
APPLYING THE BOUNDARY POINT METHOD TO
AN SDP RELAXATION OF THE MAXIMUM

INDEPENDENT SET PROBLEM FOR A BRANCH
AND BOUND ALGORITHM

by

Aaron T. Wilson

Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science in Mathematics

with Specialization in Operations Research and Statistics

New Mexico Institute of Mining and Technology

Socorro, New Mexico

May, 2009

ABSTRACT

A common method, originally introduced by Lovász in 1979, for cal-

culating an upper bound on the size of a maximum independent set for a graph

is to consider a relaxation of the problem expressed as a semidefinite program

(SDP). Today, the most prevalent method for solving a general SDP is with

a primal-dual interior point method (IPM). These methods are highly devel-

oped, provide reliable convergence, and parallelize relatively well on a shared

memory architecture. However, they are severely limited by their memory re-

quirements, which grow with the square of the number of edges in the graph.

Here, we investigate the boundary point method (BPM) developed by Povh,

Rendl, and Weigele in 2006. Storage for this method grows as the square of the

number of nodes in the graph, allowing us to bound much larger graphs. We

have implemented the boundary point method in C within a branch-and-bound

framework and discuss several methods used within that framework aimed at

increasing the efficiency of the algorithm. We also compare the BPM with

CSDP, an implementation of the IPM. Computational results show that the

BPM is indeed useful for problems with a large ratio of edges to vertices, that

performance can be improved within the branch-and-bound framework, and

that it does not scale as well in a shared memory environment.

ACKNOWLEDGMENT

The author’s greatest support came from Dr. Brian Borchers as his

advisor, as head of his thesis committee, and as professor for many of his

courses. The author’s work in the mathematics department would not have

been possible without the help and support of all his professors and fellow

students. Additionally, he would like to thank Dr. Bill Stone and Dr. Rakhim

Aitbayev for sitting on his thesis committee. Thanks also go to Richard Hahn

for providing both a critical and supportive voice and to Maxx Kureczko for

too many things to list here.

This thesis was typeset with LATEX1 by the author.

1LATEX document preparation system was developed by Leslie Lamport as a special version
of Donald Knuth’s TEX program for computer typesetting. TEX is a trademark of the
American Mathematical Society. The LATEX macro package for the New Mexico Institute of
Mining and Technology thesis format was adapted from Gerald Arnold’s modification of the
LATEX macro package for The University of Texas at Austin by Khe-Sing The.

ii

TABLE OF CONTENTS

LIST OF TABLES v

LIST OF FIGURES vi

1. SOLVING THE MAXIMUM INDEPENDENT SET PROB-

LEM USING BRANCH AND BOUND WITH A SEMIDEF-

INITE PROGRAM 1

1.1 Introduction . 1

1.2 Branch and bound in general 3

1.3 Branch and bound for the MIS problem 5

1.3.1 Implementation of branch and bound 8

1.3.2 Heuristics . 10

1.4 Bounding the maximum independent set problem from above;

The Lovász Theta Number . 10

1.4.1 A semidefinite programming relaxation 12

1.4.2 A general SDP and its dual 13

1.5 Interior point methods . 15

1.5.1 Solving an SDP with the interior point method 16

1.5.2 CSDP; An interior point method implementation for com-

parison . 17

2. SOLVING A GENERAL SDP WITH THE BOUNDARY POINT

METHOD 20

2.1 The augmented Lagrangian . 20

iii

2.1.1 Minimizing the augmented Lagrangian 22

2.1.2 Convergence of the minimization of the augmented La-

grangian . 23

2.2 Updating Lagrange multipliers; an algorithm 25

2.3 The boundary point method for the maximum independent set

problem . 26

3. IMPLEMENTATION OF THE BOUNDARY POINT METHOD

FOR THE MIS PROBLEM 29

3.1 Forcing dual feasibility . 29

3.2 The eigenvalue decomposition, parallelization 31

3.3 Fathoming with previous solutions 32

3.4 A warm start for the BPM method 34

4. COMPUTATIONAL RESULTS 36

4.1 Calculating the Lovász Theta Number 37

4.2 Traversing the branch-and-bound tree 48

4.2.1 The BPM versus CSDP 51

4.2.2 The BPM with and without a warm start 53

4.2.3 The BPM with and without attempting to fathom using

parent y-values . 54

5. CONCLUSIONS 55

5.1 Further Work . 57

Bibliography 59

iv

LIST OF TABLES

4.1 CSDP vs. BPM; Calculating the Lovász theta number 39

4.2 CSDP vs. BPM; Traversing the branch-and-bound tree 49

4.3 CSDP vs. BPM; Number of nodes processed in the branch-and-

bound search tree . 52

v

LIST OF FIGURES

4.1 Plots showing the time for BPM to compute ϑ versus the number

of vertices and versus the number of edges. 44

4.2 Plots showing the time for CSDP to compute ϑ versus the num-

ber of vertices and versus the number of edges. 45

4.3 Log-log plots showing the time for BPM to compute ϑ versus

the number of vertices and for CSDP to compute ϑ versus the

number of edges. 47

vi

This thesis is accepted on behalf of the faculty of the Institute by the following

committee:

Brian Borchers, Advisor

Aaron T. Wilson Date

CHAPTER 1

SOLVING THE MAXIMUM INDEPENDENT SET
PROBLEM USING BRANCH AND BOUND WITH A

SEMIDEFINITE PROGRAM

1.1 Introduction

First, recall that a graph G = (V,E) is defined by a finite set V of

vertices and a set E of pairwise edges connecting one vertex to another. The

ordered pair (i, j) ∈ E then represents an edge from i ∈ V to j ∈ V . In this

paper we only consider undirected graphs, that is we make the assumption that

(i, j) ∈ E ⇔ (j, i) ∈ E. Defining |S| to represent the cardinality of the set S,

let n = |V | and m = |E| unless otherwise stated.

Definition 1.1. An independent set on a graph G = (V,E) is any I ⊆ V such

that (i, j) /∈ E for all i, j ∈ I. That is, I is a set of vertices whose elements are

pairwise non-adjacent. Henceforth, we will use the term neighbors to denote

two adjacent vertices and neigh(i) to denote the set of all neighbors of vertex

i.

Definition 1.2. A maximal independent set is any independent set I ∈ V such

that no more vertices in V \I may be added to I to form a larger independent

set.

Definition 1.3. A maximum independent set M ⊆ V on the graph G =

(V,E) is any independent set whose cardinality is greater than or equal to

1

2

the cardinality of all other independent sets. We will use α(G) to denote the

cardinality of any maximum independent set on G.

Definition 1.4. Given k ∈ Z+ and a graph G = (V,E), the independent set

problem asks if there is an independent set with cardinality k on G.

The independent set problem is a well known example of an NP-hard

problem, see [11]. Thus we know two things about this problem. First, given

a subset of the vertices, we may check whether it is an independent set in

polynomial time with respect to n. Second, there is no known algorithm that

solves the independent set problem and runs in polynomial time with respect

to n.

The corresponding optimization problem is the maximum independent

set (MIS) problem,

max |I|
s.t. I is an independent set on G = (V,E).

(1.1)

The MIS problem has numerous areas of application, including coding the-

ory, fault tolerance, pattern recognition, and economics, amongst others. The

Sloane graphs that will be discussed in Chapter 4 are designed such that an

independent set on these graphs represents an error-correcting, binary code-set.

An excellent discussion of some applications is presented by Pardalos and Xue

in [24] and by Bomze, et al. in [4].

Not only is this a difficult problem to solve, there are no efficient

algorithms for approximating the optimal value. Often, see [2, 4, 8, 9, 24,

26, 31], instead of attempting to approximate α(G) directly, relaxations of the

3

MIS problem which provide upper and lower bounds on α(G) are used within

a branch-and-bound framework to solve the problem.

1.2 Branch and bound in general

A branch-and-bound algorithm is a type of problem solver often used

for combinatorial maximization or minimization problems. It is a brute force

search tree that is capable of cutting off some of its branches by taking ad-

vantage of known bounds on the objective value. We generalize the problem

by assuming that we are considering a maximization problem of the following

form.

max f(x)
s.t. x ∈ S (1.2)

The branch-and-bound algorithm requires two things. First, a method for

partitioning any domain of x, D, into k subsets {Di}i=1,...,k must exist. Second,

there must be a method for bounding the optimal value of f(x) from above

and below for all x ∈ S ∩Di.

A search tree is created by recursively partitioning the domain of

the problem. If the upper bound found at some node in the search tree, with

domainDa, is found to be less than or equal to the lower bound at another node,

with domain Db, then there exists a feasible solution in Db that has an objective

value larger than any feasible solution in Da. Therefore we may discard the

node with domain Da and all of its children from the search. Henceforth,

when a node is removed from the search tree we will say that node has been

“fathomed.”

Algorithm 1 gives pseudocode for the recursive function bandb(T)

4

in the branch-and-bound algorithm. Here, it is assumed that some method,

upper(T), exists that is capable of bounding the maximum value of the ob-

jective function, f , from above on the domain T . The largest objective value

known is used as a global lower bound on the optimal value, stored as best.

That is

∃x ∈ S s.t. f(x) ≥ best (1.3)

f(x) ≤ upper(T) ∀x ∈ S ∩ T. (1.4)

bandb(T) returns an optimal solution within the given domain T . The branch-

and-bound algorithm would consist of creating the initial domain D, initializing

best with the best known lower bound, and calling bandb(D). Note that in this

Algorithm 1 bandb(T) returns x ∈ T ∩ S that maximizes f

Require: best ≤ f(x) ∀x ∈ S
1: if |T | == 1 then {We’ve reached the bottom of the tree, return the only feasible solution}
2: return T
3: else
4: if upper(T) > best then
5: if ∃x̂ ∈ T ∩ S s.t. f(x̂) > best then {a better lower bound has been found }
6: best← f(x̂)
7: end if
8: partition T into k subsets, {Ti}i=1,...,k, such that Ti ∩ S 6= ∅
9: return

argmax
x∈{bandb(Ti)}ki=1

f(x)

10: else
11: return ignore
12: end if
13: end if

algorithm, returning “ignore” should cause the algorithm to ignore the results

5

from that partition of the feasible region, hence fathoming that node in the

tree. We could define f(ignore) = −∞ to achieve this.

The efficiency of this algorithm is highly dependent on several yet

undefined parts of the algorithm. The method of partitioning the feasible set

T is discussed in §1.3. The heuristics used to find an initial lower bound and

determine if there exists an x̂ ∈ T that represents an independent set larger

than best is discussed in §1.3.2. The method of finding the upper bound and

the gap between the upper bound and optimal value are discussed in §1.4 and

Chapter 2.

