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ABSTRACT 

 
Soil moisture conditions have an impact upon virtually all aspects of Army activities and are increasingly affecting its 

systems and operations. Soil moisture conditions affect operational mobility, detection of landmines and unexploded 

ordinance, military engineering activities, blowing dust and sand, watershed responses, and flooding. This study explores 

a novel method for high-resolution (2.7 m) soil moisture mapping using remote satellite optical imagery that is readily 

available from Landsat and QuickBird. The soil moisture estimations are needed for the evaluation of sensors for 

Improvised Explosive Devices (IEDs) using the Countermine Simulation Test Bed in regions where access is denied. 

The method has been tested in Helmand Province, Afghanistan, using a Landsat7 and a QuickBird image of April 23 and 

24, 2009, respectively. The first implementation of the method yielded promising results.   
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1. INTRODUCTION 

 
Soil moisture conditions have an impact upon virtually all aspects of Army activities and are increasingly affecting its 

systems and operations. Soil moisture conditions affect operational mobility
[1]

, detection of landmines and unexploded 

ordinance
[2-10]

, military engineering activities, blowing dust and sand, watershed responses
[11-15]

, and flooding
[16, 17]

. Soil 

moisture also determines near-surface atmospheric conditions and the partition of incoming solar and long-wave 

radiation between sensible and latent heat fluxes
[18, 19]

. Atmospheric turbulence can hamper the performance of optical 

and infrared sensors as well as acoustic detection systems. The lack of reliable soil moisture maps for weather prediction 

models can result in significant over- or under-estimation of surface evaporation which results in great uncertainty for 

the predictions of cloud cover, precipitation, air and soil temperature, and humidity
[20]

.  

Spatial scales of interest range from the theater scale (maneuverability), watershed scale (river crossing), field 

scale (trafficability), and sub-meter scale (IED and land mine detection). Soil moisture at each of these scales is a very 

dynamic variable subject to rapid changes in time as well as with depth and space. Soil moisture fields are not  

continuous but are full of discontinuities caused by many factors, including: strong precipitation gradients, snowfall 

redistribution, topographical divides, slope-aspect, land-use, differences in soil hydraulic properties, fluvial/aeolian 

deposition, human intervention (irrigation, drainage, flooding), and vegetation cover. The existence of discontinuities in 

soil moisture fields and their temporal variability make it difficult to use statistical interpolation techniques based on a 

limited number of point measurements for the generation of high resolution soil moisture maps. Accurate predictions of 

regional soil moisture distributions require direct remote sensing observations that capture discontinuities in soil 

moisture fields.  

 Near real time information on the spatial distribution of soil moisture will result in (i) significant improvements 

in battlefield decision making capabilities for mobility and trafficability modeling
[21, 22]

, (ii) improved prediction of 

                                                           
1
 Jan_Hendrickx_NMT@msn.com; phone: 575-835-5892; 801 LeRoy Place, NMT/MSEC 240, Socorro NM 87801. 



2 

 

performance of landmine and IED sensors
[4, 10, 23, 24]

 as well as of other electromagnetic and thermal sensors employed by 

the Army, and (iii) greatly improved assimilation of soil moisture data at different scales into hydrologic models for the 

prediction of watershed responses and flooding
[25]

. Building on earlier soil moisture mapping research by our team
[26, 27]

 

using Landsat imagery at 30 m resolution, the objective of this study is to describe a novel method for soil moisture 

mapping at 2.7 m scale by downscaling the Landsat soil moisture product using QuickBird optical imagery with pixel 

size of 2.7 m.   

 

2. ERDC COUNTERMINE SIMULATION TESTBED 
 

The ERDC Countermine Simulation Testbed is a high-resolution (cm’s) virtual testing capability for the evaluation of 

the performance of infrared sensors in complex natural and man-made environments. Such environments may contain 

irregular ground surfaces, multiple soil types, surface vegetation, roads, and exposed and buried rocks and other 

objects
[28]

. The Countermine Simulation Testbed integrates a soil model, a vegetation model, and a ray-casting model to 

achieve a faithful representation of all processes that significantly affect an infrared sensor image. A key component of 

the energy balance is heat emitted or absorbed by the soil. For imagery, only the behavior at the surface of the scene is of 

interest. But, heat transport must be modeled in three dimensions to capture the surface expression of subsurface heat 

transport processes. The thermal properties of a soil depend on its moisture content, requiring that hydrologic processes 

be simulated as well. Moisture and thermal energy movement in the soil are computed with the ADH (Adaptive 

Hydraulics/Hydrology Model)
[29]

. ADH is a spatially adaptive, continuous Galerkin, finite element model that simulates 

partially-saturated flow and heat transport in three-dimensional soils (or other materials), coupled to two-dimensional 

surface water flow on a face of the soil
[30]

. The vegetation model simulates infrared absorption, reflection, and 

transmission by discretized plant leaves and stems. Ray casting provides boundary conditions for the soil and vegetation 

thermal models, and produces multispectral images of energy reflected and emitted from the synthetic scene. 

