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ABSTRACT 
 

Ground penetrating radar and thermal sensors hold much promise for the detection of non-metallic land mines. In 
previous work we have shown that the performance of ground penetrating radar strongly depends on field soil conditions 
such as texture, water content, and soil-water salinity since these soil parameters determine the dielectric soil properties. 
From soil physics and field measurements we know that the performance of thermal sensors also strongly depends on 
soil texture and water content. There is it critical that field soil conditions are taken into account when radar and thermal 
sensors are employed. The objectives of this contribution are (i) to make an inventory of readily available soil data bases 
world wide and (ii) to investigate how the information contained in these data bases can be used for derivation of soil 
dielectric and thermal properties relevant for operation of land mine sensors. 
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1. INTRODUCTION 
 
Most if not all land mine sensors are affected to some degree by soil conditions. The performance of a specific sensor 
under specific soil conditions can be predicted using our understanding of the physics of the soil-mine-sensor system. In 
this study we will focus on soil properties that affect the performance of ground penetrating radar and thermal sensors. 
Previous and current work by our research team and other investigators has shown how these sensors are affected by 
field soil conditions1,2,3,4,5,6,7. 
 
For example, the real part of the relative permittivity (εr) of water shows little frequency dependence (εr ~ 80) up till 3 
GHz, after which it drops. The imaginary part of εr starts frequency dependent behavior at around 1 GHz, increasing its 
value steadily up to 17 GHz8. In fact, the commonly used model to relate dielectric soil properties to volumetric water 
content and vice versa9 decreases in accuracy with increasing frequency10. We have shown with field experiments that 
the combined effects of soil texture and soil water content lead to soil conditions where non-metallic mines are best 
detected in wet sand soils and dry clay soils5,11. The dependence of soil thermal properties on soil texture and water 
content has been documented in many text books12,13. With increasing soil water content the thermal conductivity and 
volumetric heat capacity of all soils will increase.  
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A major finding of our research is that simple models can be used to evaluate the effect of soil dielectric  
and thermal properties on land mine sensor performance. We have evaluated the models of Dobson et al.14  
and Peplinski et al.15 for the prediction of soil dielectric properties as a function of soil texture and soil water content and 
found good agreement with field measurements. Using the predicted soil dielectric properties we used a simple 
analytical radar wave propagation model for the prediction of radar signatures from anti-tank land mines under a wide 
range of soil conditions1. These predictions for detection of non-metallic and metallic land mines agreed well with our 
field measurements5,11. Many investigators have determined relationships for the prediction of thermal soil properties 
from soil texture and water content16,17. Recently, we have found that these relationships combined with simple 
analytical models for prediction of soil surface temperatures perform as well as complicated numerical models for the 
evaluation of thermal land mine signatures18. Thus, our research has shown that the performance of radar and thermal 
land mine sensors can be predicted better wherever we have access to basic soil data. 
 
All over the world soil scientists have gathered a wealth of soil data during the last century. Until a few decades ago this 
information was buried in soil maps and reports by national soil surveys. However, the simultaneous developments in 
methods and instrumentation for soil data acquisition, storage, retrieval, analysis, interpretation, manipulation, modeling, 
simulation, accessibility, and distribution has given us an array of tools to extract useful, timely information for the 
assessment of field soil conditions19. Our goal is to explore how these tools can be used to improve land mine sensor 
performance. The specific objectives of this contribution are (i) to make an inventory of readily available soil data bases 
world wide and (ii) to investigate how the information contained in these data bases can be used for derivation of soil 
dielectric and thermal properties relevant for operation of radar based land mine sensors. 
 

2. SOIL MAPS AND SOIL DATA BASES 
 
Soil survey services worldwide have traditionally produced soil maps at different scales, consisting of delineations 
called mapping units. Each mapping unit is characterized by a “representative soil profile”. A soil profile typically 
consists of a vertical succession of more-or-less distinct soil layers called soil horizons (Figure 1). The top layer, or A 
horizon, is the zone of major biological activity and is therefore generally enriched with organic matter and typically 
darker in color than the underlying soil. Its thickness can vary from 1-2 cm to 15-30 cm. Beneath the A horizon we often 
find a B horizon, where some of the materials (e.g. clay or carbonates) that are leached from the A horizon by 
percolating water tend to accumulate. The B horizon is generally thicker than the A horizon. Underlying the B horizon is 
the C horizon which is the soil parent’s material. In some cases the C horizon consists of weathered and  fragmented 
rock material. In other cases, the C horizon may consists of sedimentary deposits, e.g. alluvial, aeolian, or glacial. 
Obviously, for land mine detection the composition of the A horizon and –for deeper mines- the B horizon are of most 
interest. 
 