1.3 Branch and bound for the MIS problem

For the maximum independent set problem, the initial domain, D, is

the set containing all subsets of the set of vertices in the graph, V ; the feasible

region, S, is the set of all independent sets on G; the objective function, f , is

the cardinality of an independent set; and the lower bound, best, is provided by

the cardinality of a known independent set. For now, we will leave the method

for finding an upper bound undefined. This will be discussed in §1.4.

To solve this program using branch and bound, the feasible region

is partitioned by branching on the decision to include or exclude individual

vertices from the independent set. Let I ⊆ V and O ⊆ V denote the sets of

vertices included and excluded from the independent set at some node in the

search tree, respectively. We do not keep track of exactly what the feasible set

of solutions is, given I and O. Instead, we exclude vertices from the graph so

that the corresponding subgraph Ĝ = (V \I\O,E) cannot have an independent

6

set Î ⊆ V \I\O where Î ∪ I is not an independent set on G. Excluding a

vertex from the independent set is equivalent to simply removing it from the

corresponding subgraph, as any independent set will exist somewhere else in

the graph. Including a vertex in the independent set is equivalent to removing

the vertex and all of its neighbors from the subgraph, as any independent set

cannot include the neighbors of a vertex in the independent set, I.

Algorithm 2 shows Algorithm 1 modified for the maximum indepen-

dent set problem. It is possible for this algorithm to return the empty set, but

this would simply imply that no independent set larger than best was found.

This is a useful property of the algorithm. By setting best to be larger than

the largest known independent set, we can use the branch-and-bound tree to

prove a bound on the largest independent set. Assuming that the algorithm

does not return a larger independent set, we can be sure that there are none

of this size in the graph.

We have left upper(Ĝ) undefined here, but the simplest form this

function might take is the number of vertices currently in the independent set

plus the number of vertices still not set as in or out of the independent set, or

upper(Ĝ) = |I|+ |V̂ |. (1.5)

Assuming that any form of upper that we choose will provide a better bound

on the maximum size of the independent set, we can be sure that if we reach a

leaf of the tree, then we have found an independent set larger than best. This

can easily be seen by considering a node in the search tree that is the parent

of a leaf. If adding one more vertex to the independent set will not create an

7

Algorithm 2 mis bandb(Ĝ, I) returns the largest independent set on Ĝ =
(V̂ , Ê)

Require: best is the size of the largest known independent set and I is initial-
ized as ∅
if |V̂ | == 1 then {only one vertex in the subgraph, add it to I and return}

if |I|+ 1 > best then {a better lower bound has been found }
best← |I|+ 1

end if
return V̂ ∪ I

end if
if upper(Ĝ) < best+ 1 then {no better solutions can be found in this branch of the tree}

return ∅
else

compute a heuristic solution, Î within Ĝ let heur = |I|+ |Î|
if heur > best then {a better lower bound has been found }
best← heur

end if
pick a vertex i ∈ V̂ to branch on
Vwith ← mis bandb((V̂ \{i}\neigh(i), Ê), I ∪ {i})
Vwithout ← mis bandb((V̂ \{i}, Ê), I)
if |Vwith| > |Vwithout| then

return Vwith
else

return Vwithout
end if

end if

8

independent set larger than best then the algorithm will not branch on that

vertex.

1.3.1 Implementation of branch and bound

Several methods are used within the branch-and-bound algorithm in

an attempt to minimize any unnecessary computation. By far, the most compu-

tationally expensive step of the branch-and-bound algorithm will be computing

the upper bound. Thus we attempt to minimize the number of times that this

bound is computed or decrease the size of the problem before computing the

bound.

Consider a vertex in the unset subgraph for which each of its neighbors

is connected to every other neighbor of that vertex. Now consider excluding

that vertex from the independent set. Clearly we may still include only one of

its neighbors in the independent set; doing so will exclude all of the neighbors

of the original vertex and possibly several other vertices from the independent

set. Including the vertex in the graph, however, excludes all of its neighbors

and no other vertices. We need not consider excluding the vertex and all of

its neighbors from the graph as this will have the same result on the unset

subgraph, while including one less vertex in the independent set. Thus, before

the bound is computed, a search of the unset subgraph is made. Any node

whose neighbors are completely connected to each other is immediately set in

the independent set, and the neighbors are set out.

Often times a computed bound will not be low enough to justify

fathoming that node in the search tree and branching on some vertex will be

9

necessary. In this case, the bound computed becomes largely unnecessary. For

this reason, we roughly estimate the value of the bound on the size of the

independent set on the full graph and only bound when this estimate is smaller

than the lower bound. This approximate value is decreased slightly each time a

vertex is set out of the independent set and is updated each time a new bound

is computed for the unset subgraph. The amount by which the estimate is

decreased is constant and based on observation. Under the assumption that

this is a relatively poor estimate of the bound and to prevent expanding the

tree considerably without cause, every fifth generation in the tree is bounded

regardless of the estimate of the next bound. The choice of five generations is

based on observations with a small set of example problems. The choice in how

we estimate the next bound and how often we force a bound have significant

effects on the efficiency of the search tree. Further interest might be taken in

developing other methods for making these choices.

To implement the branch-and-bound tree in a system where only one

bound may be performed at a time, the order in which nodes are examined must

be considered. A depth-first search might be helpful if no good lower bound

was known, but this is rarely the case. Heuristics can often find the maximum

independent set; the branch-and-bound tree is in this case used to confirm

that these heuristic independent sets are indeed maximum. Heuristics used for

finding an initial lower bound will be further discussed in §1.3.2. A depth-

first search is used in our algorithm because it provides an easy framework for

storing a solution to the formulation of the upper bound problem at a node in

the search tree so that it may be used to increase the efficiency of a bound on

a descendent of that node. This will be discussed in §3.3 and §3.4.

10

1.3.2 Heuristics

The branch-and-bound search tree is only pruned when an upper

bound for a node is found to be smaller than the global lower bound, best, given

by the largest independent set known. For this reason, the size of the search

tree will be highly dependent on the value given to best when the algorithm

is started (unless the simple heuristic completions of the solution within the

algorithm happen to find a large independent set early in the search tree).

Several very good heuristic algorithms exist which are capable of finding large

independent sets on a given graph, see [4, 24, 27] for discussions of some of

the search methods used for these heuristics. They are not used within the

branch-and-bound tree because they are generally computationally expensive.

Instead, we use them to attempt to find the largest independent set possible

before starting the branch-and-bound algorithm.

Referring to algorithm 2, a heuristic solution is computed at each

unfathomed node for comparison with the largest independent set known. The

simple heuristic used here quickly finds a maximal independent set based on

the partial solution I and the remaining subgraph Ĝ. Unset vertices are added

to the independent set at a node of the tree in no specific order until no more

vertices may be added to the independent set. If a new, larger independent set

is found, it is stored and its cardinality is used for the new lower bound.

1.4 Bounding the maximum independent set problem from above;
The Lovász Theta Number

Numerous formulations of the maximum independent set problem

have been introduced which provide an upper bound on α(G). For example,

11

the MIS problem can be formulated as a linear integer program,

max
n∑
i=1

xi (1.6)

xi + xj ≤ 1 ∀(i, j) ∈ E (1.7)

x ∈ {0, 1}n. (1.8)

Any optimal solution x to this program corresponds to a maximum independent

set, I, on G where i ∈ I if and only if xi = 1. Relaxing the program by removing

the integer constraint on x provides an upper bound on the problem that can

be achieved using any number of linear programming methods. Similarly, the

problem can be expressed as a quadratically constrained global optimization

problem,

max
n∑
i=1

xi (1.9)

xixj = 0 ∀(i, j) ∈ E (1.10)

x2
i = xi, i = 1, ..., n (1.11)

By introducing the quadratic constraint (1.11), any solution to this program

will have x ∈ 0, 1n without the need for an explicit integer constraint. For

large graphs, however, this non-convex global optimization problem becomes

difficult to solve.

In 1979, Lozász defined the theta number of a graph, ϑ(G), to denote

the minimum value of

minc max1≤i≤n
1

(cTui)2
(1.12)

|c| = 1 (1.13)

12

over all orthonormal representations, (u1, ..., un), of a graph G = (V,E). That

is, over all systems of unit vectors (u1, ..., un) such that if (i, j) ∈ E then

uTi uj = 0. In the same paper, see [18], he notes that ϑ(G) is an upper bound

on both the Shannon capacity of the graph, Θ(G), and the size of a maximum

independent set, α(G). Lovász later proved in [19] that the theta number can

be calculated to arbitrary precision in polynomial time with respect to the

size of the graph. Because the theta number is relatively easy to compute, it

has been frequently used to bound the size of the maximum independent set

problem, see [12, 13, 14, 25, 33].

Lovász proved in [19] that ϑ(G) is sandwiched between the size of a

maximum independent set, α(G) – equal to the size of the largest clique on the

inverse graph, ω(Ḡ) – and the number of colors needed to color the vertices of

the inverse graph, χ(Ḡ).

ω(Ḡ) = α(G) ≤ ϑ(G) ≤ χ(Ḡ) (1.14)

While we will use a bound provided by a semidefinite-programming formulation

of ϑ(G) to bound the size of α(G), heuristically found minimal colorings have

been used to bound this value as well. Tomita and Kameda, in [31], and Babel,

in [2], present heuristic coloring algorithms used within a branch-and-bound

framework to solve the maximum clique problem.

1.4.1 A semidefinite programming relaxation

László Lovász introduced ϑ(G) as an upper bound on α(G) in [18].

In the same paper he introduces the following SDP formulation of ϑ(G). We

use J to denote a matrix of all ones, j to denote a column vector of all ones,

13

and 〈A,B〉 = tr(AB). It can be noted that 〈J,X〉 is simply the sum of the

elements of X, whose optimal value is ϑ(G).

ϑ(G = (V,E)) = max 〈J,X〉
s.t. tr(X) = 1

Xij = 0 ∀(i, j) ∈ E
X � 0

(1.15)

It is relatively simple to show that this is a relaxation of (1.1). For any in-

dependent set I ⊆ V , consider x ∈ {0, 1}n, where xi = 1 ⇐⇒ x ∈ I. The

matrix

X =
xxT

jTx
(1.16)

is clearly feasible in (1.15), thus this SDP is a relaxation of the maximum

independent set problem and we know that ϑ(G) ≥ α(G). While we do not

consider a better bound than that given by ϑ(G), this bound can be tightened

by adding additional constraints to (1.15). Schrijver’s number, introduced in

[28], is attained by adding non-negativity constraints, Xij ≥ 0. Lovász and

Shriver additionally introduce several inequality constraints that potentially

lower the bound even further in [20]. Computational results examining both of

these modifications are presented by Dukanovic and Rendl in [7].