Calculations to date include a multi-million-element simulation for an arid test site that is only a few meters in its longest 

dimension (Figure 1). The models are driven with meteorological data and are built using material property data 

collected at the field site. Synthetic images produced are compared against those from thermal cameras (Figure 2). A 

long-term goal of this work is to help build inversion software to estimate ground state information (soil moisture and 

physical property distributions) from airborne and satellite imagery. 

 The Simulation Testbed produces realistic synthetic images that match field-collected images both in resolution 

and complexity. Moreover, quantitative comparison of the magnitude and variation of intensities in synthetic and field-

collected images is encouraging. The simulated imagery is helping predict sensor performance under a variety of 

weather and vegetation conditions, thereby providing guidance on optimal times-of-day and conditions to see contrast in 

the images
[29]

. Validation studies to date have shown that the Countermine Simulation Testbed produces realistic 

simulations at sites where ground measurements are available such as in the arid regions of the southwestern USA. The 

purpose of this study is to develop a method for meter scale soil moisture retrieval for the Simulation Testbed at sites 

where no ground measurements are available such as Helmand Province in southern Afghanistan.  

 

 

 
 

Figure 1. Synthetic scene showing the ground surface 

and both large desert plants and grasses
[28]

. 

Figure 2. Image from a mid-wave IR camera (left) and a 

simulated image of physical temperatures (right)
[28]

. 
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3. EVAPORATIVE FRACTION METHOD FOR SOIL MOISTURE MAPPING 
 

The evaporative fraction method is based on the long-known relationship between root zone soil moisture and the 

partition of incoming short and long-wave radiation between sensible and latent heat fluxes
[31-34]

. The method became 

feasible only recently after development and validation of algorithms to derive reliable estimates of the fluxes of the 

energy balance from remotely sensed optical and thermal imagery
[26, 35-42]

.  

In many agro-hydrological studies root zone soil moisture is used to reduce potential evapotranspiration to 

actual evapotranspiration
[43-47]

. When the soil is wet, most of the available energy (net radiation minus soil heat flux) is 

used for evapotranspiration or latent heat flux (λE) and almost no energy is left for sensible heat flux (H). When the soil 

is dry, most of the available energy is used to heat the soil so that latent heat flux (evapotranspiration) becomes small. 

One way to express this partitioning of radiant energy is the evaporative fraction (Λ) that is defined as the latent heat 

flux divided by the net available energy
[48, 49]

. The net available energy equals net radiation (Rn) minus the soil heat flux 

(G).  

GR

E

HE

E

n 










        [1] 

The energy partitioning calculated with the evaporative fraction  is primarily related to the soil moisture content
[50]

. 

Using in situ root zone soil moisture measurements and validated evaporative fraction data from the Surface Energy 

Balance for Algorithm for Land (SEBAL) obtained during field experiments in Kansas and Spain, the following 

empirical relationship was determined
[37]

: 

  42.0

1

 eS
sat


                                         [2] 

where S is degree of saturation, θ is volumetric water content, and θs is volumetric water content at saturation. Eq. [2] 

was derived from soil moisture measurements obtained on grazed and un-grazed grassland in Kansas on alluvial soils 

and loess
[51]

 as well as from rainfed (vineyard, barley, wheat) and irrigated crops (maize, alfalfa) in Central Spain on 

sandy loams
[36, 52]

. Using evaporative fraction (Λ) estimates obtained from the remote sensing algorithms Surface Energy 

Balance Algorithms for Land (SEBAL)
[42]

 or Mapping EvapoTranspiration at High Resolution with Internalized 

Calibration (METRIC)
[53]

 Eq. [2] can be used to obtain estimates of degree of saturation (S) in the root zone from optical 

satellite imagery such as Landsat and MODIS. 

 A validation of Eq. [2] was conducted using soil moisture data from irrigated fields in Pakistan and Mexico. 

