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ABSTRACT 
 
Electromagnetic sensors such as ground penetrating radar and electromagnetic induction sensors are among the most 
widely used methods for the detection of buried land mines and unexploded ordnance. However, the performance of 
these sensors depends on the dielectric properties of the soil, which in turn are related to soil properties such as texture, 
bulk density, and water content. To predict the performance of electromagnetic sensors it is common to estimate the soil 
dielectric properties using models. However, the wide variety of available models, each with its own characteristics, 
makes it difficult to select the appropriate one for each occasion. In this paper we present an overview of the available 
methods, ranging from phenomenological Cole-Cole and Debye models to volume-based dielectric mixing models, and 
(semi-) empirical pedotransfer functions. 
 
Keywords: dielectric soil properties, phenomenological models, mixture models, (semi-)empirical models 
 

1. INTRODUCTION 
 
Buried land mines and unexploded ordnance (UXO) are present in a large number of countries around the world. They 
can be found at the locations of past military conflicts or at active and abandoned military training sites. The presence of 
land mines and UXO cause serious safety hazards, which require the clean up of contaminated land. Many of the 
geophysical methods for detection of buried landmines and UXO make use of electromagnetic signals. Dielectric 
medium properties are a critical parameter for most methods, because the dielectrics control the contrast between the 
object of study and the medium it is buried in. Additionally the dielectric medium properties control propagation, 
attenuation, and reflection of electromagnetic waves. The dielectric properties of a material are a function of among 
others: texture, bulk density, mineralogy, organic matter content, and frequency, but especially water content1.  
 
Previous work has shown the effect of spatial and temporal variability in the soil system. A significant part of the 
variability in landmine and UXO signatures can in fact be attributed to the temporal and spatial variability that is present 
in soils. Soil data from a wide range of environmental settings (temperate, tropical, and desert) show that soil water 
content varies widely and over distances of less than one meter2-4. This variability has important implications for sensors 
that are affected by the soil water content, as their performance may be variable over short distances. The performance of 
a sensor under specific soil conditions can be predicted using a thorough understanding of the physics of the soil-mine-
sensor system. 
 
To predict the performance of electromagnetic sensors it is common to use models that estimate the soil dielectric 
properties. Although a wide variety of models, each with its own characteristics, has been proposed no complete model 
is available that can describe the dielectric properties of a soil for all its variables5, 6. This makes it a challenge to select 
the best model for each occasion. The available methods can be grouped in (1) phenomenological (e.g., Cole-Cole and 
Debye), (2) volumetric, (3) empirical and semi-empirical (pedotransfer), and (4) effective medium models or 
approaches. The effective medium approach, or composite spheres model7-10, is only accurate for known geometries and 
difficult to implement for heterogeneous and multiple-phase materials11, 12. We consider this approach irrelevant for the 
problems of UXO and landmine detection and it will be ignored in this paper. 
 
We present a literature review of the available methods for prediction of dielectric properties of field soils. This review 
is an attempt to introduce the major groups of approaches. We discuss the most important exponents and publications of 
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each approach. We will discuss the characteristics, some applications, and the advantages and disadvantages of each 
method.  Finally, in the discussion and conclusion we will compare the different methods and give recommendations for 
improvements to the existing models. 
 

2. THEORY 
 
The interaction of electromagnetic energy with matter is affected by the characteristics of the material and by the 
frequency of the electromagnetic energy. Frequency dependent dielectric properties can be characterized in terms of 
losses of energy due to relaxation mechanisms that operate at different frequencies. The relaxations are caused by 
different forms of atomic- or molecular-scale resonance 13. In a soil mixture the relaxation mechanisms may be attributed 
to the solid material and the pore water as well as to interfacial phenomena. Figure 1 summarizes some of the different 
types of relaxation mechanisms that play a role in wet soils. Many geophysical tools for detection of subsurface objects 
operate in frequency ranges between 0.1 and 10 GHz, which makes bound water relaxation the major resonance 
mechanism of interest. 
 
 

 
Fig. 1. Graph showing frequency-dependent dielectric properties and major relaxation phenomena of wet soils. ε’ and ε” refer to the 
real and imaginary parts of the relative permittivity, respectively, while ε”(σ) represents the dc conductivity (from Hilhorst and 
Dirksen14).   
 