1.4.2 A general SDP and its dual

So that we can discuss some of the methods for solving an SDP, we

consider the general semidefinite program of the form

max 〈C,X〉
s.t. A(X) = b (P)

X � 0,

where we define

[A(X)]i = 〈Ai, X〉 for i = 1, ...,m (1.17)

14

and we have X,C,Ai ∈ Sn and b ∈ Rm. Here m and n simply represent the

number of equality constraints and the dimensions of X, respectively. We note

that (1.15) can easily be expressed in this form. When it is, note that C = J ,

and b is a vector of m zeros and a single one (corresponding to the constraint

tr(X) = 1).

Introducing Lagrangian multipliers y and Z for the equality con-

straints and semidefinite constraint respectively, the Lagrangian of the equiv-

alent minimization problem is

L(X;Z, y) = −〈C,X〉 − 〈Z,X〉+ yT (A(X)− b) (1.18)

=

〈
−C − Z +

m∑
i=1

yiAi, X

〉
− bTy (1.19)

=
〈
−C − Z + AT (y), X

〉
− bTy, (1.20)

where we define

AT (y) =
m∑
i=1

yiAi (1.21)

The objective function of the Lagrangian dual is obtained by tak-

ing the infimum of the Lagrangian over all X ∈ Sn. This infimum is clearly

unbounded unless

−C − Z + AT (y) = 0. (1.22)

Thus, the minimization form of the Lagrangian dual of (P) is

min bTy
s.t. AT (y)− C = Z (D)

Z � 0.

Note here that the dual objective value for the SDP form of the Lovász theta

number is the single y value corresponding to the tr(X) = 1 constraint.

15

If there is a strictly feasible point X for the primal form (P) then

strong duality holds by Slater’s condition [5]. The necessary and sufficient

KKT conditions for optimality are then

X � 0, A(X) = b, Z � 0, AT (y)− Z = C, 〈Z,X〉 = 0. (1.23)

We can note that the SDP form of the Lovász theta number, (1.15), has such

a strictly feasible solution. For example, X = 1
n
I (where I is the nxn identity

matrix) satisfies

tr(X) = 1 (1.24)

Xij = 0 ∀(i, j) ∈ E (1.25)

X � 0. (1.26)

We will be solving this problem numerically, so we only expect to get

feasible solutions within some tolerance of optimality. A feasible solution for

(1.15) will provide an objective value that is a lower bound on the upper bound

given by ϑ(G) so we consider the dual of the SDP, a minimization program.

By weak duality, any dual feasible solution will provide an objective value that

is an upper bound on the upper bound given by ϑ(G).

1.5 Interior point methods

Presently, one of the most common ways of solving an SDP is with

interior point methods. Interior point methods have been heavily developed in

the past two decades and a wealth of information on the subject can be found,

[1, 6, 10, 22] provide a good overview of some of these developments.

16

1.5.1 Solving an SDP with the interior point method

Any optimal solution to (P) and (D) will satisfy the KKT conditions

given in (1.23). The interior point method is an iterative method that up-

dates a primal-dual feasible solution, (X; y, Z), by first computing a Newton’s

method step toward satisfying a modified version of the equalities in the KKT

conditions, then truncating that step to ensure that the updated X and Z

remain positive semidefinite.

The modification to the KKT conditions is made because the con-

straint 〈X,Z〉 = 0, or equivalently XZ = 0 becomes poorly conditioned as X

or Z approach the boundary of positive semidefinite matrices. To push the

solution away from this boundary until solutions begin to approach optimality,

the constraint is replaced by XZ = νI for some ν > 0. This ensures that X

and Z are both strictly positive definite. In the limit as ν → 0 the solutions to

the new constraints

A(X) = b (1.27)

AT (y)− Z = C (1.28)

XZ = νI. (1.29)

where X,Z � 0 approach the optimal solution to (P) and (D). In fact, it can

be shown that the exact solutions to these equations, (X(ν); y(ν), Z(ν)), form

a differentiable path through the feasible space for the primal-dual pair. This

is called the central path.

Given that (X; y, Z) are primal and dual feasible, an updated feasible

17

solution, (X + ∆X; y + ∆y, Z + ∆Z), should satisfy

A(∆X) = 0 (1.30)

AT (∆y)− (∆Z) = 0 (1.31)

X∆Z + ∆XZ = −XZ + νI (1.32)

if we eliminate the second order term ∆X∆Z. Unfortunately, solving this sys-

tem for (∆X; ∆y,∆Z) may yield non-symmetric updates to X and Z. Several

classes of interior point methods arise from the choice of how to force the so-

lutions of this system to be symmetric. For example, Alizadeh, Haeberly, and

Overton [1] propose symmetrizing the nonsymmetric comstraint (1.29) as

1

2
(XZ + ZX) = νI. (1.33)

In §1.5.2 we briefly discuss an implementation of the interior point

method that will be used for comparison with the algorithm we used. In Chap-

ter 2 we will review the development of the algorithm we use, a boundary

point method originally presented in [25] that allows us to consider problems

of considerably larger size.

1.5.2 CSDP; An interior point method implementation for
comparison

CSDP is a semidefinite programming library written in C, created

by Brian Borchers. In this algorithm, the equation (1.29) is not symmetrized

before updating X. Instead, the update to X is symmetrized by averaging the

off-diagonal elements.

∆X =
∆X + ∆XT

2

18

The algorithm performs what is equivalent to solving the original KKT con-

ditions ((1.30, 1.31, 1.32) with ν = 0) then projecting that solution onto the

central path.

Note that if a solution is on the central path, then (1.29) is satisfied

and

ν =
tr(XZ)

n
(1.34)

We define

µ(X, y, Z) =
tr(XZ)

n
(1.35)

It has been shown, see [15], that projecting a feasible solution onto the central

path results in a new feasible solution with the same value of µ. Solving

the system of equations (1.30, 1.31, 1.32) for (X, y, Z) with ν = 0 (that is,

solving the original KKT conditions) provides updates that produce a feasible

solution, (X̂, ŷ, Ẑ), that will not necessarily be on the central path. Rather than

attempting to project the solution (X̂, ŷ, Ẑ) onto the central path, the system

(1.30, 1.31, 1.32) is solved using the original (X, y, Z) and ν = µ(X̂, ŷ, Ẑ). This

will produce the same result without having to consider the possibly poorly-

conditioned system at (X̂, ŷ, Ẑ).

It has been shown, see [15], that solving the system of equations (1.30,

1.31, 1.32) is equivalent to solving

[A(Z−1AT (e1)X) . . . A(Z−1AT (em)X)]∆y ≡M∆y = −b (1.36)

∆X = −X − νZ−1 −X(AT (∆y))Z−1 (1.37)

∆Z = AT (∆y) (1.38)

19

This is achieved using a Cholesky factorization of the matrix M and Z, which is

the most computationally intensive part of the algorithm. Factoring the m+ 1

by m + 1 matrix M for the maximum independent set problem will usually

consume considerably more time than factoring an n by n matrix as we almost

always have considerably more edges (m) than vertices (n) in the graph. So

a singe iteration of the algorithm takes O(m3) time. Once (∆X,∆y,∆Z) is

computed, a line search is performed and (X, y, Z) is updated

(X, Y, Z) = (X + αp∆X, y + αd∆y, Z + αd∆Z) (1.39)

s.t. X + αp∆X � 0 (1.40)

Z + αd∆Z � 0 (1.41)

This brief overview of CSDP is certainly not complete. Numerical round-off

error is assumed and solutions which are not strictly feasible are accounted for

within the algorithm. The convergence criteria can be specified by the user,

but by default are given by

〈X, J〉 − bTy
1 + |〈X, J〉|+ |bTy|

≤ τgap (1.42)

||A(X)− b||
1 + |b|

≤ τprimal (1.43)

||Z + C − At(y)F ||F
1 + ||C||F

≤ τdual. (1.44)

CHAPTER 2

SOLVING A GENERAL SDP WITH THE
BOUNDARY POINT METHOD

Here, we review the boundary point method introduced in [25] that

finds a solution to a general SDP with only equality constraints.

2.1 The augmented Lagrangian

We consider the dual formulation of the SDP and introduce La-

grangian multiplier X ∈ Sn for the equality constraint and augment the partial

Lagrangian of the dual program (D) as follows.

L(y, Z;X;σ) = bTy + 〈X,Z + C − AT (y)〉+
σ

2

∣∣∣∣Z + C − AT (y)
∣∣∣∣2
F

(2.1)

= bTy +
σ

2

∣∣∣∣∣∣∣∣Z + C − AT (y) +
1

σ
X

∣∣∣∣∣∣∣∣2
F

− 1

2σ
||X||2F , (2.2)

where σ > 0 and we are using the Frobenius matrix norm, defined by the

component-wise product discussed earlier

||B||2F = 〈B,B〉. (2.3)

We have chosen X as the Lagrange multiplier because we will be able to show

that the optimal X∗ satisfies the necessary and sufficient KKT conditions for

the optimality of the primal-dual pair, (1.23).

If we minimize this function over y and Z � 0, the augmentation

of the Lagrangian will penalize solutions that violate the equality constraints

20

21

according to the square of the norm of the residual scaled by σ. As σ is in-

creased, the penalty is increased and the optimum values are brought closer to

a minimum of the Lagrangian that satisfies the equality constraints. The aug-

mented Lagrangian approach involves iteratively minimizing (2.1) with respect

to y and Z � 0 while holding X constant, updating the Lagrange multipliers,

X, then increasing σ. This is repeated until the KKT conditions, (1.23), are

satisfied [3].

We do not include a Lagrangian multiplier for Z, nor do we penalize

solutions that do not satisfy the positive semidefinite constraint because this

boundary point method will explicitly solve for Z that minimizes the partial

Lagrangian subject to Z � 0.

Guaranteeing convergence can be complicated and is not addressed

thoroughly here. In general, we will ensure convergence if σ is not decreased at

any iteration and the Lagrangian is minimized at the kth iteration such that∣∣∣∣∣∣(∇yL̂)(yk, Zk)
∣∣∣∣∣∣

2
+
∣∣∣∣∣∣(∇ZL̂)(yk, Zk)

∣∣∣∣∣∣
F
≤ εk, (2.4)

where L̂ is the full Lagrangian, including Lagrange multipliers for the positive

semidefinite constraint Z � 0, and {εk} are chosen carefully, e.g.
∑∞

k=1 εk <∞.

See [3] for more details.

