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Abstract

Cutting plane methods require the solution of a sequence of linear programs�
where the solution to one provides a warm start to the next� A cutting plane
algorithm for solving the linear ordering problem is described� This algorithm
uses the primal�dual interior point method to solve the linear programming
relaxations� A point which is a good warm start for a simplex�based cutting
plane algorithm is generally not a good starting point for an interior point
method� Techniques used to improve the warm start include attempting to
identify cutting planes early and storing an old feasible point� which is used
to help recenter when cutting planes are added� Computational results are de�
scribed for some real�world problems� the algorithm appears to be competitive
with a simplex�based cutting plane algorithm�

�Research partially supported by ONR Grant number N���������J������
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� Introduction

Currently� almost all approaches to solving integer programming problems with linear
programming methodology use the simplex method to solve the linear programs�
There have been several notable successes with such algorithms the most successful
methods for solving traveling salesman problems are LP�based �see� for example� ���
���� Within the last eight years� interior point methods have become accepted as
powerful tools for solving linear programming problems� It appears that interior point
methods may well solve large linear programs substantially faster than the simplex
method �see� for example� ����� A natural question� therefore� is whether interior point
methods can be successfully used to solve integer programming problems�

The linear ordering problem is an NP �hard combinatorial optimization problem
which has many real�world applications� including the triangulation of input�output
matrices in economics� The polyhedral structure of the problem has been investigated
by Gr�otschel� J�unger� and Reinelt ��� �� ��� They described a simplex�based cutting
plane algorithm for solving the linear ordering problem and were able to solve sets of
European Community and �West� German input�output tables� They showed that
almost all of these problems could be solved using just simple bounds and ��dicycle
inequalities� In this paper� we develop an interior point cutting plane algorithm
which we use to solve this real�world test set of linear ordering problems� in times
comparable to those obtained by Gr�otschel et al� This is a further development of
the work described in �	�� We describe the linear ordering problem in Section �� Our
computational results are contained in Section ��

Let S be the convex hull of the set of feasible integer points� In a traditional
cutting plane method� the linear programming relaxation of the problem is solved
to optimality using the simplex algorithm� if the optimal solution �x is integer� then
we are done otherwise �x can be separated from S� an extra constraint �or cutting
plane� added to the relaxation and the process repeated� The extra constraint takes
the form aTk x � bk this constraint is satis�ed by all points in S but violated by �x�
The recent success of cutting plane methods has come about with the use of facet�
de�ning inequalities� which give proper faces of maximal dimension of the convex
hull of the set of feasible integer points �see� for example� ��� 
� �� �� ��� ���� We
use an interior point method in place of the simplex algorithm� We usually do not
solve the relaxation to optimality� but attempt to �nd cutting planes before reaching
optimality� This is usually possible with an interior point method in fact� it is more
attractive with an interior point method than with the simplex method because the
interior point method gets close to optimality quickly� whereas the simplex method
may pivot a vital element into the basis on the last iteration�

The di�culty with using an interior point method in a cutting plane algorithm is
that the solution to one relaxation is usually not a good starting point for an interior
point method� because it is close to the boundary of the feasible region� Thus� it is
usually necessary to attempt to stop working on the current relaxation before it is
solved completely to optimality� the earlier we are able to �nd good cutting planes�
the better the initial solution to the next relaxation� Early termination obviously
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reduces the number of iterations spent solving the current relaxation in addition� it
reduces the number of iterations spent solving the next relaxation� because the initial
point to the next relaxation is more centered� There are two potential disadvantages
from trying to �nd cutting planes early� if the search for cutting planes is unsuccessful�
we have wasted time secondly� it may well be that super�uous constraints are added�
with the result that the algorithm requires extra iterations and extra stages of adding
cutting planes� We describe our cutting plane algorithm in detail in Section �� The
primal�dual interior point method which we use to solve the individual relaxations is
described in Section ��

Usually� cutting plane methods are not su�cient by themselves to solve an inte�
ger programming problem and are often embedded in branch�and�bound algorithms�
They can either be used as a preconditioner to branch�and�bound� or they can be
used at each node of the branch�and�bound tree �such a method is called a branch�
and�cut algorithm�� In ����� we have described a branch�and�bound algorithm which
uses an interior point algorithm to solve the subproblems at each node of the tree�
The computational performance of this algorithm has been encouraging� with run�
times comparable to those obtained by OSL ���� on some problems� One of the major
di�culties in comparing our �home�built� branch�and�bound code with OSL is that
OSL has very sophisticated procedures for determining the next node� so it exam�
ines fewer subproblems� it generates better upper bounds� and it can prune nodes
by bound more quickly� To embed our cutting plane method in a branch�and�bound
algorithm� we could either use the method described in ����� or we could switch to a
simplex method for the branch�and�bound aspects� by using some method to round
the interior solution to a basic feasible solution �such rounding procedures are dis�
cussed in� for example� ���� ����� For an example of an algorithm which uses a mixture
of interior point methods and the simplex method� see Bixby et al� ����� They use
a column generation method to solve a large crew�scheduling problem� using interior
point methods to solve the �rst few relaxations and then switching to the simplex
method for the �nal few�

Previous work on using interior point methods to solve integer programming prob�
lems and on the related column generation problem includes the following� The �rst
papers in this area were those by Go�n and Vial ���� �see also ��	��� who described
a column generation method for solving nonsmooth optimization problems� and by
Mitchell and Todd ����� who gave a cutting plane algorithm for solving matching
problems� These papers described projective algorithms and they demonstrated the
viability of the approach by showing that the number of iterations necessary at each
stage of the algorithm was indeed less than that required to solve each relaxation
completely� Kaliski and Ye ��
� describe a potential reduction algorithm for column
generation� Their algorithm makes heavy use of column deletion� so the current con�
straint matrix is usually almost square� They obtained good run times for solving
transportation problems and also� in a subsequent paper� for solving crew scheduling
problems� Their algorithm is based on an earlier one of Dantzig and Ye ���� which
is polynomial in the total number of columns� Resende and Veiga ���� described an
application of the dual a�ne algorithm to network �ow problems� They applied the
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algorithm to the full set of columns and achieved runtimes comparable with those for
the simplex based algorithm NETFLO ����� They used a preconditioned conjugate
gradient method to calculate the projections� with a preconditioner based upon the
graphical structure of the problem and the current point� The performance of the
interior point code� relative to NETFLO� improves as problem size increases� Den
Hertog et al� ���� described a simple primal�dual barrier function column generation
algorithm� They showed that if a column is added whenever the corresponding dual
slack becomes almost violated� then the algorithm is polynomial in the total number
of variables� Atkinson and Vaidya ���� described a primal�dual algorithm for con�
vex programming problems which uses column generation� Their algorithm drops
constraints which are no longer important when it adds constraints� it adds relaxed
versions of the constraints� a constraint may well be dropped and later added in
a tighter form� One consequence of their work is that the feasibility problem can
be solved in polynomial time if the separation problem can� The paper by Lustig
et al� ���� looks at the related problem of warm starting an interior point method�
They experimented on the problem STAIR from the Netlib test suite� solving the
initial problem� modifying the problem in a manner that makes sense in terms of
the original model� and resolving� When warm starting� they increased all variables
smaller than a given tolerance� They showed that they were able to exploit the warm
start and solve the modi�ed problem in a small number of iterations� Karmarkar et
al� ���� developed an interior point method to solve some hard integer programming
problems in a novel way� They use a potential reduction algorithm which they apply
to a non�convex quadratic programming problem that is equivalent to the integer
programming problem�

Notation�

The vectors x� s� y� w� z� b� c� and u and the matrix A refer to the current relaxation

min cTx max bTy � uTw
s�t� Ax � b �P � s�t� ATy � z � w � c �D�

x� s � u z�w � �
x� s � �

A is an m � n matrix� x� s� w� z� c� and u are n�vectors and y and b are m�vectors�
We use �m and �n to denote upper bounds on m and n� We use e to denote a vector of
ones of an appropriate dimension� If a small letter �for example� x� denotes a vector
the corresponding capital letter �for example� X� denotes a diagonal matrix whose
diagonal entries are the components of the vector�

� The Linear Ordering Problem

The linear ordering problem is a combinatorial optimization problem with a wide
variety of applications� such as triangulation of input�output matrices� archeologi�
cal seriation� minimizing total weighted completion time in one�machine scheduling�
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and aggregation of individual preferences� The linear ordering problem is NP�hard
�Karp ��	��� and a complete description of its facets is not known� The facet structure
of the polytope associated with the linear ordering problem has been investigated by
Gr�otschel� J�unger and Reinelt ��� �� ���
Before de�ning the linear ordering problem� we need to de�ne some terms from

graph theory� A graph G � �V�E� consists of a �nite� nonempty set of vertices V
together with a set of edges E where each element e�E is de�ned as an unordered
pair of vertices i and j in V  we write e � ij these two vertices are then adjacent
and are called the endvertices of e� We assume that G is a simple graph� that is� it
contains no loops of the form e � ii and no parallel edges �two edges connecting the
same pair of vertices�� A directed graph or digraph D � �V�A� consists of a nonempty
set of vertices V together with a �nite set of arcs A that are ordered pairs of elements
of V � If G � �V�E� is a graph� a digraph D � �V�A� is called an orientation of G if�
whenever ij�E� A contains arc �i� j� or arc �j� i� but not both� and all arcs of A arise
in this way�
A set of arcs P � f�v�� v��� �v�� v��� � � � � �vk��� vk���� �vk��� vk�g in D � �V�A� with

vi �� vj for i �� j is called a �v�� vk��dipath of length k � �� If P is a �v�� vk��dipath
and �vk� v�� � A� C � P � f�vk� v��g is a dicycle of length k or k�dicycle� A digraph
D � �V�A� that contains no dicycle is called acyclic�
A digraph D is called complete if A contains both of the arcs �i� j� and �j� i� for

every pair i� j of vertices in V � Up to isomorphism� there is only one complete digraph
on p vertices  let Dp � �Vp� Ap� denote this digraph�
A tournament is a digraph D � �V�A� such that for every two vertices i and

j� A contains exactly one of the two arcs �i� j� and �j� i�  thus a tournament is
an orientation of the complete �undirected� graph Kp� Every acyclic tournament
corresponds to a permutation or ordering of the vertices of the graph� and vice versa�
Solution of the linear ordering problem requires �nding the �best� acyclic tournament�
We now de�ne the linear ordering problem� A linear ordering �or permutation� of

a �nite set V with jV j � p is a bijective mapping � � f�� �� � � � � pg � V � If i� j � V
and ����i� � ����j�� we say that i is before j� For every pair of vertices i� j � V we
associate values gij and gji which correspond to the costs from having i before j and
j before i respectively� Then the total value of a linear ordering is given byX

����i������j�

gij �

Given a linear ordering of the vertices V of a digraph� the arc set f�i� j� � ����i� �
����j�g de�nes an acyclic tournament on the digraph� and similarly any acyclic tour�
nament on a digraph induces a linear ordering on the vertices V � This graph theoret�
ical interpretation can be used to de�ne an instance of the linear ordering problem
as follows�

Given a complete digraph Dp � �Vp� Ap� with arc weights gij for all edges
�i� j� � Ap� �nd an acyclic tournament �Vp� T � in Dp such that

g�T � ��
X

�i�j��T

gij
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is minimized�

We now formulate the linear ordering problem in polyhedral terms� First de�ne
Tp to be the set of acyclic tournaments on the complete digraph Dp � �Vp� Ap� of
size p� Then the linear ordering problem can be stated as min fg�T � � T � Tpg�
Let q be the number of edges in Ap� so q �� p�p� ��� We de�ne a variable x � 	q

with each component of x corresponding to a unique arc �i� j� � Ap� We write xij for
the component of x corresponding to the arc �i� j�� Consider an arc set A 
 Ap� The
incidence vector x�A� � 	q is de�ned in the following way�

xij�A� �

�
� if �i� j� � A
� if �i� j� �� A

We de�ne the linear ordering polytope Qp
LO to be the convex hull of all incidence

vectors of arc sets of acyclic tournaments in Dp� Thus

Qp
LO � convfx�T � � 	

m � T � Tpg� ���

By de�nition� every acyclic tournament corresponds to a vertex of Qp
LO� and vice

versa� Therefore� solving the linear programming problem min fgTx� x � Qp
LOg solves

the linear ordering problem� However� to be able to use this approach we need to
have a description of Qp

LO in terms of its facets  whereas it is de�ned in terms of
its p! extreme points�
Gr�otschel� J�unger and Reinelt have found several classes of facets which appear

to give a fairly good approximation to the linear ordering polytope� The following
theorem is due to those authors�

Theorem � Let Dp � �Vp� Ap� be the complete digraph of order p� Let p � �� Then
the solution set of the system of equations

xij � xji � � for all i� j � V� i �� j ���

is equal to the a�ne hull of Qp
LO� The trivial inequalities

xij � � and xij � � ���

de�ne facets of Qp
LO for all �i� j� � Ap� Each inequality xij � � is equivalent to the

inequality xji � � �and vice versa� and to no other trivial inequality� The triangle
inequalities

eTx�C� � � for all ��dicycles C 
 Ap ���

de�ne facets of Qp
LO� None of these inequalities is equivalent to any of the inequali�

ties ����

Following Gr�otschel� J�unger and Reinelt� we de�ne

Qp
� �� fx � 	q � x satis�es ��� and ���g�

Qp
� �� fx � 	q � x satis�es ���� ���� and ���g�
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Then Qp
LO 
 Qp

� 
 Qp
�� It can be shown that

Qp
LO � convfx � Qp

� � x is integralg�

Therefore� if the optimal solution to the linear programmin fgTx � x � Qp
�g is integral�

it is also the optimal solution to the linear ordering problem min fgTx � x � Qp
LOg�

Gr�otschel� J�unger and Reinelt have discovered several other classes of facets in
addition to those mentioned above� The experience of these authors indicates that it
is likely that the relatively simple facet de�ning inequalities given above are su�cient
to solve many real�world problems� Thus it is often true that

min fgTx � x � Qp
LOg � min fg

Tx � x � Qp
�g�

For all the problems we solve in this paper� the inequalities given above su�ce� How�
ever� there are some linear ordering problems for which the inequalities given above
are not enough�
We use the equalities ��� to perform the substitution

xji � �� xij� for � � i � j � p�

so we replace xij for j � i in any inequalities in which it occurs by � � xji� Thus we
reduce the number of variables to � p��� Let �q �� �

p
��� The above substitution de�nes

a projection of 	q onto 	�q� For a polyhedron Qp 
 	q we denote the image of Qp

under this projection by �Qp� It should be noted that �Qp is also a polyhedron�
Given a linear program

min fgTx � x � Qp� Qp 
 a�ne hull of Qp
LOg�

there exists an equivalent linear program

min fcTx � x � �Qpg�

where c is given by cij � gij � gji� � � i � j � p� Clearly� there exists a bijection
between the points in Qp and the points in �Qp� and the value of a point in Qp di"ers
from the value of the corresponding point in �Qp by the constant G ��

P
i�j gij �

The systems of facets of Qp
LO given by inequalities ��� are equivalent to the systems

of facets of �Qp
LO given by

� � xij � �� for � � i � j � p� ���

For each triple fi� j� kg with � � i � j � k � p there are two facets of Qp
LO given

by triangle inequalities� These two facets are

xij � xjk � xki � �

and xji � xkj � xik � ��



	

These two facets are equivalent to the two facets

xij � xjk � xik � � ���

and � xij � xjk � xik � � �	�

of �Qp
LO� The �rst of these facets corresponds to the directed cycle fi� j� kg and the

second to the directed cycle fk� j� ig�

�Qp
� consists of all x � 	�q which satisfy inequalities ���� that is� �Qp

� is the unit
hypercube� �Qp

� consists of all x � 	�q which satisfy inequalities ���� ��� and �	��
Hence the description of �Qp

� requires �
p
�� variables and ��

p
�� � ��

p
�� constraints�

Thus� to solve a linear ordering problem� we solved the linear programming prob�
lem min fcTx � x � �Qp

�g� We used a cutting plane procedure� Our initial feasible
region for x was given by the polyhedron �Qp