Dielectric permittivity (ε*) is a complex function with real and imaginary components and is defined as εεε ′′−′=∗ j , 
where j is the square root of -1. The real part (ε’) is often expressed as the relative permittivity (εr), which is the ratio of 
the electric-field storage capacity to that of free space11. The relative permittivity is a frequency dependent variable and 
decreases with increasing frequency15. The imaginary part (ε”) of the dielectric permittivity is usually expressed in terms 
of dielectric losses, which include dispersive losses, as well as free-water relaxation and bound-water relaxation losses 
(Fig. 1).  
 
At frequencies below 1 to 1.5 GHz ε* is only weakly frequency dependent16 and dielectric losses are generally low17. 
However, at these low frequencies ε’ and ε” are very sensitive to changes in soil water conductivity above about 10 
mS/m18, 19. At frequencies below around 50 MHz ε* depends strongly on soil type20, 21. At frequencies above about 1 to 
1.5 GHz the dielectric losses increase with increasing water content, even for low conductivity values12.  
 
Several studies document measurements of frequency dependent dielectric soil properties12, 18, 19, 22-24 (Table 1). The results 
from these measurements show that is difficult to describe the relationship between textural characteristics and the 
frequency dependent complex dielectric properties of soils using one single model. 
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Table 1. Characteristics of some studies that document measurements of frequency dependent dielectric soil properties. 
Name and reference Frequency range (GHz) Inputa # of [soils] & samples Soil types 
Wensink18 0.001-3 θ 11 Clay, Silt, Peat 
Knoll19 0.0001, 0.001, 0.01 va, θ 11 artificial mixtures of Sand and Clay 
Heimovaara22 0.001-0.15 θ 3 USDAb: SiL, LSa, SiClL 
Curtis23 0.45-26.5 Tw, θ [12] 30c USDAb: Sa, SaL, Si, SiCl, SiClL, Cl 
Nguyen12 1-0.75 θ 1 Sand 
a
θ:volumetric water content, va: volume air fraction in soil, Tw: soil water temperature. 

bUSDA texture classification25. 
cJ.O. Curtis, personal communication, March 2005. 
 

3. LITERATURE REVIEW 
 

3.1. Phenomenological models 
Phenomenological models such as Cole-Cole26 and Debye27 relate characteristic relaxation times to frequency dependent 
behavior of a material. These models allow for assessment of complex dielectric properties for specific frequencies. The 
Cole-Cole relaxation model describes the induced polarization effects as a function of frequency. The complex dielectric 
permittivity can be described as12, 28: 
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where εs and ε

∞
 are the static value of the dielectric permittivity and the high-frequency limit of the real dielectric 

permittivity, respectively. For H2O εs and ε
∞
 equal 80 and 4.22, respectively, depending on temperature. ε0 is the 

dielectric permittivity of free space (8.854·10-12 F/m)22.  frel is the dielectric relaxation frequency of the material (17.1 
GHz for water22, 29), σdc is the electrical conductivity and β is an empirical parameter to describe the spread in relaxation 
frequencies, which increases with the complexity of the mixture26. For distilled water, or other pure liquids with a single 
relaxation frequency, β is zero, resulting in the original Debye model27. For tap water and moist sandy soils β is 0.0125 
and 0.3 according to Heimovaara30 and Roth et al.31, respectively. Some other values for β are reported in literature34-36. 
 
According to the Cole-Cole model the complex resistivity or impedance can be expressed as32, 33: 
 

( ) ( ) 






















+
−−=∗

cj
mRR

ωτ
ω

1

1
110 ,        [2] 

 
where R0 is the dc resistivity, m is a variable (0.1-1.0) depending on the mineral content, ω is the (radial) frequency, τ 
(range 10-4-104) is the time constant, and c is a variable (0.2-0.6) depending on the grain size distribution. Roth et al. 
report a value of 8 for τ in moist sandy soils31. τ values for different materials have been reported in the literature34-36. 
 
As seen from the formulations above phenomenological models need recalibration for each specific material. Therefore, 
it is difficult to use these models to describe the dielectric differences between varying soil types. 
 

