
An Overview Of Software For Convex

Optimization

Brian Borchers

Department of Mathematics

New Mexico Tech

Socorro, NM 87801

borchers@nmt.edu



In fact, the great watershed in optimization isn’t

between linearity and nonlinearity, but convexity and

nonconvexity.

R. Tyrrell Rockafellar (1993)



A Paradigm Shift

• From the 1960’s through the early 1990’s, many people divided

optimization in linear programming (convex, non-smooth,

problems solved by the simplex method) and nonlinear

programming (smooth, typically convex, problems solved by

gradient based local search methods.)

• The development of interior point methods for linear

programming (and later for second order cone and semidefinite

programming) in the 1980’s and 1990’s led to a reassessment of

this division of the subject.

• In the new paradigm, the division is between convex

optimization problems that can be solved efficiently and other

optimization problems that can’t be solved efficiently.



A Hierarchy Of Convex Optimization Problems

LP ⊂ CQP ⊂ SOCP ⊂ SDP ⊂ CP.

• Polynomial time interior point methods for LP have been

generalized to solve problems in this hierarchy up to the level

of SDP.

• Many other convex optimization problems can be formulated as

structured convex optimization problems that fit into this

classification scheme.

• Many nonconvex optimization problems have convex

relaxations that can be fit into this scheme. The relaxations

can be used to compute bounds on the nonconvex optimization

problem.



Two Approaches To Solving Convex Problems

• One approach is to put the problem into the form of an LP,

CQP, SOCP, or SDP, and then use a solver for that class of

problems.

• An alternative is to develop a special purpose solver for your

original problem.

• The first approach allows you to make use of existing solver

software and is often the quickest way to get something

working. On the other hand, producing a special purpose

solver for your problem typically takes more work but might

result in a code that can solve the problem more efficiently.

• For the rest of this talk I’ll focus on the first approach, since

software in the second approach tends to be extremely problem

specific.



Interfacing To A Solver

• The solvers discussed in this talk are typically called as

subroutines from a main program written in Fortran, C,

MATLAB, or Python. The subroutine interfaces are highly

specific to a particular solver.

• In addition to subroutine interfaces, most solvers can read

problems and write out solutions that have been written in

standard file formats. These include the MPS format for linear

programming problems and the SDPA sparse file format for

semidefinite programming problems. The Optimization

Services project of COIN-OR has developed a new XML file

format for optimization problems that includes SDP and SOCP

constraints. These file formats are useful for exchanging

problems with other researchers and for testing a problem with

multiple solvers.



Modeling Systems For Convex Optimization

• The process of reformulating your particular optimization

problem into a standard form LP, CQP, SOCP, or SDP can be

somewhat tricky. There are lots of techniques to learn, and it’s

easy to make mistakes in doing the reformulation by hand.

• Modeling symptoms make it possible to formulate your

optimization problem in a straight forward way. The modeling

system takes care of reformulating the problem into standard

form and interfacing to a solver, as well as converting the

solution back into the original problem formulation.

• Many of the modeling systems described here are setup to work

with multiple solvers. It’s not uncommon to discover that one

solver works better than the others on your particular problem.



Modeling Systems For Convex Optimization

• Modeling systems for linear programming, nonlinear

programming, and integer linear and nonlinear programming

have been around for a long time.

• Unfortunately, the main stream commercial optimization

modeling systems have not moved quickly to support convex

optimization modeling.

• GAMS now has limited support for second order constraints,

but they don’t offer any way to express semidefinite

programming constraints.

• AIMMS has support for robust optimization using MOSEK as

a second order cone programming solver.



Modeling Systems For Convex Optimization

Several new free/open source modeling systems have come out with

the ability to handle convex optimization problems. These include:

• CVX. Built on top of MATLAB, this package can interface to

either the SDPT3 or SeDuMi solvers. CVX implements a

“disciplined convex programming” philosophy- the language is

designed so that you can only express convex optimization

problems.

• CVXMOD. Written in Python, this modeling system works

with the CVXOPT solver.

• YALMIP. Written in MATLAB, this modeling system supports

convex optimization as well as integer programming and

nonlinear programming. It works with many solvers, including

CPLEX, GUROBI, MOSEK, SDPT3, SEDUMI, CSDP, SDPA,

PENNON, ...