Equation [2] predicted soil moisture with a root mean square error of 0.05 cm
3
cm

-3
; the error is less than 0.07 cm

3
cm

-3
 in 

90% of cases. Given the wide range of conditions used to derive and to validate Eq. [2] it was concluded that Eq. [2] is 

minimally affected by vegetation type or soil type and may have general applicability
[35]

.  

 Figure 3 presents a Landsat7 image covering a typical area of approximately 16×12 km in Helmand Province 

(Afghanistan) on April 23, 2009. This area is taken from the center of a Landsat7 image (Path 155, Row 38) that doesn’t 

contain any stripes. The pixel size is 30×30 m. This image is converted into a soil moisture map by first calculating the 

latent and sensible heat fluxes using METRIC and then the degree of soil moisture saturation using Eq. [2] (Figure 4). 

Similar soil moisture maps have been validated quantitatively
[35, 37, 54]

 as well as qualitatively
[26, 27]

. 

 

4. DOWNSCALING LANDSAT SCALE SOIL MOISTURE MAP USING QUICKBIRD IMAGE 
 

The soil moisture map in Fig. 4 has a spatial resolution of 30 m that is often too coarse for the initialization of the 

Countermine Simulation Testbed since the typical dimension of an IED will be on the order of one meter or less. 

Therefore, it is necessary to downscale the Landsat soil moisture map. In this section we propose a method to do this 

using an optical image from Quickbird. A Landsat image has 3 visual bands (1, 2, and 3), one near-infrared band (4), 

two mid-infrared bands (5, 7) and one thermal infrared band (6). All these bands are needed to implement METRIC for 

evaluation of the evaporative fraction and soil moisture using energy balance physics. Of special importance is the 

thermal band 6 since without it METRIC cannot be employed. QuickBird has only four bands: three visual (1, 2, 3) and 

one near-infrared (4). Since QuickBird has no thermal infra-red band it is impossible to derive a soil moisture map from 

QuickBird imagery using METRIC. Instead we have to find a relationship between the four bands of QuickBird and the 

Landsat determined soil moisture for each pixel. 
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Figure 3. Landsat7 Image on April 23, 2009, in false colors. Vegetation is 

colored red. Spatial resolution is 30 m pixel size. Image area is about 

16x12 km. 

Figure 4. Landsat7 Soil Moisture Map on April 23, 2009. Spatial resolution is 

30 m pixel size. Image area is about 16x12 km. Soil moisture expressed as 

degree of soil saturation: 0.0-0.2 red; 0.2-0.4 yellow; 0.4-0.6 light green; 0.6-0.8 

green; 0.8-1.0 light blue. Water is colored blue. 
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Since the wavelengths of the first four bands of Landsat are identical to those of the four bands of QuickBird we first 

tested whether it is possible to predict Landsat soil moisture (Fig. 4) from the digital values of Landsat bands 1, 2, 3, 

and 4. If this would not be possible, there is no hope to use the four similar bands of QuickBird for the prediction of 

soil moisture. Fortunately, a significant regression was found between the digital values of Landsat bands 1, 2, 3, 

and 4 of Landsat and Landsat soil moisture (SM). This regression equation was then used to predict Landsat soil 

moisture (PSM) from the digital values of Landsat bands 1, 2, 3, and 4. Figure 5 shows the significant relationship 

between the original Landsat soil moisture (SM) and the predicted Landsat soil moisture (PSM) that is “prove of 

concept” that soil moisture indeed can be predicted from the digital values of Landsat bands 1, 2, 3, and 4 and, 

therefore, most likely also from the digital values of bands 1, 2, 3, and 4 of QuickBird imagery.   

 This hypothesis was tested using a Quickbird image (Fig. 6) of April 24, 2009, covering the same area as 

the Landsat image in Fig. 3. Since the images are only one day apart, soil moisture conditions will be the same 

except perhaps for a few fields that received irrigation water between Landsat and Quickbird overpasses. The 

Quickbird image was converted into a soil moisture map with pixel size 2.7 m using the regression equation 

previously derived between the digital values of Landsat bands 1, 2, 3, and 4 and Landsat soil moisture (Fig. 7). This 

regression equation is very preliminary and, therefore, will not be presented in this study that only aims to “prove 

the concept”. In addition, the regression coefficients might well change substantially under different weather 

conditions, during a different season of the year, or in a different region of the country.  

