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ABSTRACT

Inverse methods can be used to reconstruct the release history of a known source of
groundwater contamination from concentration data describing the present-day spatial dis-
tribution of the contaminant plume. Using hypothetical release history functions and con-
taminant plumes, we evaluate the relative effectiveness of two proposed inverse methods,
Tikhonov regularization (TR) and minimum relative entropy (MRE) inversion, in recon-
structing the release history of a conservative contaminant in a one-dimensional domain [Sk-
aggs and Kabala, 1994; Woodbury and Ulrych, 1996]. We also address issues of reproducibility
of the solution and the appropriateness of models for simulating random measurement er-
ror. The results show that if error-free plume concentration data is available, both methods
perform well in reconstructing a smooth source history function. With error-free data, the
MRE method is more robust than TR in reconstructing a non-smooth source history func-
tion; however, the TR method is more robust if the data contain measurement error. Two
error models were evaluated in this study, and we found that the particular error model does
not affect the reliability of the solutions. The results for the TR method have somewhat
greater reproducibility because, in some cases, its input parameters are less subjective than
those of the MRE method; however, the MRE solution can identify regions where the data

give little or no information about the source history function, while the TR solution cannot.



1 Introduction

Groundwater contamination is a widespread problem that can affect the utility of an aquifer.
To minimize the deleterious effects of this contamination, the aquifer must be remediated to
acceptable levels. Groundwater remediation is expensive, and the costs should be distributed
among the parties responsible for the contamination. If a known contamination source is
located at a facility that has changed ownership in the past, the release history of the source
must be determined to identify the responsible parties. Often the present spatial distribution
of the contaminant concentration is the only information available. These concentration data
can be used in an inverse model, with reasonable estimates of the transport parameters, to
reconstruct the release history from the contamination source.

Liu and Ball [1999] classify source history reconstruction problems into two broad cat-
egories: full-estimation problems and function-fitting problems. Full-estimation problems
reproduce the time-varying source history at a specific location; while function-fitting prob-
lems assume a functional form of the source history and estimate the parameter values
describing the function. The source history reconstruction problem has been addressed as
a function-fitting problem by Gorelick et al. [1983], who used linear programming; and by
Wagner [1992], who used a maximum likelihood method. The problem has been addressed
using full-estimation methods including Tikhonov regularization [Skaggs and Kabala 1994,
1998; Liu and Ball 1999], the method of quasi-reversibility [Skaggs and Kabala 1995]; mini-
mum relative entropy inversion | Woodbury and Ulrych, 1996, 1998a; Woodbury et al., 1998];

and a geostatistical approach [Snodgrass and Kitanidis, 1997).



Two full-estimation methods, Tikhonov regularization (TR) and minimum relative en-
tropy inversion (MRE), have received much interest in recent literature. Woodbury and
Ulrych [1996, 1998b] and Kabala and Skaggs [1998] presented several arguments concerning
the relative merits of MRE and TR, respectively. The relative merits of the two meth-
ods were not properly assessed because the methods were not evaluated with the same test
cases. Woodbury and Ulrych [1996] and Skaggs and Kabala [1994] both reconstructed the
same source history function (shown in Figure la of this paper and in Eq. (25) in Skaggs and
Kabala [1994]); however, they used different quantities of data points and different data sets
in their evaluations of the respective methods. The purpose of this paper is to provide an
unbiased comparison of Tikhonov regularization and minimum relative entropy inversion for
solving the hypothetical source history reconstruction problem as presented by Skaggs and
Kabala [1994] and Woodbury and Ulrych [1996]. For this comparison, we prescribe a source
history at a point source of contamination at a known location in a one-dimensional flow
field. The present spatial distribution of the contaminant concentration that results from
this source release is sampled, and these data are used in the inverse methods to reconstruct
the temporal distribution of the contaminant concentration at the source. We assume that
the contaminant is conservative, that transport can be modeled by the advection dispersion

equation, and that the transport parameters are known.