�� Our cuts were triangle inequalities
drawn from the sets of facets de�ned by inequalities ��� and �	�� Upper bounds on
the dimensions of the matrixA in the LP relaxation �P � are �m � �� p�� and �n � �m��

p
���

We refer to p as the number of sectors of the linear ordering problem�

� The primal�dual barrier method

We use the primal�dual barrier method to solve the linear programming relaxations
of the linear ordering problem� Our implementation is similar to that of Lustig et
al� �����

Consider a linear programming problem in the form

min cTx
s�t� Ax � b

x � s � u
x� s � ��

�P �

where A is an m � n matrix� x� s� u� and c are n�vectors and b is an m�vector�
Introducing a barrier term into the objective gives the problem

min cTx � �
Pn

i�� log xisi
s�t� Ax � b

x � s � u
x� s � ��

�P ����

The �rst order Karush�Kuhn�Tucker optimality conditions for �P ���� can be written
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�� Initialize� Find an initial point x in 	n� y in 	m� z and w in 	n� Set s � u� x�
Pick initial ��

�� Iterate� Find the Newton direction for solving the equations �OPT �� Move
in this direction from the current point �x� s� y� w� z�� choosing a steplength to
ensure that the new iterate satis�es x � �� s � �� w � �� and z � ��

�� Check for optimality� If the duality gap xTz � wT s is small enough and if the
primal and dual iterates are feasible� STOP�

�� Loop� Decrease �� Return to step ��

Figure �� The primal�dual barrier method

Ax � b
x � s � u

ATy � z � w � c
Zx � �e

Ws � �e�

�OPT �

together with nonnegativity of x� s� z� and w�

The primal�dual barrier method can be described as in �gure �� We regard the
problem as solved in step � if the relative duality gap is less than ���� and if the
relative primal and dual infeasibilities are less than ����� The relative duality gap is
�xTz�sTw��maxf�� jbTy�uTw jg� The relative primal infeasibility is kAx�bk � kxk
and the relative dual infeasibility is k ATy � z � w � c k �maxfk y k� k z k� k w kg�
We follow the procedures given in ���� for �nding an initial iterate� choosing a step
length� and updating �� Zhang ��
� has shown that a slight variant of this algorithm
converges in polynomial time�

The Newton direction is a combination of three di"erent directions� a direction for
feasibility� a centering direction� and an optimality direction� If the iterates are primal
and dual feasible then the Newton direction for the conditions �OPT � is exactly the
centering direction when � � �xT z� sTw��n when � � � the direction is exactly the
optimality direction� The usual choice for � lies between these two extremes� The
iterates generated by our algorithm in section � are only slightly infeasible� so the
direction for feasibility only plays a small part in our algorithm�

� The Cutting Plane Algorithm

At each stage� our cutting plane algorithm approximately solves a relaxation of the
linear ordering problem using the primal�dual barrier method� If any ��dicycle con�






straint is violated� a subset is added to the relaxation and the relaxation is resolved�
We proceed in this way until no violated constraints are found� Throughout� we at�
tempt to convert the current interior point into an ordering by using heuristics� We
terminate when we have found an ordering that is within some tolerance of the lower
bound provided by the value of the current dual iterate�
This section describes our algorithm in more detail� We �rst give a formal de�

scription of the algorithm in �gure �� Steps � through � involve the solution of the
LP�relaxation� Steps � through �� describe the process we go through when modify�
ing the relaxation� We improve some quantities associated with the linear ordering
problem �steps � and ��� look for violated constraints and update the relaxation ap�
propriately �steps 	 through 
�� and create the warm start for the next relaxation
�step ����
Several parameter and algorithmic choices were made after extensive experimen�

tation� One of the guiding principles is that the initial iterate in the new relaxation
should be somewhat centered� We will work under the assumption that this means
that it is desirable that the components of x� s� w� and z should not become too small
we will relate this characterization to the more usual characterization in section ��
We now explain some of the steps in the algorithm in more detail�

��� Initialization

The initial relaxation of the linear ordering problem has the form�

min cTx
s�t� x � s � e

x� s � ��

�P	�

where x and s have one entry for each ordered pair of vertices i � j� and c is a vector
with components cij� the cost incurred from having i before j� We refer to this linear
program as the initial primal relaxation� The initial dual relaxation is

max � eTw
s�t� z � w � c

z� w � �

�D	�

Here� z and w each have one entry for each ordered pair of vertices i � j�
The optimal solutions to �P	� and �D	� are given by

xij �

�
� if cij � �
� otherwise�

and

zij �

�
cij if cij � �
� otherwise�
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�� Initialize� Set up and solve the initial relaxation� Choose an initial subset of
the ��dicycle constraints� and form A� b� c� and u� Initialize x� s� y� w� z for this
relaxation� Initialize lower � bTy�uTw� Initialize xORDER to be the incidence
vector of the natural ordering� and upper � cTxORDER� Initialize xFEAS � ���e�
Initialize 	� � ���� 	� � ��

�
� maxadd � ����

�� LP step� Take a step of the primal�dual algorithm� Let valueP � cTx� valueD �
bTy � uTw� dualgap � valueP � valueD�

�� Check for convergence� If the relative dual infeasibility is smaller than ����� let
lower � maxflower� valueDg� If upper�lower

maxf��jlowerjg
� 	�� STOP�

�� Should we check for violated constraints	 If the relative dual infeasibility is
greater than ���� or if dualgap

maxf��jvalueDjg
� 	�� return to Step ��

�� Update xORDER� Use heuristics to generate an ordering from x� If this ordering
is better than the best ordering found previously� then update xORDER and
upper appropriately�

�� Update xFEAS� Let d � x�xFEAS� Let 
max be the largest value of 
 such that
xFEAS � 
d satis�es all the ��dicycle inequalities� If 
max � ��� then update
xFEAS � xFEAS � ��

maxd�

	� Look for violated constraints� If x satis�es all the ��dicyle constraints� decrease
	� and return to Step ��

�� Add violated inequalities� Bucket sort the ��dicycle constraints by the size of
the violation� Go through the violated constraints� adding only arc�disjoint
constraints� adding at most maxadd� Update 	��


� Drop some constraints� Examine the primal and dual solutions to see if any
constraints can be dropped�

��� Update x
 s
 y
 w
 z� Set x � xFEAS� Set the additional components of x corre�
sponding to the slack variables of the additional constraints to the appropriate
value so that x is primal feasible� Set s � u� x� Set additional components of
y to �� If any component of x �or s� is less than ���
� set it to ���
 decrease
the corresponding component of s �or x� so that x�s � u� If any component of
z �or w� is smaller than ���
� set it to ���
 increase the corresponding compo�
nent of w �or z� so that dual feasibility is maintained� Take one pure centering
step� Update �� Return to Step ��

Figure �� The cutting plane algorithm
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with s and w at the appropriate values to ensure feasibility� We then determine which
��dicycle constraints are violated by the optimal solution to the initial relaxation� and
add an arc�disjoint subset� �Two dicycles are arc�disjoint if they do not share an arc��
The primal relaxation then has the standard form

min cTx
s�t� Ax � b

x � s � u
x� s � ��

�P �

Here� A has one row for each added ��dicycle constraint �equations ��� or �	��� The
entries of b are � or � as appropriate� Each row has four nonzeroes� three for the
three arcs in the dicycle and one for a slack variable� Let m be the number of rows
in A� Thus� x now has one entry for each ordered pair of vertices i � j� and also m
entries for the slack variables� so the number of columns in A is n � m � � p�� s is
con�gured similarly� The upper bounds ui � � if i corresponds to an arc and ui � �
if i corresponds to a slack variable� since the largest value the slack can take in either
equation ��� or �	� is �� The dual relaxation is

max bTy � uTw
s�t� ATy � z � w � c

z� w � ��

�D�

The initial iterate x� s� y� w� z is then constructed using the method described in �����
For bookkeeping purposes� we need an initial ordering� so we take the natural

ordering ��i� � i� i � �� ���� p� This is stored as an incidence vector in xORDER and its
value is stored in upper� We use a point in the interior of �Qp

� when recentering after
adding cutting planes this point is initialized as xFEAS � ��e�

��� Identifying constraints early

It is necessary to attempt to avoid solving the current relaxation to optimality� If
this can be accomplished successfully� it will obviously reduce the number of itera�
tions spent on the current relaxation in addition� it will result in an initial iterate
for the next relaxation which is more centered� which means that fewer iterations will
be needed on that relaxation as well� It is possible to look for violated inequalities
at every iteration� but we found that this resulted in the addition of too many con�
straints and it was hard for the algorithm to make progress� Thus� we introduced
a requirement that the duality gap should fall below some tolerance before looking
for cutting planes� Rather than using a �xed tolerance throughout the progress of
the algorithm� we found it bene�cial to use a dynamically altered tolerance 	�� If the
duality gap falls below 	� then the algorithm stops work on the current relaxation�
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at least temporarily� Before looking for violated ��dicycle inequalities� the algorithm
performs two other tasks� in Steps � and ��

����� Finding an ordering

The incidence vector of the best ordering found so far is stored in xORDER and its
value is stored in upper� We attempt to improve upon xORDER by rounding the
current primal iterate as follows� We set up a precedence table� If xij � �� then
the precedence table states that i is before j if xij � �� then the precedence table
states that j is before i �these parameters were chosen after extensive computational
testing�� We then attempted to construct an ordering which was consistent with the
precedence table� using a similar procedure to that described in Gr�otschel et al� ���� If
this procedure resulted in an ordering which was better than the best ordering found
previously then we update xORDER and upper appropriately�
It is necessary to break ties occasionally when trying to construct an ordering�

because of a lack of a preference between certain pairs� This was done randomly� For
some of the problems we solved� there were several orderings that were very close to
optimal� and our heuristics needed to be called several times� with ties being broken
randomly� before they found the optimal ordering�
Note that we do not declare our solution optimal until we �nd an ordering which

is within a relative duality gap of ����� There may be several optimal solutions to the
linear ordering problem� The primal iterate x will converge to a convex combination
of these solutions� but our heuristics will choose one of the orderings�

����� Updating a point in �Qp
��

The vector xFEAS is a point in the interior of �Qp
�� It is updated by stepping towards the

new iterate x� Let d � x�xFEAS � We �nd the largest value of 
 such that xFEAS�
d
is in �Qp

�� If this value 
max is at least ���� we update xFEAS to xFEAS � ��

maxd� It
should be noted that 
max can be found e�ciently if we look for it at the same time
as we �nd all cutting planes violated by x�

����� Searching for cutting planes

The ��dicycle constraints violated by x are found by complete enumeration� They
are then bucket sorted according to the size of the violation� We then go through the
buckets in order and select an arc�disjoint subset of up to about two hundred of the
constraints�
An alternative to adding constraints corresponding to arc�disjoint constraints is

to just add the two hundred �say� most violated constraints� Adding arc�disjoint
constraints has a very bene�cial e"ect on the structure of nonzeroes in the constraint
matrix A� in that at most one nonzero is added to each column� This considerably
reduces the density of the Cholesky factors of the product AAT � which in turn reduces
the time spent calculating the projections and the time spent on each iteration� The
drawback to adding only arc�disjoint constraints is that the number of stages of adding
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cutting planes is increased� with a corresponding increase in the number of iterations
we found that this disadvantage was considerably outweighed by the bene�t of reduced
time per iteration�

The parameter 	� is modi�ed depending on the maximum violation and the num�
ber of violated constraints� If the maximum violation is close to one and a large
number of constraints are violated then 	� is increased conversely� if the maximum
violation is close to zero and only a few constraints are violated then 	� is decreased�
This means that 	� is increased if it appears that we are close to the optimal solution
to the current relaxation� so we then will not solve the new relaxation to such a high
degree of accuracy� Similarly� 	� is decreased if it appears that we are not su�ciently
close to solving the current relaxation� so that we will solve the new relaxation more
accurately� This also has the consequence that as we approach optimality to the
linear ordering problem we will not call the separation routines as often�

��� Restarting from a warm start

Usually� many cutting planes are added at once� To simplify the exposition� we
assume that just one constraint has been added the procedures discussed can be
extended straightforwardly when many constraints are added simultaneously�

Immediately after adding a cutting plane aT	 x � b	� the relaxation has the form

min cTx
s�t� Ax � b

aT	 x � x	 � b	
x � s � u

x	 � s	 � u	
x� s � �� x	� s	 � ��

�P �

and the dual is

max bTy � b	y	 � uTw � u	w	

s�t� ATy � a	y	 � z � w � c
y	 � z	 � w	 � �
z�w � �� z	� w	 � �

�D�

The primal problem has an extra constraint and the old primal iterate is not
feasible� In our initial experiments� we tried restarting directly from this point� This
is possible with the primal dual barrier method� and it worked well for randomly
generated problems� but we found that it was not good for the real world problems�
because of the nature of the data �see section ��� The algorithm took several iterations
to get feasible� by which time it was far from optimality� Thus� it required about as
many iterations to solve the relaxation from the warm start as it would have taken
from a cold start� We were able to considerably improve the warm start by using the
point xFEAS in �Qp

�� Namely� we update the �rst �
p
�� components of x to their values
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in xFEAS � and then x	� s	� the slack elements of x and the entries of s are chosen to
ensure that the new iterate is primal feasible� Finally� all very small components of
x �s� are increased� and the corresponding components of s �x� are decreased by the
same amount� This may cause a �numerically small� loss of primal feasibility� but it
improves the numerical stability of the algorithm as well as giving an iterate which
is slightly more centered�
The dual problem has an extra column and one extra constraint corresponding

to the additional primal slack variable x	� The old dual solution is still feasible in
this problem� with y	 � � and w	 � z	 in order to get an interior point� we set
w	 � z	 � ���� In addition� all very small components of w �z� are increased� with
the corresponding components of z �w� increased by the same amount� in order to
maintain dual feasibility� Note that we expect the new constraint to be active at the
solution to the new relaxation� so the optimal value of x	 will be zero� If the optimal
solution is nondegenerate� the optimal value of z	 will be positive and that of w	 will
be zero�
We also found it bene�cial to do one pure centering iteration immediately after

adding cutting planes� Thus� � is set equal to �xTz � sTw��n� where all quantities
are the updated quantities� and one primal�dual step is taken� The barrier parameter
is then updated in the usual way and we return to Step � in order to approximately
solve the new relaxation�

��� Dropping constraints

If constraints are never dropped� the constraint matrix becomes large and the Cholesky
factors of AAT become dense� so the time per iteration becomes somewhat prohibitive�
Therefore� it is necessary to drop constraints that appear to no longer be necessary�
If the primal slack variable xi corresponding to a constraint is bigger than ��� then it
appears that the ��dicycle constraint is not important� so we drop it� Intuitively� it
seems like the condition for deciding whether to drop a constraint should depend on
the dual variables as well as the primal variables� We tried several di"erent criteria
using the dual variables� but none of them worked as well as the simple primal�only
criterion we have described�
It is also possible to develop a di"erent criterion for dropping constraints using

the basis identi�cation techniques described in El�Bakry et al� ����� Because of the
structure of the constraint matrix� we found this unnecessary the variables themselves
served as good indicators of which variables are basic�
Dropping a constraint does not a"ect primal feasibility� but it will make the dual

iterate slightly infeasible� However� it appears that the loss of dual feasibility is small
and the algorithm quickly recovers�
There is a risk that the algorithm will repeatedly add and drop the same con�

straints� and we occasionally saw this behaviour in some of our early experiments�
To reduce the possibility of this happening� we do not drop a constraint in the stage
immediately following the one where it was added� This safeguard prevented cycling
in our experiments�
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� Computational results

Table � contains the results of our algorithm on �� real�world linear ordering problems�
All were obtained on a SUN SPARC ��#��� with code written in FORTRAN and
compiled using the Sun f		 compiler� and the CPU time was measured using the
command ETIME� These times include the time to read in the problem�

All of the problems come from input�output tables� Except for the more recent
problem usa��� they all date from �
�� to �
	�� The entries in an input�output
matrix measure the number of deliveries from one sector of the country to another�
For an economic analysis of these results� see Gr�otschel et al� ����� Problems whose
names start with t are �� by �� tables available from EUROSTAT in the European
Community� The second and third characters in the name give the year of the table
and the fourth character identi�es the country� b is Belgium� d is �West� Germany� e
is Spain� f is France� i is Italy� k is Denmark� l is Luxembourg� n is the Netherlands�
r is Ireland� u is the United Kingdom� w is the compilation of the data for the six
original members of the European Community� and x is the compilation of the data
for the �rst nine members of the E�C� t	�d��b is one of two tables available from
EUROSTAT for Germany for the year �
	�� There are two additional tables available
from EUROSTAT� t�
b�� and t	�d��a neither of these problems can be solved by
using only ��dicycle inequalities� Problems whose names start with diw are �� by ��
tables compiled by the Deutches Institut f�ur Wirtschaftforschung for �West� Germany
for the years �
�� to �
	�� The last two characters indicate the year the character
before these two indicates whether prices are current prices or �
�� prices� The
problems whose names start with sbm are compiled by the Statistisches Bundesamt
for the years �
	� and �
	� and again are for �West� Germany� There is also a table
available for �
	� but this again can not be solved only using ��dicycle inequalities�
The problem usa�� is a more recent 	
 by 	
 input�output table containing data
for the U�S�A� The coe�cients gij in all these tables are distributed between � and
approximately ������ but they are not uniformly distributed� there are a number of
entries which are zero and also a number of entries which are small but positive� The
zero entries lead to the presence of alternative optima� Interior point methods tend
to converge to the interior of the optimal face therefore� they converge to a solution
which corresponds to a partial ordering� with every ordering that satis�es the partial
ordering being optimal�

The columns in Table � have the following meanings� The �rst column contains
the name of the problem� The second column contains the number of ��dicycle in�
equalities in the initial relaxation� The third column contains the total number of
��dicycle inequalities added subsequently� The fourth column contains the number of
times cutting planes are added� The �fth column contains the number of ��dicycle
inequalities in the �nal relaxation� The sixth column contains the number of itera�
tions of the primal�dual method which were required� The �nal column contains the
total run time� in seconds� The total number of constraints dropped is the number
of constraints in the initial relaxation together with the number of constraints added
minus the number of constraints in the �nal relaxation� The table contains the mean
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Problem Initial m Cuts added Stages Final m Iterations Time �seconds�
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values for each of the �rst three sets of problems� The dimension of the primal vari�
able x in the �nal relaxation is equal to n � m�� p��� where p is the number of sectors
and m is the number of ��dicycle inequalities in the �nal relaxation� Thus� the mean
numbers of variables in the �nal relaxation for the ��� ��� ��� and 	
 sector problems
are ��	�� ���
� ����� and ��	�� respectively�

The number of stages required is similar to the number reported by Gr�otschel et
al� ��� when they added arc�disjoint inequalities thus� the attempt to identify violated
constraints early appears to be successful� without many super�uous constraints being
added� The number of iterations per stage is about �ve� considerably smaller than
would be required if each stage was solved to optimality and then the next stage
started from scratch�

The fact that the input�output tables contain a number of small positive entries
means that there are several orderings which are close to optimal� It was because of
the presence of these alternative orderings that we had to introduce a randomization
aspect into our heuristics for generating an ordering from an interior point� We
found these real world problems harder than randomly generated problems with the
same degree of linearity we conjecture that this is due to the presence of the small
positive entries� because there is then a large face which is almost orthogonal to the
objective function� This makes it more di�cult to identify the correct set of important
constraints�

It is impossible to really compare our run times with those of Gr�otschel et al� ����
who were using an IBM �	�#��� in �
��� For the �� by �� tables� their run times
are about one minute� for the �� by �� tables they are about four and a half to �ve
minutes� and for the �� by �� problems they are almost ten minutes� Thus as the
problem size increases� the ratio of their run times to ours increases� which is the
standard pattern for simplex results versus interior point results� Their machine is
not listed in Dongarra$s list of LINPACK benchmarks ����� However� the IBM������
Fast Mult has a M�op#s rate of ���� which compares with a rate of 
�� M�op#s for
the SUN SPARC ��#��� Thus� we conjecture that our machine is about eight times
faster than the machine used by Gr�otschel et al� ���� and so their code would take
�all things being equal� approximately � seconds� �� seconds� and �� seconds for
the three problem sizes� if it was run on our machine� Therefore� our runtimes are
very competitive with those of Gr�otschel et al� ���� at least for the larger problems�
Note that the simplex method has been improved considerably since �
��  see for
example Bixby et al� ����� We have corresponded recently with Gerhard Reinelt�
and he now has an implementation of his linear ordering code which uses CPLEX
��� ����� which he has run on a SUN SPARC ��#��� From information provided by
Sun Microsystems� we can conclude that the SUN SPARC ��#�� is about 
�% as fast
as the SUN SPARC ��#�� �the SUN SPARC ��#�� is not listed in ������ Reinelt is
not willing to publish these results in detail yet because they are still preliminary�
and they may not be with the optimal parameter set� The average runtimes that he
obtained were about � seconds for the �� sector problems� about �� seconds for the
�� sector problems� about �� seconds for the �� sector problems� and �
�� seconds
for usa��� We summarize these runtime averages in Table �� Thus� we are about
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Our results Gr�otschel et al�
SPARC ��#�� SPARC ��#�� IBM �	�#���

�� sector ���� � ��
�� sector 	��� �� �
�
�� sector �	��� �� ���
	
 sector ������ �
�� Not available

Table �� Comparing average runtimes �in seconds�

eight times worse for the small �� sector problems� about four times worse for the
medium sized �� and �� sector problems� and only two times worse for the 	
 sector
problem� Clearly� the di"erence between the two algorithms decreases as the problem
size increases� and we would expect to see superior performance for the interior point
algorithm for slightly larger problems� perhaps around ��� sectors� The size of the
linear programming relaxations are around the size where interior point and simplex
methods require about the same amount of time thus� it is reasonable that we would
need to look at larger problems before we would see the bene�t of using an interior
point cutting plane algorithm�
Our runtimes could also be improved by using linear algebra routines designed

speci�cally for interior point methods� For example� the use of supernodes when cal�
culating the Cholesky factorizations can speed up an interior point method consider�
ably  see Lustig et al� ����� for example� For the ��� ��� ��� and 	
 sector problems�
the time to calculate the projections was about ��%� 	�%� ��%� and 
	% respectively
of the total run time� increasing as the size of the problems increased� �Reinelt states
that over 

% of his runtime is spent in the linear programming routines for usa����

� Theoretical concerns

In this section� we show how some of our algorithmic choices were driven by theoretical
concerns� Theoretically� it is known that keeping the iterates centered results in better
algorithms for linear programming� We demonstrate how early termination and the
use of xFEAS both help to produce iterates which are more centered� We show the
importance of attempting to restart from feasible points� We also show how our
algorithm could be made polynomial in the number of added constraints�
As in section ���� we assume in sections ��� and ��� that only one constraint is

added at a time� The arguments presented in these sections can easily be extended
to the general case�

��� Early termination produces more�centered iterates

Roos and Vial ���� showed that if the norm of the vector

v �� n�Xz � Sw���xTz � sTw�� e ���
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is small then� with an appropriate choice of �� the iterates converge quadratically to
the solution to �P ���� the norm gives a good measure of centrality� Instead of using
this standard measure of centrality� we used the observation that it is advisable to
avoid letting the iterates approach the boundary of the feasible region too closely� We
want to show how the two criteria are related�

The quantity xT z � sTw is the duality gap� If the current relaxation is solved
almost to optimality and then a cutting plane is added with slack variable x	� the
new duality gap will be approximately x	z	 � s	w	� provided x� s� z� and w are left
unchanged� Thus� the vector v will have one term which is approximately n and
n terms which are approximately ��� so the standard measure of centrality will be
large� and it will take several iterations to get approximately centered�

For numerical reasons� it is useful to increase small terms when restarting� When
we increase very small components of x� s� z� and w� we will dramatically change
the corresponding values of xizi and siwi� This will again result in an iterate that is
far from centered� This is an e"ect that can be mitigated somewhat by terminating
early� because the values of the variables are then not quite so small�

One of the methods we used to improve the performance of the algorithm was
to restart from a primal point which is feasible in the whole problem� This changes
the whole of the vector x� so it may well change the vector v considerably however�
it does increase the duality gap� so the imbalance between the added variable and
the old variables in the vector v is greatly reduced� In addition� the relative changes
between the old components of v will be reduced somewhat if the variables have not
been driven too close to zero� Notice that in the algorithm� we take a pure centering
step immediately after adding constraints this is precisely because the norm of the
vector v has usually increased considerably�

��� The importance of restarting from feasible iterates

Several papers �eg� Anstreicher ����� Mizuno et al� ��	�� Zhang ��
�� have discussed
algorithms which move towards feasibility and optimality simultaneously� A common
feature of the analysis of these algorithms is the exploitation of the fact that they
move towards feasibility at least as fast as they move towards optimality� In our
cutting plane algorithm� we restart with the primal point reset to xFEAS � If instead
we attempted to restart directly from the approximate solution to the previous re�
laxation� the primal infeasibility would be x	� j b	 � aT	 x j� To ensure that the ratio
between the duality gap xTz � sTw� x	z	 � s	w	 and the infeasibility remained rea�
sonably large� it would be necessary to set x	z	 � s	w	 to a large value� As argued
above� this is going to result in an iterate which is far from centered�

To the best of our knowledge� none of the interior point column generation algo�
rithms proposed in the literature generate infeasible iterates� They either shift con�
straints so that the current iterate is still an interior point �for example� ����������� or
they back up to a known feasible point �for example� ��
� ������
�������� The algorithm
in this paper is related to the second class� in that we back up to the point xFEAS �
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��� Total number of iterations

It is straightforward to modify the algorithm presented to obtain one which requires
time polynomial in the total number of constraints added� �Of course� this is not
going to give a polynomial time algorithm for the linear ordering problem� just a
polynomial time algorithm for solving the problem minfgTx � x � Q�g��

Because of the way we modify the iterate when adding constraints� the initial
iterate for each relaxation gives a vector v with norm O�nL�� where v is de�ned in
equation ���� n is the number of constraints in the current relaxation� and L is the
size of the data� Thus� from the analysis of Zhang ��
�� the algorithm can be modi�ed
slightly so that only a polynomial number of iterations are required at each stage�
If we impose an upper bound K on the number of times any one constraint can be
dropped� then the number of stages is no more than �K�p��� since ��

p
�� is the number

of constraints for �Qp
�� Thus the total number of iterations required by the slightly

modi�ed algorithm is polynomial� and each of these iterations can be performed in
polynomial time�

� Conclusions

We have presented a description of an implementation of a cutting plane algorithm
for the linear ordering problem which uses an interior point method to solve the
linear programming relaxations� This algorithm appears to require time comparable
with that required by a simplex implementation� As the problem size increases� the
time required by the interior point code does not increase as quickly as that required
by the simplex code� To achieve this performance� it was necessary to implement
the algorithm carefully in order to exploit the warm start provided by the solution
to the linear programming relaxation� We have described several techniques which
help in the exploitation of the warm start� and it should be possible to extend these
techniques to cutting plane algorithms for other integer linear programming problems
such as the traveling salesman problem�
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