Modeling Systems For Convex Optimization

The term “Linear Matrix Inequalities” is often used by electrical

engineers to discuss semidefinite programming, particularly in the

context of control problems.

• LMI lab (Robust Control Toolbox). Commercial. This package

is an add-on to MATLAB that includes a modeling language

and a solver for linear matrix inequalities.

• LMIlab translator. Free/Open Source. Translates LMI lab

problems into SDP form for solution by another solver such as

SDPT3 or SeDuMi.

• xLMI. Free/Open Source. Another MATLAB package that

implements a language similar to the LMI toolbox, but using

SeDuMi as the solver.



Modeling Systems For Robust Convex

Optimization

• AIMMS. Commercial. Allows for robust optimization on linear

programming and mixed integer linear programming problems.

Works with MOSEK or CPLEX as an SOCP solver.

• ROME. Free/Open Source. Supports distributionally robust

optimization as well as more conventional uncertainty sets.

• YALMIP. Free/Open Source. Allows for robust optimization

involving uncertainty in LP, SOCP, and SDP constraints.



Modeling Systems For Polynomial Optimization

• GLOPTIPOLY. Free/Open Source. Written in MATLAB.

• SOSTOOLS. Free/Open Source. Written in MATLAB.

Requires Symbolic Computation Toolbox.

• SparsePOP. Free/Open Source. Works with SDPA or SeDuMi

solvers.



Example: Minimum Rank Matrix Completion

Suppose that we’re given some of the elements of an m by n matrix

X, along with the information that the matrix is of low rank. Is it

possible to recover the matrix?

We could try to solve the optimization problem

min rank(X)

Xi,j = Mi,j (i, j) ∈ Ω.

Unfortunately, this is a nonconvex optimization problem that can

be extremely hard to solve exactly.



The Nuclear Norm

The nuclear norm of an m by n matrix X is the sum of the singular

values of X.

‖X‖∗ =

min(m,n)∑
i=1

σi(X)

It’s relatively easy to show that ‖X‖∗ is a proper matrix norm, and

that it is a convex function of X. Note that in the special case

where X is symmetric and positive semidefinite, the singular values

of X are the eigenvalues of X, and the nuclear norm of X is just

the sum of the eigenvalues of X or equivalently, the nuclear norm is

the trace of X.



The Nuclear Norm Heuristic

A heuristic for the minimum rank matrix completion problem that

is analogous to minimizing the 1-norm to find a sparse solution to a

linear system of equations is to minimize the nuclear norm of X.

min ‖X‖∗
Xi,j = Mi,j (i, j) ∈ Ω.



The Connection To Sparse Solutions

Notice that since rank(X) is the number of nonzero singular values

of X, the rank minimization problem is

min ‖σ(X)‖0
Xi,j = Mi,j (i, j) ∈ Ω.

Since ‖X‖∗ = ‖σ(X)‖1, the nuclear norm heuristic is minimizing

min ‖σ(X)‖1
Xi,j = Mi,j (i, j) ∈ Ω.



A Useful Lemma

Lemma: (Fazel, 2002) Given a matrix X, rank(X) ≤ r if and only

if there exist symmetric and positive semidefinite matrices Y and Z

such that

rank(Y ) + rank(Z) ≤ 2r

and

W =

 Y X

XT Z

 � 0.

By this lemma, minimizing the rank of the symmetric and positive

definite matrix W is equivalent to minimizing the rank of X.



The Nuclear Norm Heuristic

Applying the nuclear norm heuristic to the symmetric matrix in

the lemma, we get

min 1
2 (trace(Y ) + trace(Z))

Xi,j = Mi,j (i, j) ∈ Ω Y X

XT Z

 � 0.

This is a semidefinite programming problem that can be solved

efficiently by interior point methods, at least for reasonably small

X matrices. I haven’t proved it here, but it can be shown that the

optimal value of this SDP is equal to the optimal value of the

nuclear norm minimization problem on the original matrix X.



The Nuclear Norm Heuristic

function X=completelowrank(M)

[m,n]=size(M);

cvx_begin sdp

variable X(m,n)

minimize (norm_nuc(X))

subject to

for i=1:m

for j=1:n

if (~isnan(M(i,j)))

X(i,j)==M(i,j)

end

end

end

cvx_end



Discussion: Minimum Rank Matrix Completion

• The example illustrates a common pattern- replace a difficult

to solve nonconvex optimization problem with a related

surrogate/relaxation that is a convex optimization problem.

