
SCHEDULING DISASTER RECOVERY OPERATIONS IN
INFORMATION TECHNOLOGY UNDER FISMA

by

Joshua Brashear

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science in Mathematics
with Specialization in Industrial Mathematics

New Mexico Institute of Mining and Technology
Socorro, New Mexico

December, 2015

ABSTRACT

Disaster recovery planning for an information technology department can
be treated as a resource constrained project scheduling problem. The focus of
this paper is an event where information systems are disrupted en masse and
must be restored based on the interdependencies between the components of the
information systems. A finite number of technicians are available to be assigned
to recovery tasks, where the set of systems a technician may restore is restricted
by their authorizations which are treated as skills. The problem is observed
from the context of an organization that follows the documentation requirements
as well as cyber security and physical security requirements set by the United
States Federal Information Security Management Act (FISMA). Data required for
recovery planning will be available from security categorizations (SC), disaster
recovery plans (DRP), information system contingency plans (ISCP), system
security plans (SSP), and business impact analyses (BIA). This documentation, if
well prepared, contains task precedence constraints and task durations that must
be met when restoring information systems. Additional information required to
augment the FISMA documentation to perform a large scale disaster recovery is
discussed. This problem was expressed as a constraint program and a constraint
solver was used to find feasible schedules for simulated data derived from
PSPLib problems.

Keywords: project scheduling; disaster recovery; constraint programming; infor-
mation technology; FISMA;

CONTENTS

LIST OF TABLES iv

LIST OF FIGURES v

LIST OF ABBREVIATIONS vi

1. INTRODUCTION 1
1.1 Problem Statement . 1
1.2 Background . 1
1.3 Disasters . 3

1.3.1 Disasters and Disaster Recovery 3
1.3.2 Disasters in Information Technology 3

2. REVIEW OF FEDERAL INFORMATION SYSTEMS 5
2.1 Laws and Risk Management Frameworks 5
2.2 Federal Standards for United States Executive Agencies 5
2.3 NIST Documents . 7
2.4 Contingency Planning . 8

2.4.1 Time Constraints for ISCPs 9
2.5 Business Impact Analysis . 11
2.6 Relevance of FISMA to Scheduling Problems 12

3. SCHEDULING AND CONSTRAINT PROGRAMMING REVIEW 13
3.1 Scheduling Problems . 13

3.1.1 Resource Constrained Project Scheduling Problems (RCPSP) 14
3.1.2 Multi-Mode Resource Constrained Project Scheduling Prob-

lems (MMPSP) . 15
3.1.3 Multi-Skill Resource Constrained Project Scheduling Prob-

lems (MSPSP) . 16
3.2 Solving Scheduling Problems . 17

3.2.1 Constraint Programming . 18

ii

3.2.2 Variables and Constraints . 18
3.2.3 Consistency . 19
3.2.4 Search . 19
3.2.5 Cumulative Constraints and Scheduling 22
3.2.6 Bounds . 24

4. PREVIOUS APPROACHES TO OPTIMIZATION IN DISASTER RE-
COVERY AND INFORMATION TECHNOLOGY 27
4.1 Mitigation and Preparedness Phases 27
4.2 Response and Recovery Phases . 29

5. DISASTER RECOVERY IN INFORMATION TECHNOLOGY AS A PROJECT
SCHEDULING PROBLEM 31
5.1 Recovery Problem . 31
5.2 Summary of Method . 31
5.3 Problem Assumptions . 32
5.4 Data Collection . 34
5.5 Determining Access Requirements 36
5.6 Problem Formulation . 37

5.6.1 Implementation . 37
5.6.2 Constraint Program . 38

5.7 Objective Functions . 40
5.7.1 Makespan . 40
5.7.2 Lateness . 41
5.7.3 Cost . 42

6. DISCUSSION 43
6.1 Results . 43
6.2 FISMA and NIST SP 800 series . 44

6.2.1 Business Impact Analysis . 44
6.2.2 Precedence Issues . 45
6.2.3 Contingency Plan . 47

6.3 Constraint Programming Solver . 48
6.4 Issues Modeling Employee Schedules 48
6.5 Conclusion . 49

BIBLIOGRAPHY 51

iii

LIST OF TABLES

3.1 Common Scheduling Constraints . 14
3.2 Common RCPSP Constraints . 15
3.3 Common MMPSP Constraints . 16
3.4 Common MSPSP Constraints . 17