3.2. Volumetric models 
Volumetric models describe the dielectric properties of a soil based on the relative amounts of the different soil 
constituents and their individual dielectric characteristics. The basic input parameters to all models include solid matter, 
pore space, and volumetric water content. Depending on the model, input variables such as organic matter and bound 
water may provide additional accuracy for specific conditions. Usually, frequency dependence is not taken into account. 
The models have been calibrated, for example, by time-domain reflectometry. Over the years different volumetric 
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mixing models have been proposed20, 22, 37-42 that can be grouped in different types such as Arithmetic Average, 
Harmonic Average, Liechtenecker-Rother, and Time-Propagation11. The Complex Refractive Index (CRI) model or 
exponential model, which is based on the Liechtenecker-Rother model, is one of the most popular methods6, 37. The CRI 
model for a material with n components can be written as: 
 

∑
=

=
n

i
iim v

1

αα εε            [3] 

 
where vi is the volume fraction of the ith soil constituent, and α is an empirical variable (0.5 according to some 
authorse.g.,20, 37, 43). The scaling factor α gives CRI and other volumetric mixing models a semi-empirical nature. The α 
parameter can theoretically vary from –1 to +1 but for multiphase mixtures such as soils values between 0.4 and 0.8 have 
been found44. Other values for α reported in the literature are 0.3345, 46, 0.46 for three-phase systems20 and 0.65 for four-
phase systems including bound water39. Several attempts have been made to give a more physical basis to the scaling 
factore.g.,47. It has been shown that the value of α also (inversely) correlates with the measurement frequency48. 
 
Another volumetric mixing model is the Maxwell-De Loor model38, which assumes disc-shape inclusions with random 
distribution and orientation. This model has been used to describe dielectric properties of four-phase mixtures (εm) 
using39, 42: 
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Here, εh, εi, and εb are the dielectric permittivity of the host medium (solids), the permittivity of the inclusions, and the 
effective permittivity near boundaries, respectively, vi represents the volume fraction of the inclusions, and Aj refers to 
the depolarization ellipsoid factors. 
 
Recently, a new volumetric mixing equation based purely on the depolarization factors of different soil constituents has 
been introduced6, 48. This model has a strong theoretical basis and tries to overcome some problems that exist in other 
volumetric mixing models. In this approach the measured dielectric permittivity is related to the volume-weighted sum 
of the permittivities of the individual material constituents. A depolarization factor (S) is introduced to account for 
electric-field refractions at the material interfaces. In this mixing equation: 
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where vi is the volume fraction of the ith soil constituent, S is related to the electric field refraction in soil, which is in turn 
a function of the shape and surface roughness of the grains. Theoretically, the depolarization factor can be calculated for 
all materials but currently this is only possible for homogeneous materials with regular-shaped grains. 
 

3.3. (Semi-) Empirical models 
Empirical models are mathematical descriptions of the relationship between dielectric properties and other 
characteristics of a medium, especially volumetric water content and texture information. There is not necessarily a 
physical basis for the mathematical description. Therefore, an empirical model may only be valid for the data that were 
used to develop the relationship. Many empirical models have originated in the field of time-domain reflectometry 
(TDR), and were originally used to predict the soil water content from the velocity of electromagnetic signals along TDR 
probes in the soil. 
 
The classic Topp-model16 uses a third order polynomial to describe the relation between soil volumetric water content 
(θ) and bulk or apparent relative permittivity (Ka) for measurements taken below the relaxation frequency of water: 
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 32 7.761463.903.3 θθθ −++=aK         [6] 

 
The regression is an average of TDR measurements integrated over a frequency range of 1 MHz to 1 GHz for several 
soils and has proved very successful for a wide range of different soils and soil moisture conditions. Ledieu et al.49 
propose a linear relationship between soil water content and Ka, which can be used to expand the Topp-model for higher 
water contents. The model functions especially good for frequencies around 100 MHz50. At higher frequencies and 
moisture contents close to saturation (θ~0.4) the Topp-model over-predicts the bulk relative permittivity by up to 20%50. 
At very low water contents the Topp-model does not perform well, especially for soils with a large clay content30, 51. 
  