• The example also shows how a modeling system can vastly

simplify the process of converting a convex optimization

problem into standard form.

• It’s important to note that this is really not the best way to

solve a large scale minimum rank matrix completion problem-

as the matrix size and number of specified elements increases,

the SDP formulation will become impractical to solve with a

primal dual interior point method. There are special purpose

algorithms for this problem that are much more efficient in

practice.



Primal–Dual Barrier Methods For SOCP/SDP

• Primal-Dual barrier methods are most commonly used in

general purpose solvers for SOCP and SDP. In each iteration,

the primal-dual barrier method computes a Newton’s method

step for a perturbed version of the KKT conditions.

• The Newton’s method step involves the solution of a symmetric

and positive definite system of equations that becomes very

ill-conditioned as we approach an optimal solution.

• The method can be implemented as either an infeasible interior

point method or using a self-dual embedding.

• Although several slightly different search directions have been

considered by various researchers, the HKM direction is now

used by most of the solvers.



Primal–Dual Barrier Methods For SOCP/SDP

• We’ll consider the storage requirements and computational

complexity for an SDP with m constraints and matrices of size

n by n.

• The primal-dual method requires storage for an m by m

symmetric and positive definite matrix that is usually fully

dense. It also requires storage for a number of n by n matrices,

some of which may be sparse. In practice, the O(m2 + n2)

storage requirement is often more limiting than the

computational complexity of the iterations.

• Each iteration of the algorithm requires O(mn3 +m2n2) time

for the computation of the m by m system matrix, O(m3) time

to compute the Cholesky factorization of this matrix, and

O(n3) time for various factorizations and multiplications of n

by n matrices.



Primal–Dual Codes For SOCP and SDP

• CPLEX. Commercial. LP+SOCP.

• CSDP. Free/Open Source. LP+SDP. Written in C, with

interfaces to MATLAB, R, and Python. Parallel versions

available.

• CVXOPT. Free/Open Source. LP+SOCP+SDP. Written in

Python.

• MOSEK. Commercial. LP+SOCP.

• SeDuMi. Free/Open Source. LP+SOCP+SDP. Written in

MATLAB plus MEX.

• SDPA. Free/Open Source. LP+SDP. Written in C+. Parallel

and extended precision versions available.

• SDPT3. Free/Open Source. LP+SOCP+SDP. Written in

MATLAB plus MEX.



Other General Purpose Codes For SOCP/SDP

• ConicBundle. LP+SOCP+SDP. Free/Open Source. Uses a

bundle method.

• DSDP. LP+SDP. Free/Open Source. Uses a dual interior point

method.

• LOQO. LP+SOCP. Commercial. Treats the SOCP as a

nonlinear programming problem.

• PENNON. LP+SDP. Commercial. Uses an augmented

Lagrangian method.

• SDPLR. LP+SDP. Free/Open Source. Uses a low rank

factorization within an augmented Lagrangian method.



Issues To Consider In Picking A Solver

• Accuracy. Do you need solutions that are accurate to seven

digits, or are solutions accurate to two or three digits good

enough?

• Robustness. Do you need a solver that is extremely reliable in

producing solutions to the required accuracy or can you live

with failures?

• Interfaces to Modeling Systems. Does the solver work with

your favorite modeling system?

• Performance. How fast is the solver? Does it work in parallel

on multiprocessor systems or distributed memory clusters?



Conclusions

• We’ve discussed a general approach to solving a convex

optimization problem by putting it into LP, SOCP, or SDP

standard form and using a general purpose solver. You should

also consider the alternative of using a special purpose solver

for your particular problem.

• You can convert your problem to standard form by hand, or

you can use a modeling system to do the reformulation.

• Primal–dual interior point methods are most widely used in

general purpose solvers, but these methods are limited to small

to medium sized problems.

• Other algorithms have so far not been as robust as general

purpose SOCP/SDP solvers. There’s definitely a need for a

robust and reasonably accurate first order solver for

SOCP/SDP problems.