The boundaries of a mapping unit are not based on a large number of soil profile descriptions but on external above 
ground features of the soil and the landscape that can be seen in the field or on air photos or other remote sensing 
images20. In other words, a soil surveyor develops a conceptual model about soil changes in the landscape and only then 
selects the observation points to dig a soil pit for inspection and sampling of “representative soil profiles”.  There is a 
direct relation between the density of representative soil profiles sampled in the field and map scale, which is defined by 
the number of representative soil profiles per square centimeter of the final map. Buringh et al.21 recommend sampling 
four representative soil profiles per square centimeter while Dent22 recommends only one. Thus, a detailed soil map at 
scale 1:10,000  is based on approximately one to four representative soil profiles per hectare (100x100 m) while a soil 
map with coarser resolution at scale 1:1,000,000 is based on approximately one to four representative soil profiles per 
100 km2. Therefore, the information on a soil map represents at best the average condition over each mapping unit but 
contains little or no information about soil variability. For that reason the legends of a soil map are often qualitative 
covering a range of possible values.  
 



 
Figure 1.  Schematic presentation of hypothetical soil profile23.  

 
Soil texture is a soil attribute or property that is qualitative but also contains quantitative information. The textural 
designation of a soil is determined on the basis of the mass ratios of three particle size classes: sand (0.05-2.0 mm), silt 
(0.002-0.05 mm), and clay (below 0.002 mm). Soils with different percentages of sand, silt, and clay are assigned 
different classes as shown in the textural triangle (Figure 2). However, an A horizon assigned textural class “sand” can 
have a range of clay and silt percentages varying from, respectively, 0-10% and 0-15%.  
 

 
 

 

 
Figure 2. Textural triangle and the conventional soil textural classes based on percentage clay (below 0.002 mm), silt (0.002-0.05), 
and sand (0.05-2.0)23.  



Traditionally soil data were stored in archives in paper form. The accessibility of these archives is often quite limited, 
even by the survey organization themselves. Fortunately, the development of Geographical Information Systems makes 
it now possible to store soil data in computers so that they can be quickly retrieved. We distinguish between point and 
area data. Point data are detailed descriptions of representative soil profiles, often including chemical, physical, and 
mechanical analyses. Soil maps and mapping units are regarded as area data. 
 
Many national and international organizations and agencies have made soils databases accessible on the internet. 
Additions and changes in electronic accessibility of soils data are occurring continuously. The websites presented in 
Table 1 contain much information about the world soil resources and have linkages with other global, national, and 
regional databases. A compendium of on-line soil survey information is available at 
http://www.itc.nl/~rossiter/research/rsrch_ss.html by D.G. Rossiter. At this moment FAO’s Soil Map of the World is the 
best geographic source on global soil resources at a scale of 1:5,000,000. Work is underway to update the world’s 
information on soil resources at a scale of 1:1,000,000 in SOTER, the World Soil and Terrain Database program24.  
 
Table 1. Four major soil databases19.  
 
Soils Data Agency Website 
SOTER, WISE  
other soil databases 

International Soil Reference and 
Information Center 
Wageningen, The Netherlands 

www.isric.nl 

Digital Soil Map of the World Food and Agriculture Organization (FAO) 
Rome, Italy 

www.fao.org 

World Soil Resources Natural Resources Conservation Service 
U.S. Department of Agriculture 
Washington, D.C., U.S.A. 

www.nhq.nrcs.usda.gov 

Canadian Soil Information System Agriculture and Agri-Food Canada 
Ottawa, Canada 

www.res.agr.ca 

 
The SOTER datasets mostly have a scale of 1:1,000,000 and information is available in the form of maps and tables. For 
characterizing soil components SOTER uses the FAO soil classification; for terrain classification it has developed its 
own classification. Terrain and soil are combined in a step-by-step manner, progressively defining terrain, terrain 
component and soil component. Terrain is based on the physiography and parent material; terrain components such as 
surface form, slope, etc.; soil components such as number of reference profiles, surface rockiness, types of erosion, 
rootable depth, etc. The SOTER databases contain geometric data (stored and handled by Geographic Information 
System, GIS) and attribute data (stored in a separate set of attribute files, manipulated by a Relational Database 
Management System, RDBMS). More than fifty attribute data are available including soil texture, bulk density, 
infiltration rates, soil salinity, etc. Although the mandatory attribute data do not include information on (magnetic) iron 
oxides, it does provide information on diagnostic horizons and properties, for example ferralic soils. A disadvantage of 
the SOTER system is that for large areas in the world the datasets are yet to be compiled. At this point, published 
datasets are available for Latin America and the Caribbean, Kenya, Eastern Europe, Tanzania, and Niger and Benin. 
Unpublished SOTER datasets include those for Mozambique, Namibia, Syria, Jordan, Zimbabwe, and Nepal.  
 