There exist various empirical models similar to equation [6] that are suitable for specific soil conditions. The bulk 
density has a profound effect on the relation between θ and Ka

20, 52, 53. Soils high in organic matter usually have a lower 
bulk density. Conversion functions have been proposed to account for the bulk density and porosity variations between 
organic and mineral soils54. Dielectric measurements of samples high in organic matter content show that equation [6] 
may under-predict θ by about 30%. An alternative function has been proposed to account for this effect55. Clay content 
can have a significant effect on the relation between The presence of aligned ellipsoidal particles, for example in bedding 
planes of sedimentary deposits, also has an effect on the effective permittivity56. 
 
Brisco et al. present results for measurements with a field portable dielectric probe (PDP) at different frequencies 
ranging from 0.45 to 9.3 GHz57. The measurement variability is rather large and the number of soils studied is small. As 
a result, the third-order polynomial functions that are presented for each frequency may contain a significant error. At 
frequencies below around 50 MHz the dielectric permittivity depends strongly on soil type. Based on measurements of 6 
soils at 1, 5, and 50 MHz it is shown that at the lower frequencies the soil type has a strong impact on both ε’ and ε”58. 
Third-order polynomial functions for the data measured at 1 MHz and 50 MHz are given58. Also data are presented that 
show the effects of changes in volumetric water content and soil water temperature on the relationships between 
frequency (1-50 MHz) and ε*. 
 
Artificial Neural Networks (ANN’s) provide an alternative means of determining the relationship between water content 
and bulk relative permittivity of soil empirically, either directly59 or indirectly60. Using 10 samples (sand, loamy sand, 
sandy loam, sandy clay loam) from 5 different soils in Denmark Persson et al. demonstrate that ANN’s can improve the 
accuracy of predicting this relationship59. ANN’s do not produce a universal predictive model and need to be recalibrated 
for each new sample set. 
 
Semi-empirical models are powerful and useful hybrids between empirical models and volumetric models. These models 
often use a volumetric mixing model as their base and have been calibrated for a specific set of soils. The models include 
information of physical background of dielectric behavior39, 40, 48, 61. They are sometimes able to describe frequency 
dependent behavior, but may only be valid for the data that were used to develop the relationship. The models by 
Dobson39 and Peplinski61 use input of the percentage of clay and sand in a soil, as well as the volumetric water content 
and bulk density to calculate the complex frequency dependent properties of field soils. The model by Hilhorst48 uses 
Debye relaxation parameters, the soil matric pressure, which is related to textural characteristics62, and a semi-empirical 
parameter (S, see equation [5]) to calculate the complex frequency dependent soil properties. 
 

4. SUMMARY 
 
The choice for which model to use depends on the desired level of detail. Table 2 presents a summary of available 
dielectric mixing methods. Most mixing and empirical models require few input parameters. Using basic information, 
available in soil and meterological databases, it is often possible to make good statements on the soil dielectric properties 
of a general area using these simple models1. Semi-empirical models such as those by Dobson et al.39, Peplinski et al.61, 
and Hilhorst48 can provide additional information on for example frequency-dependent soil properties but require input 
variables not always available in databases. Additional field or laboratory measurements are necessary when information 
is needed on temporal or small-scale spatial variability in soil dielectric properties.  
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Both Dobson et al.39 and Bohl and Roth42 compare a number of mixing models for predicting the relationships between 
soil water content and dielectric soil properties. It is concluded that simple three- and four-phase CRI mixing models are 
adequate to describe mineral soils42. For organic soils (definition: http://www.soils.org/sssagloss/) only four-phase 
mixing models and the Maxwell-De Loor model provide good results. 
 

5. CONCLUSION 
 
We have presented a literature review of available methods for prediction of dielectric properties of field soils. The 
available methods have been grouped into phenomenological, volumetric, and (semi) empirical models and we have 
presented the major characteristics of the different groups. Relatively few approaches are as detailed yet easy to 
implement as the models by Dobson et al.39 and Peplinski et al.61. Their models are based on measurements of a 
significant number of samples and include a physical base that allows for calculation of frequency dependent soil 
properties. The main flaw in their models is the poor overlap between both models around the zone of 1.3 GHz63. This is 
especially problematic because many electromagnetic sensors for the detection of buried objects operate in or near this 
frequency range. We suggest additional measurements in this frequency range would be very helpful to improve 
understanding of the frequency dependent soil characteristics. 
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