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Social Network Analysis

A social network is a mathematical model of relationships between

individuals. The model is a graph in which each node corresponds

to an individual each edge corresponds to a relationship between

two individuals. The edges may also be weighted to reflect the

frequency or intensity of interaction between individuals.

Although sociologists once had to painstakingly gather social

network data by observing people, social data is now commonly

gathered from records of interactions on the internet. For example,

the Facebook social network has billions of nodes and edges.



Social Network Analysis

You might expect social networks to have random but largely

uniform structure. However, it turns out in practice that most

social networks show significant variation. Some individuals are

highly connected and important links between groups while other

individuals are not so important. In this talk we’ll introduce

various measures of the importance or centrality of an individual in

a social network.



Incidence Matrices

Suppose that we have n individuals, each of which might be a

member of any of m groups. We’ll use an n by m incidence matrix,

A, to represent the memembership of the individuals in the groups.

Ai,j =

 1 if individual i is a member of group j

0 otherwise.



Adjacency Matrices

We’ll consider individuals i and j to be connected if they are both

members of some group. If we multiply A times AT , we get

(AAT )i,j =
m∑
k=1

Ai,kAj,k

This gives us a count of the number of groups that individuals i

and j are both members of. To produce a simple unweighted

adjacency matrix, we let

G = sign(AAT )

Some of the analysis that follows will be easier if we eliminate self

loops by setting

Gi,i = 0 i = 1, 2, . . . , n.



The Paul Revere Data Set

In his book, “Paul Revere’s Ride”, historian David Hackett Fischer

gave membership lists for seven social clubs in Boston in 1775.

These clubs were hot beds of revolutionary activity. Fischer’s

incidence matrix will be the basis for our example data set.



The Paul Revere Data Set



Measures Of Centrality

Now we’ll explore different ways of measuring the importance or

centrality of an individual within a social network. The individuals

that are most central to a network are important because much of

the communication in the network passes through them. If we’re

trying to stop a terrorist conspiracy, and we can eliminate a high

centrality conspirator, this will disrupt communication between the

members of the conspiracy.

We’ll use the notative C(v) for some measure of the centrality of an

individual, v. Ideally, the measures that we use should tell us

something about how individual v fits into the overall structure of

the network. C(v) should also be efficient to compute, especially

for very large social networks.



Degree

The simplest measure of centrality is the number of other

individuals that someone is connected to. In graph theory, this is

the degree of a node.

CD(v) =

n∑
j=1

Gv,j

The degree is a very easy to compute measure of centrality, but the

measure is also quite local. It doesn’t take into account anything

but the immediate connections of an individual.

In the Paul Revere data, it turns out that Paul Revere has degree

248, and three other individuals are tied for second with degree 200.



Distance Based Centrality Measures

Let di,j be the length (in number of edges) of the shortest path

between individuals i and j.

Let the farness of individual v be the sum of the distances from v

to all other individuals. Let the closeness of individual v be the

reciprocal of the farness. Then the closeness centrality of an

individual v is

CC(v) =
1∑

j 6=v dv,j
.

In order to compute CC(), we need to solve the all-pairs shortest

path problem.



The Floyd-Warshall Algorithm

The Floyd-Warshall algorithm finds the shortest distances between

all pairs of vertices in a graph.

We begin with the basic facts that di,i = 0 for i = 1, 2, . . . , n, and

that for every edge (i, j), di,j = 1.

The algorithm makes use of a clever recursive formula. Suppose

that d(i, j, k − 1) gives the length of the shortest path from i to j

using only intermediate vertices from the set 1, 2, . . . , k − 1. Then

d(i, j, k) = min(d(i, j, k − 1), d(i, k, k − 1) + d(k, j, k − 1)).

By looping over k = 1, 2, . . . , n, we can eventually compute d(i, j, n)

for each pair of vertices i and j. This gives us the desired lengths of

the shortest paths from i to j.



The Floyd-Warshall Algorithm

function D=floydwarshall(G)

%

% Get the size of G.

%

n=size(G,1);

%

% Initialize D.

%

D=Inf*ones(n,n);

%

% We can reach node v from node v in 0 steps.

%

for v=1:n

D(v,v)=0;

end



The Floyd-Warshall Algorithm

%

% For each edge (i,j) we can get from i to j in 1 step.

%

for i=1:n

for j=1:n

if (G(i,j)==1)

D(i,j)=1;

end

end

end



The Floyd-Warshall Algorithm

%

% Now, work through nodes k=1, 2, ...,n, and for all

% node pairs (i,j) establish the length of the shortest

% path from i to j using only intermediate nodes

% 1, 2, ..., k.

%

for k=1:n

for i=1:n

for j=1:n

if (D(i,j) > D(i,k) + D(k,j))

D(i,j)=D(i,k)+D(k,j);

end

end

end

end



The Floyd-Warshall Algorithm

The Floyd-Warshall algorithm can also be extended to produce

actual (i, j) shortest paths and to count the number of shortest

paths between each pair of nodes. The algorithm can also be

extended to deal with graphs in which the edges have lengths other

than 1.



Closeness Centrality In The Paul Revere Graph.

It turns out that as measured by CC , Paul Revere is the most

central individual in our social network with CC = 0.003876. He is

followed by Nathaniel Barber, William Cooper, and John Hoffins,

who are all tied for second at 0.003268.



