field crossed by a wide river with sandbanks and a small 

village on the left side of the image. Figure 8 shows the QuickBird image, Landsat soil moisture map and the 

downscaled soil moisture maps using, respectively, the global and stratification approach. As observed in the first 

area there exists generally good agreement between the Landsat and Quickbird soil moisture maps in the irrigated 

areas. In this area the most important feature for inspection is the sandbank in the river. Using the global approach 

the sandbank is covered with dry or slightly moist pixels while the Landsat soil moisture map clearly indicates 

elevated soil moisture levels on the sandbank. The stratification approach image contains much more realistic soil 

moisture values that agree reasonably well with the Landsat soil moisture map. Of interest is also the village: 

whereas the Landsat soil moisture map shows a generally elevated soil moisture over the entire village, the  
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Figure 4. Landscape classification maps with ten different 

classes each with a different color. The classification is based 

on NDVI, albedo and surface temperature from the Landsat 

image and the four Quickbird bands 1-4. Spatial resolution is 

2.7 m pixel size. Image area is about 16x12 km. The black 

rectangle represents the area shown in Figure 5. 

 Figure 5. Detail of the landscape classification map covering about 1300x800 m inside the black rectangle in 

Figure 4. The map shows that several landscape classes can occur within one field and/or over small 

distances. Each landscape class has its own regression equation for downscaling soil moisture from 30 m to 

2.7 m scale. The water class is colored blue. 
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Figure 6. Regression between Landsat Soil Moisture (SM) from METRIC and its prediction (PSM) using Landsat bands 1-4, 

NDVI, albedo and surface temperature from METRIC as well as QuickBird bands 1-4; for each landscape class a different 

regression equation was developed. The cut-off at soil moisture of 0.09 is an artifact of Eq. [2] that yields a minimum soil 

moisture degree value at 0.09. The number of outliers is very small considering that this figure represents 3,000 pixels.  
 

 

stratification approach images indicates the location of completely dry pixels as can be expected in the village 

environment. The elevated soil moisture pixels in the village on the Landsat soil moisture map may be caused by the 

effect of the shadows of the village stuctures that will result in somewhat lower surface temperatures and, therefore, 

slightly erroneous soil moisture prediction. 

 Overall the quality of the downscaled QuickBird soil moisture map has improved considerably as 

compared to the global approach
[30]

 (Figs. 7 and 8). It captures well all the features observed on the Landsat soil 

moisture map at a high spatial resolution. Therefore, this study demonstrates that (i) stratification is a effective 

procedure for the improvement of the quality of downscaled soil moisture maps and (ii) combining Landsat soil 

moisture maps at 30 m scale with aerial or satellite imagery with visual and near infrared bands at the m-scale will 

result in reliable soil moisture maps at the m-scale.   

 

6. CONCLUSIONS AND FUTURE WORK 
 

Two major conclusions result from this study and a previous one
[30]

: 1. METRIC derived root zone soil moisture can 

be predicted from reflectance of the three visual and one near-infrared band of Landsat and Quickbird operational 

optical satellite images; 2. Due to differences in soil types and land covers one regression equation is not sufficient 

for the reliable estimation of soil moisture over an entire image but when regression equations are developed for 

each landscape unit in the image a reliable soil moisture image is produced at m-scale resolution. 

 Our results are irrefutable evidence that reliable m-scale soil moisture maps can be produced using existing 

algorithms such as METRIC and SEBAL with Landsat imagery at the 30 m scale together with simultaneous 

QuickBird or other imagery with visual and near-infrared bands at the m-scale. The entire procedure is operational 

and can be applied anywhere simultaneous imagery of Landsat and QuickBird or similar imagery is available. 
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 Future work will need to focus on: 1. Evaluation of the best and most simple stratification procedures to 

predict root zone soil moisture at m-scale from Landsat satellite imagery; 2. A field validation of the downscaling 

approach in the Middle Rio Grande Valley of New Mexico using it as a proxy for Helmand Province in Afghanistan. 

These activities are best done by a two year post-doc or four year PhD graduate student effort.   
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Downscaled Soil Moisture Map – Global Approach  Downscaled Soil Moisture Map – Stratification Approach  

 

 

 

 

Figure 7. The dry hot asphalt road shows up at an elevated moisture content (yellow/light green) in the Global Approach but has almost disappeared in the 

Stratification Approach. 
 

Asphalt Road 
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QuickBird Image  Landsat Soil Moisture Map  

 

 

 

 

Downscaled Soil Moisture Map – Global Approach  Downscaled Soil Moisture Map – Stratification Approach  

 

 

 

 

Figure 8. The moist cool sandbanks in the river show up with a very low moisture content (red) in the Global Approach but have higher soil moisture contents (light 

green, and green) in the Stratification Approach. 
 

Sandbank 

Village 
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