2 Inverse Methods

Tikhonov regularization and minimum relative entropy inversion are two full-estimation

methods of solving inverse problems. Tikhonov regularization [ Tikhonov and Arsenin, 1977]



is a regularized least-square method that replaces the ill-posed inverse problem with a well-

posed minimization problem, given by

min [[ly — Gs|[* + o*||Ls||*] |, (1)

where y is the vector of plume data, y = [y(z1),y(z2),...,y(zn,)]; zn is the ™ sam-

ple location; s is the solution vector describing the source concentration over time, s =
[5(t1),5(t2), ..., s(tn,)]; t; is the ™ source input time; G is a matrix of values of the weighted
kernel function describing the contaminant transport, « is the regularization weight, L is the
regularization operator matrix, and || - || denotes the Euclidean norm. The kernel function
is the solution of the advection dispersion equation for an instantaneous point source. For

the problem considered here, the elements of the G matrix are given by
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where a 1s a weight based on the temporal discretization, D is the dispersion coefficient, and
v is the groundwater velocity. The regularization operator, L, is a k*'-derivative operator,
where k is the order of regularization. For zero-order regularization, L is the identity ma-
trix. For @ = 0, the TR solution would be the least-squares solution; however, since the

problem is ill-posed, the least-squares solution is unstable. The regularization term in (1)



stabilizes the problem. The TR method is a trade-off between matching the data (minimiz-
ing the first term on the right-hand side of (1)) and stabilizing the problem (minimizing the
k*™-derivative of the solution). The degree of the trade-off depends on the value of the regu-
larization weight, a; several methods are available for selecting the optimal value of a. The
reader is referred to Skaggs and Kabala [1994] for more information on using the TR method
for the source history reconstruction problem. To run the TR inversions, we used CONTIN
[Provencher, 1982a, b], a general purpose computer program that performs Tikhonov regu-
larization. CONTIN, which was also used by Skaggs and Kabala [1994], employs the F-test
criteria [Provencher, 1982a; Obenchain, 1977] to select the optimal value of the regularization
weight, a. Unless otherwise noted, we selected second-order regularization, which minimizes
the second derivative of the source history function, or maximizes its smoothness. Skaggs
and Kabala [1994] also selected second-order regularization.

Minimum relative entropy inversion treats each element of the solution (source history)
vector, s, as a random variable. Using prior information and the measured data, the MRE
method obtains a multivariate probability density function (PDF) for the random variables;
the mean of this PDF is the solution to the inverse problem. Information on the upper
bounds, lower bounds, and expected values of the source concentration is used to create a
prior PDF, which is a truncated exponential distribution. The final posterior distribution is
chosen so that the relative entropy between the prior and posterior distributions is minimized,
subject to the data constraint that the posterior mean solution matches the measured data to

within a tolerance related to the standard deviation of the random measurement error. The



functional form of this data constraint depends on the model used to represent the random
measurement error, and the standard deviation of the measurement error is a parameter in
the data constraint. The reader is referred to Woodbury and Ulrych [1993, 1996] for more
information on the MRE method. Following their approach, we wrote a MATLAB routine
to implement the MRE method. Details of the implementation can be found in Neupauer
[1999]. Unless otherwise noted, we used a lower bound of 0.0, an upper bound of 1.1, and a
prior expected value of 0.8 for all elements of the source history solution vector s. All units

are dimensionless.
3 Comparison of the Two Inverse Methods

Woodbury and Ulrych [1996] raised several concerns with the TR approach of Skaggs and
Kabala [1994]; these issues were further discussed in Kabala and Skaggs [1998] and Woodbury
and Ulrych [1998b]. We have grouped the issues into four categories: a proper comparison of
the two methods, the appropriate error model, uniqueness of the solutions, and confidence
intervals on the solution. In this section, we address each of these issues. For all simulations
shown here, the parameters values were v = 1.0 and D = 1.0, and the source of contamination
was at * = 0. We used two different source history functions—the three-peaked smooth
function used by Skaggs and Kabala [1994], Woodbury and Ulrych [1996] and others (hereafter
called Source A, shown in Figure 1a) and a step function with C;,(¢) = 1.0 for 125 < ¢ < 225,
where C;, (1) is the source concentration (hereafter called Source B, shown in Figure 1b). The
reconstructed source history (solution) vector has 100 elements uniformly spaced between

t =10.01 and ¢ = 250. Because of algorithmic constraints with CONTIN, the solution vector



cannot contain t = 0 or ¢ = t,, where t; is the sampling time (¢, = 300 for this problem).
All units are dimensionless.