 The final step is to plot and to regress the Quickbird predicted soil moisture (PSM) against the Landsat soil 

moisture (SM) (Fig. 8). There is a significant correlation between these two variables but the spread of the data 

points is larger than the one seen in Fig. 5 because the support of the variables is about one order of magnitude 

different (30 m for the Landsat soil moisture and 2.7 m for bands 1, 2, 3, and 4 of QuickBird). Sometimes Landsat 

soil moisture is low while a few QuickBird pixels have high soil moisture values; this could be explained by a small 

vegetable garden on the order of 10×10 m in the otherwise dry desert. Sometimes Landsat soil moisture is high 

while a few QuickBird pixels have low soil moisture values; this could be explained by a small area for a homestead 

or farming operations in the middle of moist irrigated fields. So, these anomalies are real and show up as outliers in 

Fig. 8 because the support of the regressed variables is not equal. The total number of pixels in the graph is about 

33,000 and most of these are located in the solid green area so that the percentage of outliers is relatively small.  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Regression between Landsat Soil Moisture (SM) from METRIC and its prediction (PSM) using Landsat 

bands 1-4. 
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Figure 6. Quickbird Image on April 24, 2009, in false colors. Vegetation is 

colored red. Spatial resolution is 2.7 m pixel size. Image area is about 16x12 

km. 

Figure 7. Quickbird Soil Moisture Map on April 24, 2009. Spatial resolution is 

2.7 m pixel size. Image area is about 16x12 km. Soil moisture expressed as 

degree of soil saturation: 0.0-0.2 red; 0.2-0.4 yellow; 0.4-0.6 light green; 0.6-

0.8 green; 0.8-1.0 light blue. Water is colored blue. 
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Figure 8. Regression between Landsat Soil Moisture (SM) at 30 m resolution from METRIC and its prediction (PSM) using 

bands 1-4 of QuickBird at 2.7 m resolution. 
   
 

5. INSPECTION OF QUICKBIRD SCALE SOIL MOISTURE MAP 
 

A strong correlation and significant regression does exist between the METRIC Landsat scale soil moisture map and 

the downscaled Quickbird soil moisture map (Fig. 8) but due to differences in pixel sizes between Landsat (30 m) 

and Quickbird (2.7 m) the downscaled Quickbird soil moisture maps contain imperfections. Therefore, two small 

areas of about 3×3 km will be closely inspected to see how the downscaled Quickbird soil moisture map compares 

with the physically based Landsat soil moisture map.  

 The first area covers contiguous irrigated fields interspersed with almost bare dry lands; important features 

for our inspection are an asphalt road going from East to West and an irrigation canal winding from the South to the 

North. Figures 9 and 10 show the area in false colors (vegetation is red) at, respectively, the Landsat (30 m) and 

Quickbird scale (2.7 m). Whereas the Landsat image very well represents the overall land surface features such as 

irrigated field and bare soils, its blurriness misses many details visible on the Quickbird image. The Landsat image 

definitively picks up signatures of the apshalt road and the irrigation canal but without any ground information one 

couldn’t tell that these signatures represent a road and a canal. The Quickbird image contains many details and 

provides a detailed map depicting all landscape features with great detail: roads, canals, houses and compounds, 

irrigated fields, and dry lands. However, it cannot give direct information about soil moisture conditions other than 

that a vegetated field and a bare soil most likely are, respectively, moist and dry. The Landsat soil moisture image 

(Fig.11) presents this information as does the downscaled Quickbird soil moisture image (Fig. 12). Comparing these 

two soil moisture images indicates that there generally is good agreement: the irrigated fields are moist while the 

bare lands are dry. However, there are also mismatches between the Landsat and Quickbird soil moisture maps. If a 

mismatch is consistent over an area larger than 30×30 m, the Quickbird soil moisture map is in error since the 

Landsat soil moisture map is based on environmental physics and the Quickbird one on a statistical regression. For 

example, directly above symbol A (Fig. 10) we observe a few irrigated fields and a darker colored field just to their 

right. Is this darker colored field moist or dry? Both the Landsat and Quickbird soil moisture maps (Figs. 11 and 12) 

indicate this field is dry and we conclude it is dry. Directly above and to the right of symbol B we observe two 
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darker colored fields that cover several Landsat pixels (Fig. 9). These fields have a degree of saturation 0.0-0.2 on 

the Landsat soil moisture map (Fig. 11) but 0.2-0.4 on the Quickbird soil moisture map (Fig. 12). Also, the black 

asphalt road shows up on the Quickbird soil moisture map with a degree of saturation 0.2-0.4 that clearly is 

impossible for a road surface during a dry period. We conclude that the Quickbird soil moisture product tends to 

“moisten” dark objects. Darker colored soils generally are wetter than lighter colored soils but not always since dark 

dry soils do exist. For example, in our location we observe a dark apshalt road that definitively is not moist but dry. 