Minimizing the augmented Lagrangian with respect to Z � 0 and y

does not provide a solution where the equality constraints are satisfied. Instead,

after the kth minimization of the Lagrangian, it provides a solution where,

according to [23],

Zk + C − AT (yk) ≈ − 1

σ
(X∗ −Xk−1), (2.5)

22

where we have used ∗ to denote the optimal value of variables. To update

the Lagrange multipliers, X, the method takes advantage of (2.5) under the

assumption that we want Xk ≈ X∗ yielding

Xk ← Xk−1 + σ(Zk + C − AT (yk)). (2.6)

2.1.1 Minimizing the augmented Lagrangian

Minimizing L(y, Z;X;σ) to find Z � 0 and y while holding X con-

stant is equivalent to the program

min L(y, Z) = bTy +
σ

2

∣∣∣∣∣∣∣∣Z + C − AT (y) +
1

σ
X

∣∣∣∣∣∣∣∣2
F

(2.7)

s.t. Z � 0. (2.8)

Following the method used in [25], we will use a coordinate descent method

(for which convergence is guaranteed) to solve this convex program.

Holding Z constant, we can minimize (2.7) with respect to y, which

is unconstrained, by solving ∇yL = 0 explicitly. Taking advantage of

[∇y〈AT (y), B〉]i =
∂

∂yi

(
m∑
j=1

yj〈Aj, B〉

)
(2.9)

= 〈Ai, B〉 (2.10)

∇y〈AT (y), B〉 = A(B), (2.11)

we can write

∇yL = b− σA(Z + C − AT (y) +
1

σ
X) = 0. (2.12)

Isolating y yields the following linear system.

A(AT (y)) = A(Z + C +
1

σ
X)− 1

σ
b (2.13)

23

If we hold y constant, minimizing (2.7) with respect to Z � 0 becomes

Z = argminY�0 ||Y −W (y)||F , (2.14)

where we have defined W (y) = AT (y)− C − 1
σ
X. Thus Z is the projection of

W (y) onto the cone of positive semidefinite matrices, denoted

Z = W (y)+ � 0 (2.15)

Vandenberghe and Boyd show that this can be calculated from the eigenvalue

decomposition of W (y) in [5]. If W = QΛQT is the eigenvalue decomposition

of W and Λ = Λ+ + Λ− and Q = Q+ +Q− are a partitioning of the eigenvalue

and eigenvector matrices into columns corresponding to positive and negative

eigenvalues then

W+ = Q+Λ+Q
T
+ � 0 (2.16)

By repeatedly minimizing this convex problem with respect to one

variable and its constraints, then the other and its constraints, i.e. cyclically

updating y and Z according to

A(AT (y)) = A(Z + C +
1

σ
X)− 1

σ
b (2.17)

Z = W (y)+ (2.18)

the pair (y, Z) will converge to the minimizers of the dual Lagrangian. The

optimum values will satisfy both of these equations simultaneously.

2.1.2 Convergence of the minimization of the augmented
Lagrangian

In §2.1 we noted that part of guaranteeing convergence required that,

at the kth iteration of the augmented Lagrangian method, the approximate

24

optimal values of the minimization of the Lagrangian, (yk, Zk), satisfy∣∣∣∣∣∣(∇yL̂)(yk, Zk)
∣∣∣∣∣∣

2
+
∣∣∣∣∣∣(∇ZL̂)(yk, Zk)

∣∣∣∣∣∣
F
≤ εk, (2.19)

where L̂ is the full Lagrangian, including Lagrange multipliers for the positive

semidefinite constraint Z � 0, and {εk} are chosen carefully (see [3]) and at

least satisfy εk → 0. After Zk is updated in the coordinate descent method

described above, we know that (∇ZL̂)(yk, Zk) = 0. Because the semidefinite

constraint does not involve y, we know that ∇yL̂ = ∇yL. Therefore the condi-

tion for convergence should be

∣∣∣∣(∇yL)(yk, Zk)
∣∣∣∣

2
=

∣∣∣∣∣∣∣∣b− σA(Zk + C − AT (yk) +
1

σ
X)

∣∣∣∣∣∣∣∣
2

≤ εk (2.20)

If we define

W− = W −W+ = Q−Λ−Q
T
− � 0 (2.21)

Then we can note that

AT (y)− Z − C − 1

σ
X = W (y)− Z (2.22)

= W (y)−W (y)+ (2.23)

AT (y)− Z − C − 1

σ
X = W (y)− (2.24)

so we can rewrite the convergence criterion as

||b− A(−σW (y)−||2 ≤ εk (2.25)

and note that this is simply a measure of the primal feasibility of −σW (y)−.

25

2.2 Updating Lagrange multipliers; an algorithm

Now that we have established a method for minimizing the augmented

Lagrangian at one step in the process, we can consider the update of X given by

(2.6) after computing the approximate minimizers of the Lagrangian, (yk, Zk)

Xk ← Xk−1 + σ(Zk + C − AT (yk)) (2.26)

= −σW (yk)− (2.27)

where we have taken advantage of (2.24). Note that the stopping criterion

for the minimization of the augmented Lagrangian is equivalent to achieving

approximate primal feasibility for the updated X. Therefore εk is a bound on

the 2-norm of the residual of the primal constraints.

Note also that at each iteration, if we observe that QT
−Q+ is zero

because the eigenvectors are linearly independent,

Xk = −σW (yk)− � 0 (2.28)

Zk = W (yk)+ � 0 (2.29)

〈Xk, Zk〉 = −σtr(Q−Λ−Q
T
−Q+Λ+Q

T
+) = 0. (2.30)

so all of the KKT conditions for the primal-dual pair given in (1.23) are satisfied

except primal and dual feasibility. Thus a natural stopping criterion for an

algorithm based on the augmented Lagrangian method would involve setting

tolerances for the primal and dual infeasibility.

Algorithm 3 shows the boundary point method where we have let

τd and τp denote the desired bounds on the matrix norm and 2-norm of the

residuals of primal and dual feasibility, respectively. This algorithm is called

26

the boundary point method because the variable Z always remains on the

boundary of the cone of positive semidefinite matrices.

Algorithm 3 The boundary point method

Choose σ > 0
k ← 0
Let Xk, Zk = 0
while δd > τd, δp > τp do
k ← k + 1
while δp > εk do

Solve for yk: A(AT (yk)) = A(Zk−1 + C + 1
σ
Xk−1)− 1

σ
b

W ← AT (yk)− C − 1
σ
Xk−1

Zk ← W+

M ← −σW−
δp = ||A(M)− b||2

end while
Xk ←M
δd ←

∣∣∣∣Zk − AT (yk) + C
∣∣∣∣
F

choose εk+1 ≤ εk

increase σ if necessary
end while

2.3 The boundary point method for the maximum independent set
problem

The two most computationally intensive operations in the boundary

point method are updating yk by solving the linear system (2.17) and perform-

ing the eigenvalue decomposition needed to update Zk (2.18), and later Xk.

Even for a general SDP, solving the linear system can be done relatively easily,

as the matrix form of the linear operator A(AT (·)) is constant and positive

definite. One might perform a Cholesky factorization of the matrix form once,

using this to solve for yk each time. Thus the solution for yk grows, at worst,

27

as m2. Note here that the matrix form of A(AT (·)) is in Sn+ and may be dense

for an arbitrary SDP. This may introduce constraints on the size of solvable

problems due to memory constraints as m grows.

When we apply the boundary point method to the maximum inde-

pendent set problem, solving the linear system for yk becomes a very simple

operation as A(AT (yk)) can be represented an elementwise product with yk.

The constraints 〈Ai, X〉 = bi for i = 1, ..., n are used to enforce the equality

constraints given in (1.15), specifically tr(X) = 1 and Xij = 0 for all (i, j) ∈ E.

Clearly the matrixes {Ai}ni=1 share no common nonzero entries so 〈Ai, Aj〉 = 0

for all i 6= j and thus

[
A(AT (y))

]
i

=

[
A

(
n∑
k=1

ykAk

)]
i

(2.31)

=
n∑
k=1

yk 〈Ai, Ak〉 (2.32)

= yi 〈Ai, Ai〉 (2.33)

It is important to note that because the matrix form of A(AT (·)) is diagonal,

the storage requirements for this problem are considerably less than those for

the interior point method and CSDP. Solving the system of equations (2.17) be-

comes an order m operation. The only intensive computation remaining within

a single iteration is the eigenvalue decomposition which grows, at worst, as n3.

Compare this to CSDP, the interior point method discussed in Section 1.5.2,

in which the time for a single iteration grew as m3, where m is usually much

larger than n for any graph. This difference in time for individual iterations is

not as important as it might seem, as often CSDP converges faster than the

boundary point method.

28

Chapter 3 discusses the implementation of the boundary point method

within the branch-and-bound algorithm in C. All of the methods described

therein are aimed at decreasing the time for an eigenvalue decomposition, at

reducing the size of the matrix for the eigenvalue decomposition, or reducing

the number of eigenvalue decompositions that will be computed.

CHAPTER 3

IMPLEMENTATION OF THE BOUNDARY POINT
METHOD FOR THE MIS PROBLEM

Algorithm 3 is based on the augmented Lagrangian method, where

careful choices of εk and σ can guarantee convergence. In practice, however,

such stringent requirements are rarely necessary. Updating X requires very

little computation once the eigenvalue decomposition is complete. If we as-

sume that an update to X is closer to optimality after only one iteration of

the coordinate descent method then, rather than performing several expensive

updates of the (y, Z) pair to achieve a norm of the residual of the primal con-

straints less than εk, we choose to update X after each update of y and Z.

This eliminates the inner loop of the algorithm entirely, while convergence is

still achieved, in practice, for the maximum independent set problem. Some

general SDP problems do not converge, in practice, with this method. We have

not tested general SDP problems extensively, though.

3.1 Forcing dual feasibility

In order for the dual objective value to be a valid bound on the size

of the maximum independent set, the pair (y, Z) must be strictly dual feasible.

To achieve this we can compute Z directly from y using

Z = AT (y)− J. (3.1)

29

30

so that the dual equality constraint is satisfied to within the numerical accuracy

of the computer. Then, to check whether Z is semidefinite, the smallest eigen-

value of Z can be computed. If it is non-negative, then the dual constraints are

satisfied and the dual objective, the element of y corresponding to the primal

tr(X) = 1 constraint (let us denote it by ytr), is a bound on the size of the

maximum independent set. If the smallest eigenvalue is negative, let us denote

it by −α2, we can easily adjust Z to be semidefinite using

Z = Z + α2I. (3.2)

To maintain the dual equality constraint we must also increase ytr by α2. This

results in an increase to the dual objective value of α2. These steps are per-

formed at the end of the BPM algorithm to give a valid bound.