6.1 Summary of Results for Disaster Recovery MMPSPs 43

iv

LIST OF FIGURES

2.1 Nested System Composition . 6
2.2 Composition of Security Package . 7
2.3 Information System Contingency Plan 11
2.4 Business Impact Analysis . 12

3.1 Descent to Leaf Node . 21
3.2 Backtrack . 21
3.3 Cumulative Constraint: Before and After Propagation 23
3.4 Disjunctive Cumulative Constraint: Before and After Propagation . 24
3.5 Objective Value Approaching Fixed Lower Bound 25

5.1 Process Summary: Before Disaster 32
5.2 Process Summary: After Disaster . 32
5.3 Organizational Precedence Graph . 35
5.4 Initial Graph . 35
5.5 Finding Release Dates . 35
5.6 Finding Deadlines . 35
5.7 Disrupted Organizational Precedence Graph 36
5.8 Recovery Precedence Graph . 36
5.9 Transitively Reduced Recovery Precedence Graph 36

v

LIST OF ABBREVIATIONS

AN - Activity Networks

AoN - Activity On Node

BCP - Business Continuity Planning

BIA - Business Impact Analysis

COOP - Continuity Of Operations Plan

CP - Constraint Program

DRP - Disaster Recovery Plan

DRSP - Disaster Response Scheduling Problem

FISMA - Federal Information Security Management Act

ISCP - Information System Contingency Plan

IT - Information Technology

MDP - Markovian Decision Process

MMPSP - Multi-Mode Project Scheduling Problem

MSPSP - Multi-Skill Project Scheduling Problem

MTD - Maximum Tolerable Downtime

NIST - National Institute Of Standards And Technology

RCPSP - Resource Constrained Project Scheduling Problem

RPO - Recovery Point Objective

RTO - Recovery Time Objective

SC - Security Categorization

SDRP - Sub Disaster Recovery Plans

SP - Special Publications

SSP - System Security Plans

vi

This report is accepted on behalf of the faculty of the Institute by the following
committee:

Brian Borchers, Advisor

I release this document to the New Mexico Institute of Mining and Technology.

Joshua Brashear Date

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

The problem is to schedule the recovery of information systems after
a disaster while respecting task precedence, information system security re-
quirements in the form of task skills, and resource availability.

This paper concerns a common business scenario. An organization has a
large information technology infrastructure. That organization creates readiness
plans for disasters that may destroy or disrupt their information systems. The re-
sulting plans protect their infrastructure and the business processes that depend
upon it. These readiness plans determine how the organization will restore its
information systems back to working condition if they are disrupted.

Disaster readiness plans require resources and staff to execute them. The
amount of available resources and the number of available employees are finite.
Information systems slated for recovery will be prioritized based on the inter-
dependencies between information systems. A feasible schedule will assign the
appropriate personnel to restore information systems in an order that respects
precedence requirements, resource requirements, and the information system ac-
cess restrictions which are implemented to meet U.S. federal compliance require-
ments for cyber security.

1.2 Background

Disaster preparedness is a best practice in both business and IT. Organiza-
tions prepare plans that aid in their readiness to respond to emergencies. These
emergencies include natural disasters, social disasters, and breaches in cyber se-
curity. Disruptions cost the company the time to respond to the issue, and money
caused by the downtime of a business process. Disaster planning reduces the im-
pact of the disaster, where the impact is a measure of the detrimental effects of
the disaster.

This paper will consider disaster recovery planning from the perspective
of an organization that is required to meet cyber security objectives mandated
by the United States federal government. These organizations are required to

1

perform contingency planning for information systems that will allow them
to recover in the event of a disaster. Organizations that are affected by this
mandate include federal executive agencies, and contractors to those agencies.
Recovery plans and important system information are recorded in a collection
of documents for legal compliance, termed a security package by Taylor [34].
Compliance with a law called FISMA will be discussed later. This paper is
concerned with the event when computing resources are disrupted en masse and
must be restored by the coordinated efforts of IT personnel.

In this paper, disaster recovery planning is considered from the under-
standing that many information systems may be disrupted simultaneously. To
perform a successful large scale recovery using the contingency plans that are
formed for individual information systems, all of the security packages for inter-
dependent information systems must be consistent. A simple method for deter-
mining consistency with respect to temporal constraints will be given. System
restorations can be prioritized by time and resource feasibility based on informa-
tion system security controls. Multi-mode project scheduling is used to sequence
events in the recovery in order to find a feasible IT disaster recovery plan in-
volving multiple information systems. Suggestions for easing the difficulties in
formulating consistent disaster recovery plans will be given. The data set used
for this problem is simulated, using the types of data that can be found in security
packages for FISMA compliance.