The plumes generated by these source history functions were sampled at ¢t = ¢, = 300 at
25 locations (x = [0.01, 25.05, 50, 60, 70, 80, ..., 230, 240, 250, 275, 300]). For some simu-
lations presented here, we added random measurement error to the sampled concentrations
using either a multiplicative error model or an additive error model. The multiplicative error

model is

C*(xp,1) = C(xn,t) + €00,C (20, 1) , (3)

where C*(z,,t) is the measured concentration at location x,, at time ¢, C'(z,,t) is the true
concentration, ,, is the location of the n'® sample, ¢,, is the standard deviation of the random
error (error level), and 6, is the n'" random deviate (standard normal). The additive error

model is

C*(xp,t) = C(xn,t) + €400 , (4)

where ¢, 1s the standard deviation of the random error. We used ¢,, = 0.05 for the mul-
tiplicative error model and ¢, = 0.009 for the additive error model. The true plume and

sampled data are shown in Figure 1c,d.



3.1 Proper Comparison of the Methods

Skaggs and Kabala [1994] showed the results of several examples using the TR method to
reproduce Source A. Woodbury and Ulrych [1996] presented the results of several similar,
although slightly different, examples using the MRE method. The two sets of examples
differed in the number of data points (sample locations) used in the inversion, and in the
error models used to generate hypothetical random measurement error. Because of the slight
differences in the examples, a proper comparison of the two methods was not made. Kabala
and Skaggs [1998] suggested that to properly compare the methods, the number of data
points and the error model must be the same for each method, and also suggested that
the reconstruction of other source history functions be evaluated. To address these issues,
we compared the MRE and TR methods for reproducing Sources A and B using an equal
number of data points (25) and the same error model (multiplicative).

Figures 2 and 3 show the results for Source A and Source B, respectively. For these and
all remaining figures, the horizontal axis has units of dimensionless time, and the vertical
axis has units of relative concentration. Both Figures 2 and 3 show results for error-free
data and for data with random measurement error (error level of 0.05; the data are shown
as triangles in Figure 1). For Source A (Figure 2), the MRE and TR methods perform very
well with both data sets. For Source B (Figure 3), MRE performs better than TR when
the error-free data set is used. Recall that with second-order regularization, the TR method
maximizes the smoothness of the solution; since the true source history is not smooth, the

TR solution oscillates around the plateau. When the data containing measurement error are
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used, both MRE and TR appear to perform equally well. We also tested the two methods

using 60 data points and obtained similar results which are not shown here.

3.2 Error Models

Skaggs and Kabala [1994] and Woodbury and Ulrych [1996] used different error models to
generate random measurement error on the sampled data. Skaggs and Kabala [1994] used the
multiplicative error model in (3), and Woodbury and Ulrych [1996] used the additive error
model in (4). Both models are physically plausible [Kabala and Skaggs, 1998; Woodbury and
Ulrych, 1996, 1998b]. We cannot justify that either error model is more appropriate than the
other, but we have found that the results of the inverse methods are similar for both error
models. The results are shown in Figure 4 where random measurement error was simulated
using the multiplicative model (¢, = 0.05), and Figure 5 where the additive error model
(e, = 0.009) was used. The data used in these simulations are shown in Figure lc. With
these values of ¢, and ¢,, the norms of the noise vectors are equal in both models, and the
inversion results from the two data sets can be compared. The noise vector is the vector of
the difference between the measured and exact concentrations. By equating the norms of
the noise vectors, we obtain 6m||0||/m = ¢,. Using the exact data shown in Figure Ic,
||C||/\/N7y = 0.1716. With this result and €,, = 0.05, the appropriate value for the additive
noise level is €, = 0.009. Note that for all of the results presented here, we used only one set
of random numbers 6,, n = 1,2,..., N,. Similar results were obtained for other (> 50) sets
of random numbers.