The World Inventory of Soil Emission Potentials (WISE) dataset comprises information on soil profiles from all over 
the world that are considered representative for the soil units shown on the FAO digital soil map of the world. The WISE 
datasets include several thousands of soil profiles. Like in the SOTER database, use is made of geometric data, handled 
by GIS software and attribute data, manipulated by a Relational Database Management System. Although at a less 
detailed scale (½ degree longitude by ½ degree latitude) than SOTER, the soil profile information includes soil physical 
and chemical parameters like soil texture and Cation Exchange Capacity. 
 
These soil databases and many other national databases provide much information about the composition of the top soil 
layer such as texture, organic matter content, bulk density, salt content, etc. However, as has been explained before no 
soil database will provide site specific information since the number of sampled representative profiles is only an 
infinitely small fraction of the entire worldwide soil volume. Yet, in many cases the databases will give a clear picture of 



average soil conditions that are found in a region and the associated soil variability. The need for the use of soil 
databases in humanitarian demining has been pointed out by Das et al.25. We recommend that soil scientists be consulted 
to extract relevant soil information from these databases for use in mine detection and removal.   
 

3. PEDOTRANSFER FUNCTIONS 
FOR SOIL DIELECTRIC AND THERMAL PROPERTIES 

 
Bouma26 discussed “the challenge for soil science to translate data we have [readily available in soil databases] to data 
we need”.  For our purpose we need to translate information from soil databases on soil texture, bulk density, and soil 
water content into soil dielectric and thermal properties. This translation is performed by pedotransfer functions. A 
pedotransfer function is a mathematical relationship between two or more soil parameters which shows a high level of 
statistical confidence. It is used to estimate a non-measured soil parameter from one or more measured ones. 
 
Pedotransfer functions for soil dielectric properties. For the determination of the real (ε’) and imaginary (ε’’) parts of 
the dielectric coefficient (ε) of a soil we have used the 1995 model of Peplinski et al.15 which has been calibrated by 
fitting the model to a set of experimental observations with a variety of soil textures, water contents, and frequencies 
from 0.3 to 1.3 GHz.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Where θ is volumetric water content, f is frequency, S is fraction of sand, C is fraction of clay, ρs is specific density of 
soil particles (2660 kg m-3 for most soil minerals), ρ b is bulk density of the soil, σeff is effective dielectric conductivity of 
soil, εfw is the dielectric constant of free water, , ε0 is the dielectric permittivity of free space, εw0 is the static dielectric 
constant of water (80.1 at 20 ºC), εw∞  is the high frequency limit of εfw

’ (4.9), εs is the dielectric constant of soil particles, 
and τw is the relaxation time of water (9.23x10-12 s at 20 ºC). Using this pedotransfer function we find the unknown real 
(ε’) and imaginary (ε’’) parts of the dielectric coefficient (ε) of a soil using the known fractions of sand (S) and clay (C), 
the bulk density (ρb), and the particle density (ρs) for different soil water contents. 
 
Pedotransfer functions for soil thermal properties. The soil thermal properties needed to model soil surface 
temperatures above and away from mines18 are the volumetric heat capacity (c) and the thermal conductivity (λ). The 
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volumetric heat capacity of soil is often expressed as the weighted sum of the heat capacities of the various soil 
constituents. Since the volumetric heat capacity of air is about three orders of magnitude less than that of the other soil 
constituents it can be neglected so that 
 

)( gwsb ccc θρ +=  
 
where cs and cw are the specific heat of soil (0.73 kJ kg-1K-1) and water (4.18 kJ kg-1K-1), ρb is the dry bulk density, and 
θg is the gravimetric soil water content17.  
 
Soil thermal conductivity (λ) can be determined from an empirical equation16.  
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where θv is the volumetric soil water content and A, B, C, D, and E are soil dependent coefficients which are related to 
soil properties that are usually fairly readily available. The relationships are 
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where φ is the volume fraction of a particular component, subscripts “q”, “m”, and “s” indicate quartz, minerals other 
than quartz, and total solids, and  mc is the clay mass fraction. The thermal conductivity predicted by this equation is the 
total  conductivity which includes the sensible and the latent heat components. 
 