Under current FISMA regulations, affected IT departments are required to
document interdependencies between information systems. The disaster plans
created for FISMA are also formulated with the implicit assumption that either
the necessary precedence requirements to recover an information system are
satisfied, or that the problem is out of the current administrator’s control and
is left to other departments. This requires trust between departments, where
administrators put part of the responsibility for the uptime of their own systems
on parties who may not be aware that they provide essential services to those
systems. There are also documentation and security issues that may arise, where
systems may be declared to be circularly dependent on each other, or where the
security controls in place may render an information system inaccessible to the
administrators that are responsible for maintaining it.

This paper assumes that an organization implements security controls
given in NIST Special Publications for compliance with FISMA. Disaster recovery
plans are among those controls. By requiring these documents to follow known
guidance, issues can be considered that may affect plans that are written for use
in real organizations. This assumption also introduces some of the real world
problems associated with compliance. In reality, the recovery plans that are
designed for information systems are not ideal and can be problematic. A plan
may contain incorrect data or be incomplete. One recovery plan can render
another plan infeasible, or disagree with information that should be identical
between two plans. The restoration priorities that are assigned to components
of an information system can render the plan infeasible. The definitions that are
used as the foundation of security controls such as disaster recovery policies can

2

be ambiguous or left open to interpretation by an organization. This project will
propose a method for collecting data from security packages in an attempt to
ensure that basic requirements for the feasibility of a disaster recovery plan are
met. In this project, FISMA compliant disaster recovery plans will be treated as
tasks. Those tasks will be assigned to personnel and scheduled to take place in
an order that maintains temporal feasibility while attempting to minimize the
impact of a disaster.

1.3 Disasters

The following sections present a brief overview of the connection between
disaster recovery planning and the mathematical methods that support the cre-
ation of disaster recovery plans.

1.3.1 Disasters and Disaster Recovery

Much of the research in disaster recovery centers around natural disasters
that affect the general population, such as fires and floods. A disaster response is
an action that is taken to get an emergency situation under control. Paraphrasing
the definition given by Altay et al., an emergency is any event, such as a disaster,
where non-standard operating procedures must be implemented in order to
recover from the effects of that event [1]. The goal of disaster response is an action
to both to regain control and then to eliminate the adverse effects of the disaster.
The effects of a disaster may be handled by dispatching emergency workers, or
delivering food and water to survivors, etc. In IT, the effects of the disaster may
be handled by dispatching computer technicians to restore the functionality of
information systems. Applications of mathematics in disaster recovery include
selecting plans to maximize some measure of general preparedness, scheduling
workers to tend to hazards, and determining vehicle routes for supply delivery
[13, 24, 28].

1.3.2 Disasters in Information Technology

Similar to the practices of local or state offices in performing natural dis-
aster response planning, businesses may prepare to respond internally to disas-
ter scenarios with Business Continuity Planning (BCP) and IT disaster recovery
planning. The concerns of disaster recovery planning in IT are different from the
concerns for natural disasters. In IT, recovery is focused on preserving the func-
tionality of business processes and maintaining data integrity and availability.
Disasters that may affect information systems include hazards that are unique to
electronic devices. In addition to disruption through physical destruction, unique

3

hazards to information systems include things like malware or network based at-
tacks.

Disaster plans in IT outline steps that need to be taken to restore infor-
mation systems. An information system may be recovered by having a qualified
professional visit the system and perform restorative actions on it. In the event of
a disaster that requires an organization to relocate its resources, an organization
may move to an alternate worksite and restore functionality there. In some cases,
the information system is considered to be restored if the functionality that it pro-
vided has been resumed by a different system that may not resemble the original
system.

Constraints may exist on the information systems to be restored, or on
the personnel that are involved in the recovery. There are often dependencies
between information systems such that one system cannot operate if another is
disrupted. For example, the functions of servers and client systems often depend
on other servers. The dependencies between information systems create prece-
dence constraints that must be met during a recovery. There are also security
considerations that affect the process of disaster recovery. It is often the case that
the personnel that are authorized to maintain specific information systems are
a small subset of the total personnel that perform information system adminis-
tration tasks within the organization. Access restrictions to information systems
mean that personnel within the organization are not completely interchangeable,
and cannot be assigned to just any recovery task. The limited availability of per-
sonnel can affect the duration of the recovery process.