Within the BPM algorithm, we are not concerned with exactly what

this feasible dual objective value is, rather we are concerned with whether that

value is low enough to fathom the current node in the branch-and-bound tree.

If the current (possible infeasible) dual objective value is low enough to fathom

the current node in the branch-and-bound tree (that is, less than the cardinality

of the largest known independent set, best, plus one) we want to check for a

strictly feasible solution that will fathom the node. Z is computed from y with

ytr set to best + 0.99, providing a (y, Z) pair based on the current solution

that, if feasible, will fathom the current node. Checking feasibility requires

only checking that this new Z is positive semidefinite, which is achieved by

attempting to perform a Cholesky decomposition of Z, which will fail if the

matrix is not positive definite.

31

3.2 The eigenvalue decomposition, parallelization

All of the computations performed in algorithm 3 are relatively sim-

ple compared to the eigenvalue decomposition. LAPACK is a linear algebra

package written in Fortran77 that provides, among others, routines that per-

form eigenvalue decompositions on symmetric matrices. Specifically, these are

DSYEV, DSYEVD, DSYEVR, and DSYEVX. All of them are based as much as

possible on the low-level linear algebra routines given by BLAS (Basic Linear

Algebra Subprograms). The boundary point method requires the projection

of a matrix, W (y), onto the cone of positive semidefinite matrices, denoted

W (y)+. As was mentioned before, if W = QΛQT is the eigenvalue decom-

position of W and Λ = Λ+ + Λ− and Q = Q+ + Q− are a partitioning of the

eigenvalue and eigenvector matrices into columns corresponding to positive and

negative eigenvalues then

W+ = Q+Λ+Q
T
+ (3.3)

or, taking advantage of W = W+ +W−,

W+ = W −W− = W −Q−Λ−Q
T
− (3.4)

Thus to find W+ we need either all of the positive eigenvalue-eigenvector pairs,

or all of the negative ones. For this reason, we chose to use one of the two

LAPACK methods, DSYEVX and DSYEVR, that take an interval of real num-

bers and only return the eigenvalue-eigenvector pairs with eigenvalues in that

interval. Thus we can easily compute only the positive eigenvalues or the neg-

ative eigenvalues to reduce computational time. To decide which, the BPM

implementation stores the number of positive eigenvalues found from the last

32

decomposition of W (y). Under the assumption that W (y) and its eigenval-

ues do not drastically change from iteration to iteration, which should be the

case as we approach optimality, we compute the positive eigenvalues if the last

decomposition had more than half negative eigenvalues and vice versa.

Kozin and Deegan investigated the performance of these routines on

multiple-core architectures in [17]. It was noted that many of the algorithms

do not parallelize well because they are heavily dependent on matrix-vector

multiplication, which cannot be parallelized well because of memory bandwidth

issues. Matrix-matrix multiplications, on the other hand, can be efficiently

parallelized. Because our test machine has a multiple core architecture and

DSYEVR is more dependent on matrix-matrix multiplications than DSYEVX,

we chose to use the former for our eigenvalue decompositions.

3.3 Fathoming with previous solutions

In order to fathom a node in the tree (remove its children from the

tree), we need a feasible solution to the dual problem (D) that has an objective

value less than the size of the largest known independent set. Feasibility is

defined by the two constraints in the general SDP

AT (y)− C = Z (3.5)

Z � 0 (3.6)

Note that there are no restrictions on y, so given values of y we could calculate

Z and test to see if it is positive semidefinite. If Z is PSD and the objective

value, bTy in the general SDP, is smaller than the largest independent set we

can fathom the node without having to use the BPM or CSDP method. Most

33

of the computational cost for this check will be in calculating the smallest

eigenvalue of the resulting Z but this is small in comparison with the cost of

the eigenvalue decompositions necessary for the BPM method or the Cholesky

factorization for CSDP.

The general SDP expresses its equality constraints as

〈Ai, X〉 = bi (3.7)

When we consider the SDP form of the Lovász theta problem, we can note

that 2m of the constraints are given by Xij = 0 for all (i, j) ∈ E (this gives

2m constraints because each edge is bidirectional). So we can say that Ak is a

matrix of all zeros except for the (i, j) entry, where (i, j) is the kth edge in an

arbitrary ordering of the edges (including the duplicate reversed edges). Addi-

tionally, bk = 0 for k = 1, ..., 2m. The final constraint is given by diag(X) = 1.

We can say that A2m+1 = I, where I is the identity matrix, and b2m+1 = 1.

The objective value in the dual problem, bTy is then given by the last entry in

y.

To attempt to fathom the node, we need to construct a matrix Z from

(3.5) using a y of our choice. If the resulting matrix Z is PSD, then the node in

the tree is fathomed. The y we chose should correspond to an objective value

less than the lower bound given by best. Thus we choose

y2m+1 < best− |I|, (3.8)

where we subtract the size of the independent set constructed so far, |I|, from

the best known solution to give a lower bound on the size of the maximum

independent set on the subgraph for this node in the search tree.

34

To construct the rest of the matrix Z we need to choose the other

values in y. Operating under the assumption that the subgraph for this node

has not changed drastically from the subgraph of a parent node, we might try

to use the y values from a parent node where the BPM or CSDP method was

applied to its subgraph. The entries in the previous y correspond to edges

in the old subgraph. Because at least one node has been removed from the

ancestor’s subgraph to form the current subgraph, there are fewer edges in the

new subgraph. After the BPM or CSDP is applied, the optimal y is stored as

well as the mapping from the subgraph to the original, full graph. Then at any

node derived from the current node we can construct a mapping from the new,

unbounded subgraph to the old, bounded subgraph and use the stored y values

that still correspond to edges in the current subgraph to construct a matrix Z

with the desired objective value. If Z is PSD, we can quickly fathom the new,

unbounded node.

Rather than storing every y from every node in the branch-and-bound

tree that still has unbounded descendants, we chose to simplify the process by

storing y from only the most recent bound performed. To make this approach

viable, a depth first search must be implemented so that descendant nodes are

considered before any others are bounded.

3.4 A warm start for the BPM method

Beyond assuming that the dual y values will be similar to those of an

ancestor node, we might also assume that the primal X matrix will be similar

as well, see [21] for a detailed discussion of such assumptions. The rows and

columns of X correspond to vertices in the subgraph of the current node. Using

35

the mapping from the last bounded node in the tree to the full graph that is

already stored for use of the ancestor y values, rows and columns can be deleted

from an ancestor X to yield a new X whose rows and columns correspond to

the vertices of the new subgraph. It is well known that deleting corresponding

rows and columns from a positive semidefinite matrix yields another positive

semidefinite matrix. Thus, initializing Z with the zero matrix means that the

KKT conditions

〈X,Z〉 = 0, X � 0, Z � 0 (3.9)

necessary for the BPM method are still satisfied.

This warm start is not feasible for the interior point method, as the

initial solution generated is on the boundary of the positive semidefinite cone

of matrices where the interior point method becomes poorly conditioned. The

interior point method specifically attempts to push solutions away from this

boundary as much as possible.

CHAPTER 4

COMPUTATIONAL RESULTS

All of the code for this project is written in C and compiled us-

ing gcc version 4.2.4. BLAS and LAPACK libraries for C are provided by the

ATLAS package, version 3.8. Source code for the implementation of BPM for

branch and bound is available at http://euler.nmt.edu/~brian/mis bpm.

Source code for CSDP, developed by Brian Borchers, is available through

https://projects.coin-or.org/Csdp. All benchmarks were run on a Dell

490 Workstation with two dual core Intel Xeon 5150 processors and 8 GB of

RAM. The machine’s operating system is Ubuntu linux with kernel version

2.6.24.

The graphs used for benchmarks are from three sources. The first set

is composed of the graphs for the clique benchmarks in the Second DIMACS

Challenge [16], available through

ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/.

We inverted these graphs for use as benchmarks for the maximum independent

set problem. The second set comes from N.J.A. Sloane’s challenge problems

[29]. These graphs arise from coding theory and provide a sample of large

graphs for the maximum independent set problem. The third set was developed

36

37

by Ke Xu at the Beijing University of Aeronautics and Astronautics. It consists

of random graphs designed to have “hidden” solutions and is available through

http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm.

The so called “Benchmarks with Hidden Optimum Solutions for Graph Prob-

lems,” or BHOSLIB, is unique compared to the DIMACS and Sloane graphs in

that the Lovász ϑ-number is the same as the size of the maximum independent

set for each.

4.1 Calculating the Lovász Theta Number

Our first comparison is between CSDP and our implementation of

BPM outside of branch and bound, calculating ϑ for all the graphs from the DI-

MACS benchmark problems, Sloane’s challenge problems, and the BHOSLIB.

Because the interior point method’s (and hence, CSDP’s) most computationally

intensive operation is the solution of a system of m equations, requiring O(m3)

time, we expect that the time to compute the theta number of a graph with

CSDP will be dependent on the number of edges in the graph, m. Similarly, the

boundary point method requires O(n3) time for the eigenvalue decomposition,

so we expect the BPM to be dependent on the number of vertices in the graph,

n. However, we note that these individual operations are performed at each

iteration of the BPM and IPM, so the times may vary considerably depending

on how many iterations are required for the algorithm to converge for a given

graph.

38

For each graph, Table 4.1 lists the number of vertices and edges, as

well as the number of seconds required for BPM and CSDP to converge such

that the 2-norm of the normalized residuals of the primal and dual equality

constraints are less than 10−5. The final column gives the number of edges

divided by the number of vertices in the graph, E/V. Time and memory limits

were placed on the calculations. Graphs requiring more than two hours show “≥

14400” seconds and graphs requiring more than six gigabytes of memory show

“*”. Times in bold correspond to the algorithm that has a clear advantage for

the given graph. Bold times are only given when both algorithms were able to

determine ϑ. Any time that one algorithm is unable to find ϑ due to memory

constraints, the other algorithm holds a clear advantage on this hardware, even

if it was not able to find ϑ in the given time.