Figures 4 and 5 show that both inverse methods produce reasonable results, regardless
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of the error model used. Also, with the MRE method, similar results are obtained when
using the correct data constraint (i.e., Figure 4b, where the random measurement error and
the data constraint both follow the multiplicative error model, and Figure 5c, where the
random measurement error and the data constraint both follow the additive model) and the
incorrect data constraint (i.e., Figure 4c, where the random measurement error follows the
multiplicative error model and the data constraint assumes that the additive error model is
followed, and Figure 5b, where the random measurement error follows the additive model
and the data constraint assumes that the multiplicative model is followed). The solution
is insensitive to the particular error model, provided consistent error levels, ¢,, and ¢,, are
used.

In a field situation, the true error level is not known, but the MRE method requires an
error level to be specified in the data constraint. We found that the MRE method is sensitive
to the specified error level. Figure 6 shows the effects of using the wrong error level in the
MRE data constraint. The correct error level (Figure 6b) produces reasonable results, while
the under- and over-estimated error levels (Figures 6a and c) produce less accurate results.
In fact, the solution shown in Figure 6a does not reproduce the data. Woodbury and Ulrych
[1996] suggested pre-filtering the data to eliminate the random error; however, in following
their described method, we obtained very different results. The TR method can also be made
sensitive to the measurement error if the regularization parameter is chosen using a method
that depends on the noise level [Groetsch, 1994]. With either method, an experienced user

might find the flexibility of a user-adjusted error level useful, while a naive user would not.
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3.3 Reproducibility of the Solution

The source history reconstruction problem is ill-posed, and therefore, a unique solution
cannot be obtained. In the context of inverse problems, a solution would be “unique” if it
were the only solution that could reproduce the data. Any inverse problem is non-unique.
Woodbury and Ulrych [1996, 1998b] state that, given the set of information available, the
MRE method uses all available information to produce a “unique” posterior PDF from which
the solution is obtained. In this context, “unique” refers to the reproducibility of the inverse
model result. In other words, given a set of measured data and prior information about
the source history, the MRE method will always produce the same posterior distribution.
To avoid confusion with the term “uniqueness” in the context of the ill-posedness of the
problem, we will describe the uniqueness of the PDF using the term “reproducibility”. In
other words, the solution has a high degree of reproducibility if two modelers, given the same
set of available information, obtain the same solution. To our knowledge, the distinction
between uniqueness and reproducibility of the solution has not been made before.
Woodbury and Ulrych [1998b] argue that Tikhonov regularization involves two subjective
factors, the regularization order (k) and the regularization weight («), which can decrease
the degree of reproducibility. Several methods are available for selecting the optimal regu-
larization weight. The choice of methods can be subjective, but once a method is chosen, a
unique value of the regularization weight is obtained. We evaluated the sensitivity of the TR

solution to two methods of selecting the optimal regularization weight, the F-test method

[Provencher, 1982a; Obenchain, 1977] and generalized cross-validation | Wahba, 1977], and
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found essentially no difference in the TR solutions [Neupauer, 1999]. We also evaluated the
sensitivity of the TR results to the order of regularization. The results are shown in Figure 7
for zero-, first-, and second-order regularization using error-free data to reproduce Source B.
The results of first- and second-order regularization are essentially indistinguishable; while
the zero-order-regularization result is oscillatory. Along the plateau, the zero-order solution
vector alternates between values above the true solution and values below the true solution;
these large fluctuations are unrealistic. If the temporal spacing of the solution vector were
reduced, zero-order regularization would produce a similar alternating pattern with a higher
frequency. Since the frequency of the oscillations depends on the temporal discretization of
the source history, the oscillating behavior is clearly a numerical artifact and not supported
by the data; therefore, zero-order regularization is obviously unreliable in this case and can
be so identified by a user in application. In comparing the results of first- and second-order
regularization, the solution is insensitive to the regularization order. We found this same
pattern for Source A. Thus, the TR solution is relatively insensitive to the two subjective
factors (k and «), providing strong reproducibility of the TR results. We also evaluated
results using higher-order regularization (up to order five). The results for Source A are
relatively indistinguishable for regularization orders of one or higher; and for Source B, the
results become less accurate as the regularization order increases beyond two.