For examples of the scale of physical disasters that may result in disaster
recovery plans being invoked, examples can be found in the damage to IT infras-
tructure caused by the 9/11 New York terrorist attacks and the 2005 hurricane
Katrina. For an example of IT disasters that were not physically damaging, an
example is the computer virus that was used to attack an upper estimate of thirty
thousand computer systems at Saudi Aramco in 2012 [25]. The numbers of sys-
tems that may need to be recovered in large disaster can be in the thousands, and
an appropriate number of personnel will be required to perform those tasks.

4

CHAPTER 2

REVIEW OF FEDERAL INFORMATION SYSTEMS

2.1 Laws and Risk Management Frameworks

In 2002, the E-Government act was passed in the United States, with a sec-
tion titled the Federal Information Security Management Act (FISMA) [9]. FISMA
creates minimum security requirements for information and computers in federal
executive agencies and their contractors. The standards set by FISMA are pub-
lished in a series of papers by the National Institute of Standards and Technol-
ogy (NIST). These papers come in several categories, including NIST Federal In-
formation Processing Standards (FIPS), and NIST series 800 Special Publications
(SP 800). FIPS establish requirements that must be met by all federal executive
agencies and contractors to those agencies. FIPS may also make other standards
mandatory. For example, FIPS 200 also requires that security controls be imple-
mented from SP 800-53 Security and Privacy Controls for Federal Information Sys-
tems and Organizations [20]. These minimum security requirements established
by FISMA include activities such as planning disaster recovery strategies, docu-
menting information system properties, and determining the relative importance
of information systems. Other than SP 800-53, the series SP 800 papers are often
flexible guides, rather than requirements, for implementing processes that satisfy
FIPS requirements. They are flexible, because an organization may meet FISMA
requirements in their own way rather than in the exact manner prescribed in the
NIST SP guides.

United States executive agencies employ risk management frameworks
to comply with FISMA. These include the NIST Risk Management Framework
(NIST RMF), Department of Defense Risk Management Framework (DoD RMF),
and the Office of the Director of National Intelligence’s Intelligence Community
Directive 503 (ICD 503) [34]. In following these frameworks, organizations
produce policies. These policies enforce the implementation level details that
affect business processes and security controls, which in turn affects disaster
recovery planning and employee’s access to information systems.

2.2 Federal Standards for United States Executive Agencies

Compliance with FISMA involves the creation of high level policies. Those
policies must meet a set of general requirements. The content of a policy is not

5

fixed by FISMA or one of the risk management frameworks. Policies vary be-
tween organizations that are attempting to be compliant with the same require-
ments. This will lead to differences in the implementation level details that result
from FISMA compliance. The fact that the implementation details will vary be-
tween organizations is important, because it means that organizations will use
different approaches to security controls such as disaster planning. A disaster
planning methodology for these organizations will either need to be designed for
a specific organization as a one off type effort, or the methodology will need to
be designed for use with a risk management framework. In this paper, the lat-
ter approach will be taken. This will have the effect that both the requirements
and goals of recovery become more ambiguous. The methods in this paper are
intended to apply to an organization that implements a compliance method that
follows this list of NIST documents and FISMA related publications:

FIPS 199 Standards for security categorization of federal information and infor-
mation systems

FIPS 200 Minimum Security Requirements for Federal Information and Informa-
tion Systems

NIST SP 800-34 Contingency Planning Guide for Federal Information Systems

NIST SP 800-53 Security and Privacy Controls for Federal Information Systems
and Organizations

NIST SP 800-18 Guide for Developing Security Plans for Federal Information
Systems

FISMA Compliance Handbook A guide for managers implementing FISMA
requirements

IS
1
: System Composition

IS
1,1

IS
1,2

IS
1,3

IS
1,3,1

Figure 2.1: Nested System Com-
position

Information Systems are defined recur-
sively as visualized in figure 2.1. This recursive
property means that an information system
may be composed of other information sys-
tems. Because of this, it is not obvious which
information systems are singletons in the sense
that they have no sub-components. This ap-
pears to have been defined this way for flexi-
bility, since a single information system may be
a composite of several discrete elements that
may not function individually. A parent infor-
mation system will have its own business im-
pact analysis that has the potential to impose
MTDs and RTOs on all of the child information systems of a large composite sys-
tem. However, the actual performance time of the recovery will depend on the
RTOs given in the BIAs of the child components.