The Landsat soil moisture map picks these differences up since it also use the surface temperature to derive the soil 

moisture status of a pixel. The Quickbird soil moisture map is based on a regression using its visual and near-

infrared reflectances but no surface temperatures. Nevertheless, the regression (Fig. 8) is highly significant and does 

generally produce good results in the area under consideration. For example, directly above symbol C we observe 

dark colored fields that have a degree of saturation 0.4-0.6 on both the Landsat and Quickbird soil moisture maps 

(Figs. 11 and 12). These bare fields have just received a pre-planting irrigation and are moist.  

 The second area covers again contiguous irrigated field crossed by a wide river with sandbanks. The 

Landsat and Quickbird images as well as their respective soil moisture maps are presented in Figs. 13-16. As 

observed in the first area there exists generally good agreement between the Landsat and Quickbird soil moisture 

maps in the irrigated areas. However, on the sandbanks the two soil moisture maps differ greatly. While the degrees 

of saturation of the Landsat soil moisture map on the sandbars (Fig. 15) vary between 0.4-1.0, the Quickbird soil 

moisture map (Fig. 16) contains values between 0.0-0.6. This is a large difference and indicates that the Quickbird 

soil moisture values for the sandbars are not correct.  On the sandbars the soils are highly reflective which drives the 

Quickbird soil moisture estimate down while on the asphalt road the black color of the asphalt (low reflectivity) 

drives the soil moisture estimate up. 

 Overall the QuickBird soil moisture map seems quite reliable in areas away from sandbars and asphalt 

roads because the downscaling regression breaks down for highly reflective sands and dark asphalt roads. Thus, a 

global approach covering the entire image for the downscaling regression from Landsat to QuickBird scale is not the 

most optimal. We need to test regressions that are constrained by the true Landsat soil moisture maps either on a 

pixel by pixel basis or after an unsupervised classification to partition the area in a number of land cover classes that 

each have their own downscaling regression. This approach seems quite appropriate because recent work by the 

three senior authors has shown that the use of multiple remotely sensed root zone soil moisture images shows great 

promise for soil boundary delineation
[55] 

. 

 

6. CONCLUSIONS AND FUTURE WORK 
 

Two major conclusions result from this “proof of concept” study: 1. METRIC derived root zone soil moisture can be 

predicted from reflectance of the three visual and one near-infrared band of Landsat and Quickbird operational and 

optical satellite images; 2. Due to differences in soil types and land covers one regression equation is not sufficient 

for the reliable estimation of soil moisture over an entire image. 

 Future work will focus on: 1. Evaluation of the best statistical procedures to predict root zone soil moisture 

at Quickbird scale from Landsat and Quickbird operational optical satellite images; 2. Field validation of the 

downscaling approach in the Middle Rio Grande Valley of New Mexico using it as a proxy for Helmand Province in 

Afghanistan.  
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Figure 9. Section B: Landsat7 Image on April 23, 2009. Spatial 

resolution is 30 m pixel size. Image area is about 3x3 km. 

Figure 10. Section B: Quickbird Image on April 24, 2009. Spatial 

resolution is 2.7 m pixel size. Image area is about 3x3 km. 
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Figure 11. Section B: Landsat7 Soil Moisture Map on April 23, 2009. 

Spatial resolution is 30 m pixel size. Image area is about 3x3 km. 

Figure 12. Section B: Quickbird Soil Moisture Map on April 24, 2009. 

Spatial resolution is 2.7 m pixel size. Image area is about 3x3 km. 
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Figure 13. Section A: Landsat7 Image on April 23, 2009. Spatial 

resolution is 30 m pixel size. Image area is about 3x3 km. 

Figure 14. Section A: Quickbird Image on April 24, 2009. Spatial 

resolution is 2.7 m pixel size. Image area is about 3x3 km. 
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Figure 15. Section A: Landsat7 Soil Moisture Map on April 23, 2009. 

Spatial resolution is 30 m pixel size. Image area is about 3x3 km. 

Figure 16. Section A: Quickbird Soil Moisture Map on April 24, 2009. 

Spatial resolution is 2.7 m pixel size. Image area is about 3x3 km. 
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