39

Table 4.1: CSDP vs. BPM; Calculating the Lovász theta number

Vertices Edges CSDP BPM E/V
Sloane challenge graphs
1dc.64 50 409 0 7 8.2
1dc.128 112 1281 2 13 11.4
1dc.256 238 3583 31 165 15.1
1dc.512 492 9395 469 341 19.1
1dc.1024 1002 23645 7294 1897 23.6
1dc.2048 2024 57853 * ≥ 14400 28.6
1et.64 62 264 0 0 4.3
1et.128 126 672 1 2 5.3
1et.256 254 1664 4 37 6.6
1et.512 510 4032 53 217 7.9
1et.1024 1022 9600 548 3341 9.4
1et.2048 2046 22528 7465 ≥ 14400 11.0
1tc.128 60 210 0 1 3.5
1tc.256 178 952 1 18 5.3
1tc.512 424 2858 18 152 6.7
1tc.1024 926 7484 279 2228 8.1
1tc.2048 1940 18446 4123 ≥ 14400 9.5
1zc.128 60 210 1 1 3.5
1zc.256 238 2632 10 6 11.1
1zc.512 492 6678 133 80 13.6
1zc.1024 1002 16350 2258 859 16.3
1zc.2048 2024 39072 * ≥ 14400 19.3
1zc.4096 4070 91740 * ≥ 14400 22.5
2dc.128 70 1949 6 8 27.8
2dc.256 182 10883 651 82 59.8
2dc.512 420 43413 * 199 103.4
2dc.1024 912 149778 * 1414 164.2
2dc.2048 1914 473507 * ≥ 14400 247.4
Dimacs benchmark graphs
brock200 1 200 5066 50 3 25.3
brock200 2 200 10024 363 3 50.1
brock200 3 200 7852 177 3 39.3
brock200 4 200 6811 137 3 34.1
continued on the next page

40

continued from the previous page
Vertices Edges CSDP BPM E/V

brock400 1 400 20077 3220 17 50.2
brock400 2 400 20014 3199 17 50.0
brock400 3 400 20119 3251 17 50.3
brock400 4 400 20035 2804 17 50.1
brock800 1 800 112095 * 92 140.1
brock800 2 800 111434 * 92 139.3
brock800 3 800 112267 * 93 140.3
brock800 4 800 111957 * 92 139.9
c-fat200-1 200 18366 2172 5 91.8
c-fat200-2 200 16665 1696 28 83.3
c-fat200-5 200 11427 460 9 57.1
c-fat500-1 500 120291 * 88 240.6
c-fat500-2 500 115611 * 87 231.2
c-fat500-5 500 101559 * 265 203.1
c-fat500-10 500 78123 * 352 156.2
hamming6-2 64 192 0 0 3.0
hamming6-4 64 1312 1 0 20.5
hamming8-2 256 1024 1 36 4.0
hamming8-4 256 11776 609 4 46.0
hamming10-2 1024 5120 86 7808 5.0
hamming10-4 1024 89600 * 453 87.5
johnson8-2-4 28 168 0 0 6.0
johnson8-4-4 70 560 0 0 8.0
johnson16-2-4 120 1680 2 0 14.0
johnson32-2-4 496 14880 1010 15 30.0
keller4 171 5100 59 3 29.8
keller5 776 74710 * 120 96.3
keller6 3361 1026582 * ≥ 14400 305.4
MANN a9 45 72 0 0 1.6
MANN a27 378 702 3 58 1.9
MANN a45 1035 1980 49 1724 1.9
MANN a81 3321 6480 1625 ≥ 14400 2.0
p hat300-1 300 33917 * 18 113.1
p hat300-2 300 22922 6014 87 76.4
p hat300-3 300 11460 619 35 38.2
p hat500-1 500 93181 * 49 186.4
continued on the next page

41

continued from the previous page
Vertices Edges CSDP BPM E/V

p hat500-2 500 61804 * 325 123.6
p hat500-3 500 30950 * 138 61.9
p hat700-1 700 183651 * 128 262.4
p hat700-2 700 122922 * 824 175.6
p hat700-3 700 61640 * 486 88.1
p hat1000-1 1000 377247 * 365 377.2
p hat1000-2 1000 254701 * 2661 254.7
p hat1000-3 1000 127754 * 1288 127.8
p hat1500-1 1500 839327 * 1729 559.6
p hat1500-2 1500 555290 * 12433 370.2
p hat1500-3 1500 277006 * 9893 184.7
san200 0.7 1 200 5970 103 31 29.9
san200 0.7 2 200 5970 151 726 29.9
san200 0.9 1 200 1990 5 30 10.0
san200 0.9 2 200 1990 6 30 10.0
san200 0.9 3 200 1990 7 943 10.0
san400 0.5 1 400 39900 * 318 99.8
san400 0.7 1 400 23940 6850 340 59.9
san400 0.7 2 400 23940 6853 304 59.9
san400 0.7 3 400 23940 8195 32 59.9
san400 0.9 1 400 7980 267 345 20.0
san1000 1000 249000 * 921 249.0
sanr200 0.7 200 6032 83 3 30.2
sanr200 0.9 200 2037 5 4 10.2
sanr400 0.5 400 39816 * 15 99.5
sanr400 0.7 400 23931 5477 16 59.8
BHOSLIB benchmark graphs
frb30-15-1 450 17827 2266 49 39.6
frb30-15-2 450 17874 2586 49 39.7
frb30-15-3 450 17809 2552 49 39.6
frb30-15-4 450 17831 2557 48 39.6
frb30-15-5 450 17794 2537 48 39.5
frb35-17-1 595 27856 * 117 46.8
frb35-17-2 595 27847 * 116 46.8
frb35-17-3 595 27931 * 120 46.9
frb35-17-4 595 27842 * 115 46.8
continued on the next page

42

continued from the previous page
Vertices Edges CSDP BPM E/V

frb35-17-5 595 28143 * 119 47.3
frb40-19-1 760 41314 * 260 54.4
frb40-19-2 760 41263 * 266 54.3
frb40-19-3 760 41095 * 263 54.1
frb40-19-4 760 41605 * 263 54.7
frb40-19-5 760 41619 * 269 54.8
frb45-21-1 945 59186 * 560 62.6
frb45-21-2 945 58624 * 553 62.0
frb45-21-3 945 58245 * 551 61.6
frb45-21-4 945 58549 * 552 62.0
frb45-21-5 945 58579 * 553 62.0
frb50-23-1 1150 80072 * 1208 69.6
frb50-23-2 1150 80851 * 1176 70.3
frb50-23-3 1150 81068 * 1216 70.5
frb50-23-4 1150 80258 * 1129 69.8
frb50-23-5 1150 80035 * 1135 69.6
frb53-24-1 1272 94227 * 1823 74.1
frb53-24-2 1272 94289 * 1736 74.1
frb53-24-3 1272 94127 * 1727 74.0
frb53-24-4 1272 94308 * 1788 74.1
frb53-24-5 1272 94226 * 1768 74.1
frb56-25-1 1400 109676 * 2521 78.3
frb56-25-2 1400 109401 * 2471 78.1
frb56-25-3 1400 109379 * 2496 78.1
frb56-25-4 1400 110038 * 2515 78.6
frb56-25-5 1400 109601 * 2682 78.3
frb59-26-1 1534 126555 * 4096 82.5
frb59-26-2 1534 126163 * 4242 82.2
frb59-26-3 1534 126082 * 4002 82.2
frb59-26-4 1534 127011 * 4043 82.8
frb59-26-5 1534 125982 * 4240 82.1

Times listed in seconds,

* denotes a graph that required more than 6 GB of memory

43

From the table, we can see that our implementation of the BPM does

not require more than 6GB of RAM for any of the graphs, while CSDP exceeds

this limit for all of the graphs with more than 30,000 edges (almost a third of

the graphs). This is one of the most important features of the BPM method;

it often requires considerably less memory than interior point methods for the

SDP form of the Lovász ϑ problem. With current hardware limitations, the

BPM allows us to consider larger graphs.

Considering only graphs to which both algorithms could be applied,

the BPM has noticeably smaller running times for most. This is not true for

all of the graphs, though. CSDP performs considerably better than the BPM

on the 1et, 1tc, MANN, and san200 0.9 graphs. These are graphs where the

ratio of edges to vertices is relatively low compared to the other graphs. In

fact, when there was a noticeable difference in times, CSDP converged faster

for all but two of the graphs where both algorithms were successfully applied

and where E/V was less than or equal to 10 (these values of E/V are in bold).

The two exceptions were cases where E/V was still relatively small.

The charts also lend credence to the hypothesis that CSDP’s perfor-

mance is dependent on the number of edges in the graph and the BPM’s on

the number of vertices in the graph. This is further evidenced by the plots

in Figures 4.1 and 4.2. First, we can note that there appears to be little

correlation between times for CSDP and the number of vertices in the graph

and no correlation between times for the BPM and the number of edges in the

graph. Some correlation between the time for BPM and the number of edges

can be seen on a subset of the graphs. This is because the number of edges in

44

0 200 400 600 800 1000 1200 1400 1600
0

2000

4000

6000

8000

10000

12000

14000

vertices

tim
e

fo
r B

PM
 (s

ec
on

ds
)

0 1 2 3 4 5 6 7 8 9
x 105

0

2000

4000

6000

8000

10000

12000

14000

edges

tim
e

fo
r B

PM
 (s

ec
on

ds
)

Figure 4.1: Plots showing the time for BPM to compute ϑ versus the number
of vertices and versus the number of edges.

45

0 500 1000 1500 2000 2500 3000 3500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

vertices

tim
e

fo
r C

SD
P

(s
ec

on
ds

)

0 0.5 1 1.5 2 2.5
x 104

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

edges

tim
e

fo
r C

SD
P

(s
ec

on
ds

)

Figure 4.2: Plots showing the time for CSDP to compute ϑ versus the number
of vertices and versus the number of edges.

46

the BHOSLIB problems is directly related to the number of vertices. On the

other hand, we can see that the times for CSDP increase with the number of

edges and that the times for the BPM increase with the number of vertices,

overall. As expected, because only the time for individual iterations of these

algorithms are bounded by cubic functions of m and n, exceptions to these de-

pendencies exist. Some graphs require more iterations to achieve convergence

than others. Note that the BPM, especially, has varying performance in graphs

with the same number of vertices, although the most difficult graphs still seem

to require more time with increasing vertices.

To determine if these relationships are indeed polynomial, Figure 4.3

shows the plots of the BPM time versus vertices and CSDP time versus edges on

log-log plots. We can see from these that the time for CSDP has a very nearly

cubic relationship with the number of edges in the graph. The time for the BPM

does not clearly show a polynomial dependence on the number of vertices in

the graph, however we can still see some relationship. The differences seen

here might be explained by the variance in the number of iterations required

for each algorithm to converge. Whereas CSDP required at least five iterations

to converge and no more than 13 iterations for all graphs considered here, the

BPM required at least 40 iterations and at most 72,000 iterations to converge.

Even though individual iterations are bounded by cubic functions of the number

of vertices, we might expect to see a large variation in the time for convergence

of the BPM due to the high variability in the number of iterations required.

47

101 102 103 104
100

101

102

103

104

105

vertices

tim
e

fo
r B

PM
 (s

ec
on

ds
)

102 103 104 105
100

101

102

103

104

edges

tim
e

fo
r C

SD
P

(s
ec

on
ds

)

Figure 4.3: Log-log plots showing the time for BPM to compute ϑ versus the
number of vertices and for CSDP to compute ϑ versus the number of edges.