6

2.3 NIST Documents

Part of FISMA compliance requires that FIPS 199, FIPS 200, and NIST SP
800-53 be followed. Those documents will be discussed here, as well as others
that are important. The output from these requirements is documented in a
security package, whose relevant contents are diagrammed in figure 2.2.

Security Package

ISCP

BIA

SSP

SC

Figure 2.2: Composition of Se-
curity Package

Information systems are required by
FIPS 199 to be categorized based on the po-
tential security impact that a breach affecting
that information system might have [31]. FIPS
199 defines three security objectives that fre-
quently appear throughout other FISMA rele-
vant NIST documents for information systems:
confidentiality, integrity, and availability. Con-
fidentiality protects data from unauthorized
disclosure. Integrity ensures that data is not
manipulated or falsified. Availability ensures
that the information system is accessible.

When documenting the security objec-
tives associated with an information system,
each objective must be assigned a level. Levels
describe the potential impact upon a security objective due to a breach in security
on that information system. There are three levels that are required to be used,
but an organization can add additional levels as needed. The required security
category impact levels are low, moderate, and high.

A security categorization is made for an information system by associating
impact levels with their respective security objectives. All information systems
affected by FISMA must be given a security categorization. The security require-
ments for a system are determined by the highest level, or high water mark, that
appears in the security categorization. One application of the security categoriza-
tions is to determine the priority for restoration of an information system. These
security categorizations are documented as:

SCin f o_system = {(con f identiality, level1), (integrity, level2), (availability, level3)}

A list of minimum security requirements in a number of categories related
to information system management are established by FIPS 200 [20]. These secu-
rity controls determine how the information system is accessed, the procedures
for restoring that system after downtime, the data backup strategy applied to
that system, the personnel that are allowed to access the system, and the organi-
zational response to security incidents such as malware infections. The require-
ments in these categories are met by applying security controls found in SP 800-53
[14]. For example contingency planning for disaster recovery is a required secu-
rity control, and it is outlined in SP 800-34 Contingency Planning Guide for Federal
Information Systems [33].

7

The security controls that are implemented for an information system,
must be documented in a system security plan (SSP). There should be an SSP
for every information system. NIST SP 800-18 is a guide for making SSPs for
information systems [32]. The SSP will be an important document for collect-
ing the information needed to recover an information system. This document
should have the system name, along with the contact information of the system
owner and other important personnel. The list of services supported by the in-
formation system, and a list of expected user organizations should be given. A
general description of the information system should be included in the SSP. But,
most importantly, it is the document where important system interconnections
are documented. This may not indicate which system is dependent on another,
but it would be a good place to start for administrators to determine their in-
formation system interdependencies. Documenting precedences and dependen-
cies is recommended by Taylor [34]. It will need to be assumed for this project,
that the administrators for an organization have followed best practices and that
precedence constraints are known.

The SSP will include a list of security controls for an information system.
These security controls may be common controls or system specific controls.
Common controls are security controls that can be reused and applied to many
information systems. Since controls may include contingency plans and incident
response plans, many systems may be covered by a common response plan in
the event of a disaster. If there is a shortcoming in the security provided by
common controls, this shortcoming may affect many systems. Some analysis may
be needed to demonstrate that common controls, when taken together or across
multiple systems, are free of negative interactions.

2.4 Contingency Planning

Disaster recovery planning for information systems is described in NIST
SP 800-34 Contingency Planning Guide for Federal Information Systems [33].
This document describes several types of disaster response plans, including
generic information system disaster recovery plans, called Information System
Contingency Plans (ISCP). The other types of recovery plans described in the
documents are business oriented Continuity of Operations Plans (COOP), and
Disaster Recovery Plans (DRP). The size and effects of a disaster upon a business
may vary, which leads to the implementation of contingency plans that are devel-
oped for different types of recovery operations. Preparation for server or client
recovery is often referred to as disaster recovery planning in IT, which conflicts
with the business process oriented use of DRP. The NIST documents refer to the
IT oriented case as information system contingency planning (ISCP). DRP and
COOP are more general, and will recover more than just IT infrastructure. DRP
is an emergency response that requires relocation of resources to an alternate fa-
cility. COOP is an emergency response that might take place at an alternate facil-
ity. In the event of a disaster, COOP and DRP may implement ISCPs to restore

8

information systems. Recovery plans may be invoked as a response to an emer-
gency. When a response plan is implemented, its goal should be to recover some
information system from that disaster.