With the MRE method, the prior PDF is developed using prior information including
lower and upper bounds on the solution, and its prior expected value. For the source history

reconstruction problem, the lower bound is typically zero, since concentration is non-negative
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and the release concentration is likely to be zero during part of the recovery interval. A
reasonable estimate for the upper bound is the solubility limit of the contaminant; however,
the actual source concentration might be far below this level.

We evaluated the sensitivity of the MRE solution to the upper bound, and found that, in
some cases, the results are quite sensitive. Figure 8 shows the results of the MRE method for
Source B with three different values of the upper bound, indicating that for this source, the
solution becomes less accurate as the upper bound increases. Suppose we use the solubility
as the upper bound and that the maximum release concentration in Source B were approx-
imately equal to the solubility limit. The resulting MRE solution is shown in Figure 8a. If
the maximum release concentration were one half of the solubility limit, the resulting MRE
solution would be the solution shown in Figure 8c. Obviously, the solution is more accurate
when the upper bound is near the maximum release concentration. The oscillations continue
to magnify as the maximum release concentration decreases relative to the solubility limit.
Thus, if the upper bound is not chosen wisely, it is possible to obtain a poor solution with
the MRE method for Source B.

In contrast, the MRE solution for Source A was relatively insensitive to the value of the
upper bound [Neupauer, 1999]. We also evaluated the sensitivity of the MRE method to
the prior expected value, and found the solutions to be nearly indistinguishable [Neupauer,

1999).
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3.4 Confidence Intervals

The MRE method produces a multivariate posterior PDF for the source concentration; and
Woodbury and Ulrych [1996] show how probability levels of this posterior PDF can be used
as confidence intervals. Kabala and Skaggs [1998] and Woodbury and Ulrych [1998b] debated
the interpretation of confidence intervals defined by these probability levels. Since we are
comparing the effectiveness of the two methods, we will not address the interpretation of the
confidence intervals; however, some features of the confidence intervals affect the comparison.
As noted by Woodbury and Ulrych [1998b], the confidence intervals for the TR solution are
affected by the choice of the regularization weight, a. Unbiased confidence intervals can only
be obtained when a = 0, i.e., with no regularization. In general, the solution is regularized to
improve stability, and the resulting confidence intervals are biased. With the MRE method,
the confidence intervals are based on the posterior PDF, which depends on the measured
data and the dimensionality of the solution vector. Assuming that the confidence intervals
are correctly interpreted (i.e., Bayesian interpretation), the MRE confidence intervals are
meaningful.

Woodbury and Ulrych [1998b] also explained that if the measured data contain no infor-
mation to update the prior PDF, the posterior distribution will default to the prior distri-
bution. In this case, the MRE solution will default to the prior expected value, with wide
confidence intervals. With this feature, we can identify regions for which the data contain
no information about the solution. In these regions, TR will produce a solution, and there is

no way to determine if the solution is supported by the data. The MRE solution will also be
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equivalent to the prior expected value if the data confirm the prior. We can distinguish this
case from the case where the data provide no information by evaluating the confidence inter-
vals. If the data confirm the prior, the confidence intervals will be narrower than the spread
of the prior distribution; and if the data provide no information, the confidence intervals will

equal the spread of the prior distribution.

4 Discussion and Conclusions

Woodbury and Ulrych [1996, 1998b] and Kabala and Skaggs [1998] debated several issues
about the relative merits of the TR and MRE methods for the source history reconstruction
problem, including the appropriate error model, the reproducibility of the solution, the
interpretation of confidence intervals, and a comparison of consistent test cases. In this
paper, we addressed these four issues. We found that the results of both inverse methods
are reasonable when either the multiplicative error model of Skaggs and Kabala [1995] or the
additive error model of Woodbury and Ulrych [1996] is used; therefore, the solution does not
depend on the particular model used to generate random measurement error.