48

4.2 Traversing the branch-and-bound tree

Our second comparison is between CSDP and the BPM (both with

and without the use of a warm start) inside of the branch-and-bound algorithm.

Table 4.2 shows times for each version of the branch-and-bound algorithm to

completely traverse the branch-and-bound tree for the given graph. Times

listed in bold are those for which CSDP or the BPM showed a significant

benefit. Only graphs from the DIMACS benchmarks and the BHOSLIB are

considered here. For each graph, the initial lower bound on the size of the

maximum independent set is listed. The size of a maximum independent set

is known for each of these graphs, but this is not necessarily the initial bound

provided. A smaller bound might be provided in order to increase the running

time of branch and bound, or a larger bound might be provided in order to

decrease the running time. Bounds are chosen to keep running times reasonable

and force the algorithm to consider numerous nodes in the tree so that we can

observe the effects of using a warm start for the BPM.

The final column of Table 4.2 is the time to traverse the tree using

the BPM with a warm start divided by the time to traverse the tree without a

warm start. Values less than or equal to 0.9, where the warm start significantly

reduced the time to traverse the tree, are listed in bold and values greater than

or equal to 1.1, where the warm start was detrimental to the running time, are

listed in italics.

49

Table 4.2: CSDP vs. BPM; Traversing the branch-and-bound tree

bound CSDP BPM warm BPM warm BPM
BPM

Sloane challenge graphs
brock200 1 21 1432 183 173 0.95
brock200 2 0 2936 19 14 0.74
brock200 3 0 1673 53 56 1.06
brock200 4 0 1466 75 69 0.92
brock400 1 29 ≥ 7200 ≥ 7200 ≥ 7200
brock400 2 31 ≥ 7200 2117 2084 0.98
brock400 3 31 ≥ 7200 1913 1925 1.01
brock400 4 33 ≥ 7200 774 743 0.96
brock800 1 40 * 1129 1498 1.33
brock800 2 40 * 1663 2176 1.31
brock800 3 40 * 1452 1868 1.29
brock800 4 40 * 1605 2044 1.27
c-fat200-1 0 2145 5 5 1.00
c-fat200-2 0 1617 18 18 1.00
c-fat200-5 0 1151 13 13 1.00
c-fat500-1 12 * 91 91 1.00
c-fat500-2 24 * 88 88 1.00
c-fat500-5 62 * 203 202 1.00
c-fat500-10 124 * 195 195 1.00
hamming6-4 0 2 1 1 1.00
hamming8-2 0 1 31 31 1.00
hamming8-4 0 598 4 4 1.00
hamming10-2 511 83 4709 3074 0.65
hamming10-4 50 * 2636 1364 0.52
johnson8-2-4 0 0 0 0
johnson8-4-4 0 0 0 0
johnson16-2-4 0 2 0 0
johnson32-2-4 0 995 15 15 1.00
keller4 0 455 25 24 0.96
keller5 30 * 5157 3694 0.72
keller6 62 * ≥ 7200 ≥ 7200
MANN a9 0 0 0 0
MANN a27 126 153 964 980 1.02
continued on the next page

50

continued from the previous page
bound CSDP BPM warm BPM warm BPM

BPM

MANN a45 355 119 2636 2657 1.01
p hat300-1 0 * 80 54 0.68
p hat300-2 0 ≥ 7200 134 134 1.00
p hat300-3 36 ≥ 7200 563 460 0.82
p hat500-1 9 * 773 586 0.76
p hat500-2 36 * 960 813 0.85
p hat500-3 56 * 470 403 0.86
p hat700-1 14 * 367 411 1.12
p hat700-2 48 * 1169 987 0.84
p hat700-3 71 * 989 728 0.74
p hat1000-1 16 * 3960 4133 1.04
p hat1000-2 54 * 4015 3394 0.85
p hat1000-3 83 * 2560 2014 0.79
p hat1500-1 21 * ≥ 7200 ≥ 7200
p hat1500-2 76 * ≥ 7200 ≥ 7200
p hat1500-3 114 * ≥ 7200 ≥ 7200
san200 0.7 1 0 102 19 19 1.00
san200 0.7 2 0 149 36 36 1.00
san200 0.9 1 0 5 17 17 1.00
san200 0.9 2 0 6 18 18 1.00
san200 0.9 3 0 8 27 27 1.00
san400 0.5 1 0 * 170 168 0.99
san400 0.7 1 0 6767 134 131 0.98
san400 0.7 2 0 6779 143 142 0.99
san400 0.7 3 20 ≥ 7200 704 643 0.91
san400 0.9 1 99 458 173 167 0.97
san1000 13 * 1192 1160 0.97
sanr200 0.7 0 1389 110 102 0.93
sanr200 0.9 42 1799 1795 1788 1.00
sanr400 0.5 13 * 708 730 1.03
sanr400 0.7 25 ≥ 7200 2773 2500 0.90
BHOSLIB benchmark graphs
frb30-15-1 29 ≥ 28800 28587 24462 0.86
frb30-15-2 29 ≥ 28800 4236 3504 0.83
frb30-15-3 29 ≥ 28800 194 169 0.87
frb30-15-4 29 ≥ 28800 ≥ 28800 ≥ 28800
continued on the next page

51

continued from the previous page
bound CSDP BPM warm BPM warm BPM

BPM

frb30-15-5 29 ≥ 28800 5499 4556 0.83

Times listed in seconds,

* denotes a graph that required more than 6 GB of memory

4.2.1 The BPM versus CSDP

Comparing the times for the branch-and-bound algorithm in Table

4.2 using CSDP with those using the BPM shows that the graphs where a

significant benefit is seen with one bounding method over another are exactly

the same as those seen in Table 4.1. This seems to imply that the choice of using

BPM or CSDP has no large effect on the branch-and-bound tree, only on the

time required for individual bounds within the algorithm. We can investigate

this hypothesis by examining the number of nodes in the search tree that are

processed within the branch-and-bound algorithm. Table 4.3 shows this for all

graphs that branch-and-bound was able to search the entire tree within the

memory and time constraints using both BPM and CSDP.

52

Table 4.3: CSDP vs. BPM; Number of nodes processed in the branch-and-
bound search tree

CSDP BPM
brock200 1 1863 1733
brock200 2 267 223
brock200 3 533 601
brock200 4 749 745
c-fat200-1 3 3
c-fat200-2 3 3*
c-fat200-5 15 11
hamming6-2 3 3
hamming6-4 23 23
hamming8-2 3 3*
hamming8-4 3 3
hamming10-2 3 63*
johnson8-2-4 3 3
johnson8-4-4 3 3
johnson16-2-4 3 3
johnson32-2-4 3 3
keller4 191 203
MANN a9 11 11
MANN a27 4871 13457
MANN a45 3 3
san200 0.7 1 9 9*
san200 0.7 2 27 29*
san200 0.9 1 13 11*
san200 0.9 2 15 17*
san200 0.9 3 17 21*
san400 0.7 1 11 15*
san400 0.7 2 41 55*
san400 0.9 1 23 25*
sanr200 0.7 1173 1183
sanr200 0.9 7397 9913

A * denotes a case where the initial calculation of ϑ was truncated

before achieving the desired convergence when using the BPM

53

For most of the graphs, the number of nodes processed is nearly the same using

BPM and CSDP. Notable exceptions are for hamming10-2 and MANN a27.

In hamming10-2, the difference can be attributed to a flaw in the

BPM method, as implemented here. A limit on the number of iterations used

for any single bound is enforced within the branch-and-bound algorithm for

both CSDP and the BPM . This limit is meant to avoid spending too much

time on any single bound. However, when this limit is reached while bounding

the root node in the search tree, problems may arise. In §1.3.1 we discussed

not calculating ϑ as a bound if a rough estimate of the bound implied that

there was no way to fathom the current node by calculating ϑ. The estimate,

however, depends on a relatively precise value of ϑ for some parent node in

the search tree. For this reason, ϑ is always calculated to full tolerance for the

root node. If the maximum iterations is reached, a poor estimate of ϑ may

be given and several levels of the search tree may be unnecessarily skipped,

greatly increasing the size of the search tree. This is a simple problem to

fix, perhaps the constraint on iterations could be ignored for the root node,

but it exemplifies the branch-and-bound algorithm’s high sensitivity to such

decisions.

4.2.2 The BPM with and without a warm start

The leftmost column of Table 4.2 shows the fraction of time used for

the branch-and-bound algorithm when a warm start, as discussed in §3.4, is

implemented. Because each of these benchmarks were run only once, some

variation in the running times should be expected (the computer used for the

benchmarks was not solely dedicated to these tests). Arbitrarily, a significance

54

of a 10% increase or decrease has been noted with italicized and bold values,

respectively. Out of a total of 59 graphs for which the search tree was fully

traversed in the alloted time, 36 had no significant change, 18 had decreased

times with the warm start, and 5 had increased times. In the 18 that had

reduced times, in general the warm start reduced the number of iterations (and

time) required for each calculation of ϑ, rarely changing the search tree itself. In

the 5 with increased times, 4 were from the brock800 graphs. For these graphs,

the warm start increased the number of iterations (and time) needed for many

of the calculations of ϑ, but did not significantly change the search tree. In

p hat700-1, use of the warm start actually did reduce the number of iterations

needed to calculate ϑ, but a difference in choice of which vertex to branch on

resulted in needing to traverse two levels deeper into the branch-and-bound

search tree.

4.2.3 The BPM with and without attempting to fathom
using parent y-values

For all of the graphs listed in Table 4.2, the branch-and-bound algo-

rithm was applied using an additional modification of the BPM. As discussed

in §3.3, the y-values from parent nodes in the search tree were used in an at-

tempt to fathom the current node without using the BPM. In all cases, the Z

constructed from the dual equality constraints (with an objective value that

would fathom the current node) was not positive semidefinite, hence no nodes

were fathomed using this approach.

CHAPTER 5

CONCLUSIONS

In applying the branch-and-bound algorithm to the maximum inde-

pendent set problem, there are many choices for how to bound the size of

the maximum independent set from above. In this thesis, we have considered

only the SDP form of the Lovász ϑ number. We compared the benefits and

detriments of solving this SDP using the boundary point method, developed

by Povh et al. [25], with those when using the more common interior point

method.

For a general SDP, both methods may run into similar memory con-

straints as the size of the graph increases, as both require storage for at least

one m by m matrix (where m is the number of edges in the graph). But,

when applied to the SDP form ϑ, the m by m matrix becomes diagonal, and

the memory requirements for the boundary point method are greatly reduced.