An example. In New Mexico we have taken radar measurements in three different field top soils. The properties of 
these soils are presented in Table 2. Similar soil properties can be obtained from the soil databases discussed above or 
from other sources such as national soil survey agencies. We have used these soil properties together with the 
pedotransfer functions for soil dielectric and thermal properties to predict those for the three soils over the entire range 
of water contents from bone dry to saturation. The results are presented in Figures 3-5.  These results can be used in 
simple radar and thermal models for the analysis of land mine signatures as demonstrated by Miller11 and Van Dam et 
al.18.  
 
 
Table 2. Properties of three field top soils in New Mexico11.  
 
Soil Type Texture Bulk Density 
 % Sand % Silt % Clay g/cm3 
Sand 95 2 3 1.6 
Silt 2 66 32 1.3 
Clay 1 27 72 1.5 
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Figure 3. The real and imaginary part of the dielectric coefficient as a function of water content in three New Mexico field soils. 
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Figure 4. The volumetric heat capacity as a function of water content in three New Mexico field soils. 
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Figure 5. The thermal conductivity as a function of water content in three New Mexico field soils. 
 
 
 
 
 
 



4. EVALUATION OF SOIL CONDITIONS IN MINE FIELDS WORLDWIDE 
 
Our overall research goal is to develop a procedure that informs deminers about the effects of soil conditions on land 
mine sensors. We recognize two distinct phases in this procedure: the mobilization phase and the field operation phase. 
During the mobilization phase one has to decide what kind of sensors can be employed in a mine field and what kind of 
soil effects may enhance or hinder sensor operation. It is during mobilization that the information of soil databases is 
most useful. Soil databases (Table 1) provide immediate information about the texture, bulk density, organic matter, 
salinity status, and sometimes iron contents of the soils in the region of interest. This information can be used as input 
into pedotransfer functions to obtain soil dielectric and thermal properties over the entire range of soil water contents. 
Combining these properties with simple models as shown by our research team1,3,4,5,7,11,18  will provide immediate 
feedback on sensor performance for a large number of soil-mine-sensor combinations. This information can be used to 
have sensor experts instruct deminers how to deal with the expected soil conditions before they enter the mine field. One 
might also construct mine testing lanes to better train deminers for specific soil conditions. 
 
During the field operation phase the information contained in soil databases or even in detailed national soil maps will 
be of limited to no value. The reason is that soil variability is so large that one can not rely on soil maps to predict soil 
conditions at a specific location. For example, in a study by the former Netherlands Soil Survey Institute it was found 
that average soil map purities ranged from 60-70% even for maps with scale 1:10,00027.  This means that only 60-70% 
of the soil profiles sampled within a mapping unit exactly meet all the criteria of the classification used. Clearly, these 
odds are not acceptable for mine clearing operations. We conclude that therefore the deminer should have some 
capability to evaluate the soil conditions in his mine field as these change from place to place due to variability of soil 
and land use, and from day to day due to atmospheric conditions (precipitation, net radiation, wind speed, etc.). 
 
We see two possible approaches to obtain in-situ information on soil conditions in mine fields. One approach is the use 
of soil sensors for determination of soil dielectric and thermal properties. The other approach is to develop tests that can 
be conducted with the land mine sensor itself. For example, with ground penetrating radar sensors it is common to bury 
a metal object at some depth to obtain information about attenuation of the radar signal in the soil. Using soil sensors 
will have the advantage that detailed information is obtained about soil properties. However, it may become a burden for 
the deminer to take these measurements and process the information. Therefore, the most promising approach seems to 
be to develop simple test objects that can be used with the sensor of interest for determination of current soil conditions 
in the mine field. A test object that immediately comes to mind is the use of land mine simulants similar to the ones 
expected in the mine field. 
 

5. SUMMARY 
 
The objectives of this contribution are (i) to make an inventory of readily available soil data bases world wide and (ii) to 
investigate how  the information contained in these data bases can be used for derivation of soil dielectric and thermal 
properties.  
 
We have found that a wealth of soil information is readily available worldwide. Although many areas still need to be 
surveyed, sufficient information appears available for most –if not all- regions of the world for an evaluation of the 
effect of prevailing soil conditions on land mine sensors. The soil evaluation is performed by using information on soil 
texture and bulk density in pedotransfer functions for the prediction of soil dielectric and thermal properties. This 
evaluation takes place during the mobilization phase. The results of this evaluation are used to better instruct deminers 
on how to deal with expected soil conditions in the mine field and to prepare an optimal suite of sensors. 
 
During the field operation phase soil data bases are of little or no value since it is impossible to predict the exact soil 
conditions in a mine field. Therefore, we recommend that field tests are developed for in-situ evaluation of soil 
conditions in the mine field. 
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