Useful Resources

Hans Mittelmann at ASU maintains a useful collection of web

pages on optimization that includes

• A decision tree for optimization software that can be used to

help find available codes for a class of problems.

http://plato.asu.edu/guide.html

• benchmarks on many classes of optimization problems,

including LP, SOCP, and SDP. These benchmarks can

sometimes be misleading. It’s important to also check the

accuracy of the solutions returned by the different solvers by

carefully examining the solution logs.

http://plato.asu.edu/sub/benchm.html

http://plato.asu.edu/guide.html
http://plato.asu.edu/sub/benchm.html


Useful Resources

• AIMMS. A commercial modeling package for LP, MILP, and

robust LP and MILP problems. http://www.aimms.com/

• ConicBundle. An open source convex optimization code with

special support for SDP and SOCP constraints.

www-user.tu-chemnitz.de/∼helmberg/ConicBundle/

• CPLEX. A commercial solver for LP, QP, SOCP, and mixed

integer programming problems. http://www-

01.ibm.com/software/integration/optimization/cplex-

optimizer/

• CSDP. An open source SDP solver, written in C, with parallel

versions and MATLAB, R, and Python interfaces.

https://projects.coin-or.org/Csdp/

http://www.aimms.com/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
https://projects.coin-or.org/Csdp/


Useful Resources

• CVX. An open source modeling system, written in MATLAB,

that works with SDPT3 and SeDuMi as solvers.

http://cvxr.com/cvx/

• CVXMOD. An open source modeling system, written in

Python, that works with the CVXOPT solver.

http://cvxmod.net/

• CVXOPT. An open source solver for conic optimization

problems, written in Python, that uses the Nesterov-Todd

scaling. Also interfaces to MOSEK and DSDP.

http://abel.ee.ucla.edu/cvxopt/

• DSDP. An open source dual interior point method for

LP+SDP. http://www.mcs.anl.gov/hs/software/DSDP/

http://cvxr.com/cvx/
http://cvxmod.net/
http://abel.ee.ucla.edu/cvxopt/
http://www.mcs.anl.gov/hs/software/DSDP/


Useful Resources

• GAMS. A commercial modeling system for linear, nonlinear,

mixed integer linear and nonlinear, and second order cone

programming problems. http://www.gams.com/

• Gloptipoly3. An open source modeling system for polynomial

optimization.

http://homepages.laas.fr/henrion/software/gloptipoly3/

• Optimization Services. An XML standard for encoding

problems and solutions. http://www.optimizationservices.org/

• PENNON. A commercial solver that uses an augmented

Lagrangian method to solve problems with SDP constraints.

http://www.penopt.com/

• ROME. An open source modeling system for robust

optimization. http://robustopt.com.

http://www.gams.com/
http://homepages.laas.fr/henrion/software/gloptipoly3/
http://www.optimizationservices.org/
http://www.penopt.com/
http://robustopt.com


Useful Resources

• SDPA. An open source solver for LP+SDP, written in C++,

including parallel and extended precision versions.

http://sdpa.indsys.chuo-u.ac.jp/sdpa/

• SDPT3. An open source solver for LP+SOCP+SDP, written in

MATLAB.

http://www.math.nus.edu.sg/∼mattohkc/sdpt3.html

• SeDuMi. An open source solver for LP+SOCP+SDP, written

in MATLAB. http://sedumi.ie.lehigh.edu/

• SOSTOOLS. An open source modeling system for polynomial

optimization, written in MATLAB, works with SDPT3 and

SeDuMi. http://www.cds.caltech.edu/sostools/

• SparsePOP. An open source modeling system for polynomial

optimization which uses SDPA or SeDuMi as a solver.

http://www.is.titech.ac.jp/∼kojima/SparsePOP/SparsePOP.html

http://sdpa.indsys.chuo-u.ac.jp/sdpa/
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
http://sedumi.ie.lehigh.edu/
http://www.cds.caltech.edu/sostools/
http://www.is.titech.ac.jp/~kojima/SparsePOP/SparsePOP.html


Useful Resources

• YALMIP. An open source modeling system for convex (and

some nonconvex) optimization problems that works with many

different solvers. http://users.isy.liu.se/johanl/yalmip/

http://users.isy.liu.se/johanl/yalmip/