Betweenness Centrality

Let σi,j be the number of shortest paths from individual i to

individual j. This can be computed easily by a variant of the

Floyd-Warshall algorithm. Let σi,j(v) be the number of shortest

paths from i to j that pass through individual v. We can find

σi,j(v) by running Floyd-Warshall on the graph with vertex v

removed and subtracting this count of paths from σi,j .

The betweenness centrality of individual v is

CB(v) =
∑

i 6=v,j 6=v

σi,j(v)

σi,j
.

It shouldn’t be surprising that Paul Revere comes out on top under

this measure, with a betweenness centrality of 7,328.5.



Eigenvector Centrality

A desirable property of a centrality measure is that it should reflect

the centrality of nearby individuals. Let δ(v) be the set of

individuals that are connected by edges to individual v. We would

like to have

C(v) =
1

λ

∑
i∈δ(v)

C(i)

We can write this in matrix form as

Gx = λx

where G is the adjacency matrix, and x is the vector of centralities.

This is just an eigenvector problem. Since G is a symmetric matrix,

it will have real eigenvalues and eigenvectors. We’ll also require

that our eigenvector x be nonnegative.



The Perron-Frobenius Theorem

An adjacency matrix G is irreducible if there is some power k such

that every element of Gk is positive. In practice this is nearly

always true of social networks.

A version of the Perron-Frobenius theorem states that if the

adjacency matrix G is irreducible, then the the largest eigenvalue of

G will be simple and the only eigenvector of G with all positive

entries will be associated with the largest eigenvalue of G.

The eigenvector centrality CEV (v) is simply the xv entry of this

normalized eigenvector.

Once again, Paul Revere has the highest centrality at 0.1448, with

Barber, Cooper, and Hoffins all ties at 0.1386.



Matrix Exponential Measures Of Closeness

The number of paths of length 2 from individual i to j is easy to

compute by looking at all possible intermediate nodes k.

γ
(2)
i,j =

n∑
k=1

Gi,kGk,j

This is simply a formula for matrix multiplication. That is, the

number of paths of length two from i to j is (G2)i,j . By induction,

the number of paths of length k is

γ
(k)
i,j = (Gk)i,j .

If we weight the number of paths by the factorial of the length, we

end up with the sum

γi,j =
∞∑
k=0

(Gk)i,j
k!

=
(
eG
)
i,j
.



Exponential Measures Of Centrality

We can define an exponential centrality as

CExp(v) =
(
eG
)
v,v

.

We can also define an exponential betweenness centrality by

measuring the average reduction in connvectivity that occurs by

removing an individual v from the network. Let H(v) be the

adjacency matrix of the graph with individual v disconnected from

its neighbors. H(v) can be obtained by zeroing out row v and

column v of G.

CExpBetween(v) =
1

(n− 1)2 − (n− 1)

∑
i6=v,j 6=v

(eG)i,j − (eH(v))i,j
(eG)i,j



Centrality Measures For Very Large Graphs

Centrality measures that require the solution of all-pairs shortest

path problems work fine for small social networks, but the

computational effort becomes prohibitive for very large social

networks.

Because the largest eigenvalue of G is typically much larger than

other eigenvalues, iterative methods can be used to quickly

estimate this eigenvalue and the corresponding eigenvector.

Similarly, there are methods for approximating the matrix

exponential of large and sparse matrices.



Further Reading

My interest in the Paul Revere data set began with a blog posting

by Kieran Healy, Using Metadata to find Paul Revere

http://kieranhealy.org/blog/archives/2013/06/09/using-metadata-

to-find-paul-revere/

The data from our example comes from the book “Paul Revere’s

Ride” by David Hackett Fischer. http://www.amazon.com/Paul-

Reveres-David-Hackett-Fischer/dp/0195098315

The material on exponential measures comes from

E. Estrada and D. J. Higham. Network Properties Revealed

Through Matrix Functions. SIAM Review 52:696-714, 2010.

http://dx.doi.org/10.1137/090761070

http://kieranhealy.org/blog/archives/2013/06/09/using-metadata-to-find-paul-revere/
http://kieranhealy.org/blog/archives/2013/06/09/using-metadata-to-find-paul-revere/
http://kieranhealy.org/blog/archives/2013/06/09/using-metadata-to-find-paul-revere/
http://www.amazon.com/Paul-Reveres-David-Hackett-Fischer/dp/0195098315
http://www.amazon.com/Paul-Reveres-David-Hackett-Fischer/dp/0195098315
http://dx.doi.org/10.1137/090761070


Further Reading

Some books on the analysis of social (and other networks) include

M. E. J. Newman. Networks: An Introduction. Oxford University

Press, 2010. http://www.amazon.com/Networks-An-Introduction-

Mark-Newman/dp/0199206651

D. J. Watts. Small Words: The Dynamics of Networks Between

Order and Randomness. Princeton University Press, 1999.

http://www.amazon.com/Small-Worlds-Randomness-Princeton-

Complexity/dp/0691117047

http://www.amazon.com/Networks-An-Introduction-Mark-Newman/dp/0199206651
http://www.amazon.com/Networks-An-Introduction-Mark-Newman/dp/0199206651
http://www.amazon.com/Small-Worlds-Randomness-Princeton-Complexity/dp/0691117047
http://www.amazon.com/Small-Worlds-Randomness-Princeton-Complexity/dp/0691117047