The largest matrix required is then an n by n matrix, where n is the number

of vertices in the graph and m� n for most graphs. Thus the boundary point

method allows us to consider graphs larger than an interior point method can

when restrictions from current computing hardware are considered.

On graphs where both methods could be applied, neither method

was shown to always calculate ϑ faster than the other. Data presented in §4.1

showed that the time for the interior point method to converge is dependent

55

56

on m (an individual iteration requires O(m3) time), while the time for the

boundary point method to converge is dependent on n (an individual iteration

requires O(n3) time). Based on the results given here for the implementa-

tions of the BPM and IPM used, a rule of thumb was presented based on the

fraction m/n. When m/n > 10, the boundary point method appeared to con-

verge faster, and when m/n < 10, CSDP (based on the interior point method)

appeared to converge faster.

Within the branch-and-bound algorithm, the choice of the method

to solve the SDP did not seem to have a large effect on the search tree. In

most cases, the number of nodes considered in the tree was independent of this

choice. Thus, the method that computed a single ϑ value faster for the given

graph tended to traverse the search tree faster.

In an attempt to improve the boundary point method within the

branch-and-bound algorithm, two modifications were made based on the primal

(X) and dual (y,Z) variables obtained at parent nodes in the search tree. First,

using y-values from a parent node, we constructed a Z matrix that satisfied

the dual equality constraints and had a dual-objective value that would fathom

the current node in the search tree. If this Z could be shown to be positive

semidefinite, then the (y, Z) pair would be dual feasible and we could fathom

the current node without computing ϑ. For the benchmark graphs considered

here, all of the attempts to fathom a node based on this method failed. We

can conclude that this modification rarely, if ever, reduces running time for the

branch-and-bound algorithm. Second, based on the work of Mitchell in [21], we

attempted to use X-values from a parent node as a warm start for the BPM.

57

This modification had more positive results. In most cases, using the warm

start resulted in little change to the running time for the branch-and-bound

algorithm, but in many it showed a substantial decrease in the time required

to compute individual ϑ values. We must note also that, for some graphs, this

modification resulted in an increased time for calculating ϑ.

Overall, it appears that we can make several general conclusions based

on the results presented here. First, the BPM allows us to calculate ϑ for much

larger graphs than does the IPM. Second, for graphs that both methods can

calculate ϑ, we have constructed a rule of thumb that allows us to decide

which method will require less computational time. And third, it seems that

the performance of BPM was improved within the branch-and-bound algorithm

through the use of a warm start.

5.1 Further Work

We considered only a small set of benchmark graphs for the results

presented here. In order to confirm some of the conclusions made above, a wider

variety of graphs should be considered. We would want to test the hypothesis

that the value m/n can be used to predict whether the BPM or the IPM

will calculate ϑ faster as well as the hypothesis that the warm start improves

running times for the BPM. Additionally, we might attempt to examine specific

properties of the graphs for which the warm start increases running times in

an attempt to decide when the warm start will be beneficial.

The largest benefit to the BPM with respect to the MIS problem is

probably its ability to calculate ϑ for much larger graphs than the IPM. This

58

should allow us to confirm known independent sets for some large graphs as

being maximum (or find larger independent sets). The Sloane challenge graphs

presented in [29] are an excellent example of some large graphs for which the

size of a maximum independent set has yet to be confirmed. With the BPM

presented here, we are able to begin traversing the branch-and-bound search

tree for these graphs. All that is required is the time to completely traverse the

tree. Unfortunately, for many of these graphs, ϑ does not provide a very tight

bound and the search trees can become quite large. On the computer that was

used for benchmarks in this paper, we have estimated that traversing the tree

for one of the smaller Sloane graphs with an unconfirmed MIS size might take

weeks. This leads us to consider methods of parallelizing the process.

Unfortunately, the boundary point method does not parallelize very

well. Its most computationally demanding operation is an eigenvector decom-

position, which consists largely of matrix-vector operations. While these opera-

tions can be parallelized, memory bandwidth quickly becomes a limiting factor

on current hardware. A more effective way to parallelize will almost certainly

be to parallelize the branch-and-bound tree itself. The branch-and-bound al-

gorithm parallelized over distributed memory systems very well by distributing

individual calculations of the bounds to individual processors. Parallel branch-

and-bound algorithms have provided solutions to some notoriously difficult

combinatorial optimization problems in the past decade and development of

these algorithms has been extensive, see [30, 32]. Combining the BPM’s ability

to consider much larger graphs than the IPM with these parallel algorithms

should allow us to confirm the size of a maximum independent set for many of

the remaining Sloane graphs.

Bibliography

[1] Farid Alizadeh, Jean-Pierre A. Haeberly, and Michael L. Overton. Primal-

dual interior-point methods for semidefinite programming: convergence

rates, stability and numerical results. SIAM J. Optimization, 8(3):746–

768, August 1998.

[2] L. Babel. A fast algorithm for the maximum weight clique problem. Com-

puting, 52(1):31–38, March 1994.

[3] Dimitri P. Bertsekas. Constrained Optimization and Lagrange Multiplier

Methods. Computer Science and Applied Mathematics. Academic Press,

Inc., New York, NY, 1982.

[4] Immanuel M. Bomze, Marco Budnich, Panos M. Pardalos, and Marcello

Pelillo. The maximum clique problem. In D.-Z. Du and P.M. Pardalos,

editors, Handbook of Combinatorial Optimization: Supplemental Volume

A, pages 1–74. Kluwer Academic Publications, 1999.

[5] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Com-

bridge University Press, Cambridge, United Kingdom, March 2004.

[6] Etienne de Klerk. Aspects of Semidefinite Programming: Interior Point

Algorithms and Selected Applications, volume 65 of Applied Optimization.

Kluwer Academic Publications, Dordecht, The Netherlands, 2002.

59

[7] Igor Dukanovic and Franz Rendl. Semidefinite programming relaxations

for graph coloring and maximal clique problems. Mathematical Program-

ming, 109(2-3):345–365, March 2007.

[8] Torsren Fahle. Simple and fast: Improving a branch-and-bound algorithm

for maximum clique. In Algorithms — ESA 2002, volume 2461/2002 of

Lecture Notes in Computer Science. Springer Berlin/Heidelberg, 2002.

[9] Torsten Fahle. Cost based filtering vs. upper bounds for maximum clique.

In CP-AI-OR ’02 Workshop. Le Croisic/France, 2002.

[10] Mituhiro Fukuda, Masakazu Kojima, and Masayuki Shida. Lagrangian

dual interior-point methods for semidefinite programs. SIAM J. Opti-

mization, 12(4):1007–1031, 2002.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-completeness. WH Freeman San Francisco, 1979.

[12] Michel X. Goemans. Semidefinite programming in combinatorial optimiza-

tion. Mathematical Programming, 79(1-3):143–161, October 1997.

[13] Gerald Gruber and Franz Rendl. Computational experience with stable

set relaxations. SIAM J. Optimization, 13(4):1014–1028, 2003.

[14] Neboǰsa Gvozdenović and Monique Laurent. Semidefinite bounds for the

stability number of a graph via sums of squares of polynomials. Mathe-

matical Programming, 110(1):145–173, 2007.

60

[15] Christoph Helmberg, Franz Rendl, Robert J. Vanderbei, and Henry

Wolkowicz. An interior-point method for semidefinite programming. SIAM

J. Optimization, 6:342–361, 1996.

[16] David S. Johnson and Michael A. Trick, editors. Cliques, Coloring, and

Satisfiability, volume 26 of DIMACS Series in Discrete Mathematics and

Theoretical Computer Science. American Mathematical Society, Provi-

dence, RI, 1996.

[17] Igor N. Kozin and Miles J. Deegan. A study of the performance of lapack

symmetric matrix diagonalizers on multi-core architectures. Technical re-

port, Science and Technology Facilities Council, Warrington, UK, 2007.

[18] László Lovász. On the Shannon capacity of a graph. IEEE Transactions

on Information Theory, 25(1):1–7, January 1979.

[19] László Lovász. An Algorithmic Theory of Numbers, Graphs, and Convex-

ity. Society for Industrial Mathematics, 1986.

[20] László Lovász and Alexander Schrijver. Cones of matrices and set-

functions and 0-1 optimization. SIAM J. Optimization, 1(2):166–190,

1991.

[21] John E. Mitchell. Restarting after branching in the SDP approach to max-

cut and similar combinatorial optimization problems. Journal of Comban-

itorial Optimization, 5(2):151–166, June 2001.

[22] Renato D. C. Monteiro. First- and second-order methods for semidefinite

programming. Mathematical Programming, 97(1-2):209–244, 2003.

61

[23] Jorge Nocedal and Wright Stephen J. Numerical Optimization. Springer

Science+Business Media, Inc., New York, NY, 1999.

[24] P. M. Pardalos and J. Xue. The maximum clique problem. Journal of

Global Optimization, 4(3):301–328, 1994.

[25] J. Povh, F. Rendl, and A. Wiegele. A boundary point method to solve

semidefinite programs. Computing, 78(3):277–286, November 2006.

[26] Jean-Charles Régin. Using constraint programming to solve the maximum

clique problem. In Principles and Practice of Constraint Programming –

CP 2003, volume 2833/2003 of Lecture Notes in Computer Science, pages

634–648. Springer Berlin/Heidelberg, 2003.

[27] Silvia Richter, Malte Helmert, and Charles Gretton. A stochastic local

search approach to vertex cover. In KI 2007: Advances in Artificial In-

telligence, volume 4667/2007 of Lecture Notes in Computer Science, pages

412–426. Springer Berlin/Heidelberg, 2007.

[28] Alexander Schrijver. A comparison of the delsarte and lovász bounds.

Information Theory, IEEE Transactions on, 25(4):425–429, 1979.

[29] N. J. A. Sloane. Challenge problems: Independent sets in graphs.

http://www.research.att.com/˜njas/doc/graphs.html, July 2005.

[30] El-Ghazali Talbi, editor. Parallel Combinatorial Optimization. Wiley-

Interscience, Hoboken, New Jersey, 2006.

62

[31] Etsuji Tomita and Toshikatsu Kameda. An efficient branch-and-bound

algorithm for finding a maximum clique with computational experiments.

Journal of Global Optimization, 37(1):95–111, January 2007.

[32] W.J. van Hoeve. Parallel branch-and-bound algorithms using semidefi-

nite programming relaxation for the independent set problem. Technical

report, University of Twente, October 2000.

[33] E. Alper Yildirim and Xiaofei Fan-Orzechowski. On extracting maximum

stable sets in perfect graphs using Lovász’s theta function. Computational

Optimization and Applications, 33(2-3):229–247, 2006.

63