COOP
A continuity of operations plan (COOP) is designed to restore business or
mission critical functions for an organization. COOP does not require that
all systems be restored. It is only required that essential services be restored
and maintained for up to 30 days.

DRP
A disaster recovery plan (DRP) is designed to restore the business functions
housed in or provided by a facility. A DRP is used when the functions of a
facility must be restored at an alternative location.

ISCP
An information system contingency plan (ISCP) is formed in order to re-
spond to an information system disruption. These plans contain informa-
tion that is used in the recovery of specific information systems.

This project is most concerned with finding a feasible order to execute IS-
CPs in order to recover many information systems, as well as assigning the re-
sources required by the ISCPs. An ISCP is expected to contain essential infor-
mation about an information system, such as time objectives, relevant recovery
personnel, a BIA for that information system, and that information system’s se-
curity categorization. The business impact analysis that is included in an ISCP
for a computer system contains additional information that may not be included
in the SSP.

2.4.1 Time Constraints for ISCPs

The information from the BIA may be used in constraints or objective
functions when attempting to prioritize the restoration of information systems.
The BIA contains: a list of business processes that depend on the information
system, a list of resources that the system depends on, and a list of restoration
time objectives. The following time objectives are appear in the document:

MTD
A maximum tolerable downtime (MTD) is an upper limit on the amount of
time a business process can be offline. When this time limit is exceeded, it
is expected that the system that has been disrupted will cause unacceptable
harm to business operations. The business process may depend upon the
functionality of information systems.

9

RPO
A recovery point objective (RPO) determines the maximum length of time
between the performance of data backups. This is a way to determine a
desired maximum amount of data that can be lost in a disaster. Ideally the
amount of data lost would be zero, but there is a cost trade-off involved that
becomes more expensive as the backup policy becomes more comprehen-
sive.

RTO
A recovery time objective (RTO) is the estimated maximum allowable amount
of time to complete a recovery plan for an information system once an ISCP
is activated. It is usually expected that RTO ≤ MTD.

A business process has an MTD, where the downtime of a business process
depends on a set of information systems. In that set of information systems, each
of those systems has an RTO. In some recovery planning methods a recovery
time is included in the definition of the MTD, which includes tasks that must
take place after the recovery. This additional recovery time may be called a Work
Recovery Time (WRT), and is defined such that RTO + WRT ≤ MTD. The NIST
SP 800 documents do not require the use of WRTs in disaster recovery planning.
An additional recovery time objective referred to as Recovery Time Actual (RTA)
is a closer estimate of the actual time required to recover an information system.
RTAs are not required by SP 800-34 to be included in an ISCP. However, SP 800-
34 requires that a Testing Training and Exercise (TT&E) program is in place for
ISCPs [33]. The TT&E program is used to ensure that employees are prepared
to execute ISCPs for which they are responsible. This includes dry runs or even
online tests of disaster recovery procedures. This document also indicates that
during an actual recovery, event documentation needs to be kept detailing actions
required to perform the recovery and any problems that come up. The event
documentation is to be used to form reports that are used to update the ISCP.
From the TT&E program, event documentation, or reports, it is expected that
estimates can be made for RTA. In the event that an RTA can be derived, it would
be preferable to use the RTA rather than an RTO which may be an untested upper
estimate.

The ISCP assigns a team of personnel that will be responsible for carrying
out the disaster recovery process for an information system. This ensures there
are personnel assigned to the task of assessing the extent of the damage in the
activation and notification phase of disaster recovery, which allows the assump-
tion that it is known which systems have been disrupted. The ISCP is a plan
for recovery that is independent of location. An ISCP may be invoked where
the information system is located, or a replacement system may be set up at an
alternate location as would occur during the execution of a DRP or COOP.