Both TR and MRE require some subjective inputs. For Tikhonov regularization, the user
must choose the order of regularization and the method for selecting the optimal regulariza-
tion weight. We found that, for the cases we evaluated, similar results were obtained using
first- and second-order regularization; however zero-order regularization produced unrealistic
results because the solution oscillated at a frequency that depended on the temporal dis-
cretization. We also found that two methods for selecting the regularization weight (F-test

and generalized cross-validation) produced nearly identical results, and once a method is
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chosen, a unique value of the regularization weight is obtained. Therefore, for the cases we
evaluated, the TR method contains little subjectivity. The subjective inputs for the MRE
method include the upper bounds and prior expected values of the source concentration.
We assume that the lower bound is always zero, and therefore is not subjective. We found
that the MRE solution is relatively insensitive to the prior expected value, sensitive to the
upper bound for Source B, and insensitive to the upper bound for Source A. Based on these
results, for the source history function we evaluated, the inputs to the MRE method are
slightly more subjective that the inputs to the TR method. Subjectivity is neither good
nor bad. An expert may properly demand more subjectivity, while the naive user deserves
almost none.

Both methods produce confidence intervals for the solution. Because of regularization,
the confidence intervals obtained with the TR method are biased, and therefore are not
accurate. The probability levels obtained with the MRE method are meaningful if they are
interpreted as “the probability of a parameter being in an interval that is conditional on the
observed data in the current experiment” [ Woodbury and Ulrych, 1998b]. These probability
levels are not classical confidence intervals.

The results of the comparisons show that both TR and MRE are effective in recon-
structing the smooth source history function (Source A), but since second-order Tikhonov
regularization attempts to fit a smooth function, the TR method is less effective than MRE
in reproducing the step source history function (Source B). The MRE method requires that

an error level be specified in the data constraint. We found that if the noise level is known
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exactly, the MRE method performs as well as the TR method; however, if the noise level is
underestimated, the MRE method does not perform as well. These findings show that the
TR method is more robust when the data contain measurement error of unknown magnitude.

In summary, we have compared the relative effectiveness of the TR and MRE methods in
reproducing two source history functions—a three-peaked Gaussian and an step function. For
these input functions, the MRE method is more robust than the TR method if the step (non-
smooth) source history function; while the TR method is more robust if the data contain
measurement error of unknown magnitude. In general, for any input function, the MRE
method has the advantage of identifying regions where a solution cannot be determined,
because the posterior distribution defaults to the prior distribution in regions where the
data give no information about the source history function. The TR method cannot make

this distinction.
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Figure Captions

Figure 1: True release history for (a) Source A and (b) Source B. True plume and sampled

data for (¢) Source A (d) Source B.

Figure 2: Comparison of TR and MRE results with Source A. (a) TR method with error-free

data. (b) MRE method with error-free data. (c¢) TR method with noisy data. (d) MRE

method with noisy data. The multiplicative error model with €, = 0.05 is used in (c) and

(d).

Figure 3: Comparison of TR and MRE results with Source B. (a) TR method with error-free
data. (b) MRE method with error-free data. (c¢) TR method with noisy data. (d) MRE

method with noisy data. The multiplicative error model with €, = 0.05 is used in (c¢) and

(d).



Figure 4: Solutions of the two inverse methods using data generated using the multiplicative
error model with ¢, = 0.05. (a) TR results. (b) MRE results with multiplicative error model
used in the data constraint (e, = 0.05). (¢) MRE results with additive error model used in

the data constraint (¢, = 0.009).

Figure 5: Solutions of the two inverse methods using data generated using the additive error

model with ¢, = 0.009. (a) TR results. (b) MRE results with multiplicative error model
used in the data constraint (e, = 0.05). (¢) MRE results with additive error model used in

the data constraint (¢, = 0.009).

Figure 6: Solutions of the MRE method with different error levels used in the data constraint.

The data were generated using the multiplicative error model with ¢, = 0.05. MRE results

with (a) €, = 0.01, (b) €, = 0.05, and (c) €, = 0.25 in the data constraint.



Figure 7: Solutions of the TR method with different regularization orders using exact data.
(a) zero-order regularization, (b) first-order regularization, and (c) second-order regulariza-

tion.

Figure 8: Solutions of the MRE method with different upper bounds and no measurement

error. Upper bounds of (a) 1.02, (b) 1.5, and (c) 2.0.
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