10

2.5 Business Impact Analysis

IS 1: ISCP

IS 1: BIA Required
Personnel

Figure 2.3: Information System
Contingency Plan

The BIA indicates which business pro-
cesses require which information systems.
MTDs are given for the business processes as-
sociated with the information system under
consideration. It also assigns RTOs to the com-
ponents of the information system. Since the
MTD is measured from the start of the disas-
ter, if there are too many tasks with too few
resources, the concept of MTDs could render
all schedules infeasible from the outset. This
document provides its own restoration priori-
ties for the components. The priorities assigned to the information systems in
the BIA are established based on the importance of the business processes that
are supported by information systems, rather than on the order in which the in-
formation systems themselves can be restored. The components themselves will
have dependencies on other information systems and it may not be possible to re-
spect the restoration priorities given in the BIA. The BIA may contain information
related to the cost of downtime for a business process. These costs may include
items like penalties for the downtime of the information system exceeding the
MTD of a business process, or costs that build up over time. However, just using
the specification of the BIA, it is difficult to associate cost functions with specific
information systems. If more specific cost information were required by internal
policy, then it would be possible to form a cost based objective function for the
recovery.

This document contains a list of resources that will be required to restore
the information system. Examples of resources to include in the BIA are facilities,
personnel, equipment, software, data files, system components, and vital records.
The resources listed in the BIA include items that may not actually be required
for restoration in many events. The only resources that matter for planning, are
those that have a finite limit or must be shared between recovery tasks. Resources
listed in the BIA may not be shared between multiple information systems and
can be ignored. It will need to be determined and reported as part of the outage
assessment, just which resource will be required for the execution of an ISCP.
Some disasters may have the effect of physically destroying resources required
for recovery tasks. In the event that equipment is destroyed during a disaster, the
BIA also accounts for equipment replacement strategies. The estimated recovery
time for a task may change depending on whether or not equipment has to be
replaced, or borrowed, or serviced by a vendor. Which recovery time will be
applied to an information system will need to be determined during the outage
assessment.

11

IS 1: BIA

Business
Process 1,1

MTD 1,1

Information
System 1,1

RTO 1,1

Information
System 1,2

RTO 1,2

Information
System 1,n

RTO 1,nBusiness
Process 1,m

MTD 1,m
Resources

For IS 1
Cost Info

Hw / Sw
Inventory

Figure 2.4: Business Impact Analysis

2.6 Relevance of FISMA to Scheduling Problems

FISMA provides a complete list of potential tasks that may be performed
in the form of ISCPs. These come with estimated task durations and deadlines
in the form of RTOs and RTAs. The documentation also keeps a list of resource
demands for ISCPs. The BIA and SSP make loose references to data that could be
used as precedence information. The shortcomings of poor precedence informa-
tion is given in the chapter Discussion. During an outage assessment, a smaller list
of tasks that must be performed in order to restore an organization are collected.
With this information, the recovery can be modeled as a Multi-mode Resource
Constrained Project Scheduling Problem.

12

CHAPTER 3

SCHEDULING AND CONSTRAINT PROGRAMMING
REVIEW

3.1 Scheduling Problems

Scheduling problems are concerned with forming sequences of tasks or
activities, denoted by an index i ∈ N = {1 . . . n}, that satisfy a set of temporal
constraints. Each task i has a start time Si and the task takes a duration pi to
complete at its completion time Ci = Si + pi. A schedule S is a set of fixed
start times {Sj| j ∈ N}. A task j may have precedence constraints such that
Sj ≥ Si + pi for some i, that require some tasks to occur in a specific order. A
schedule is feasible if its start times satisfy the set of constraints. In some cases,
just finding a feasible schedule may be enough to meet our needs. In other cases,
feasible schedules are chosen to optimize an objective function. The times will be
discretized so that a task has positive integer duration, and tasks are scheduled to
occur at integer valued times. The range of values that the start time of a task may
take on gives the task four properties that are important. The smallest start time
of a task is called an early start time (est) and the associated completion time that
is at esti + pi is the early completion time (ect). The largest start time of a task is
called a late start time (lst), and the associated completion time that is at lsti + pi
is the late completion time (lct). A start time must occur between its early and
late start times, esti ≤ Si ≤ lsti. Common temporal constraints for the scheduling
problem are given in table 3.1

The makespan is the duration of a schedule. The start of a schedule is
marked by a dummy activity S0 = 0 and the makespan is marked by the starting
time of a final dummy activity Sn+1. A common objective is to minimize the
makespan of the schedule. If there is cost information available, another common
objective is to minimize the cost associated with a schedule. A schedule that
minimizes the makespan will not necessarily minimize the cost, and vice versa.

The precedence constraints of a schedule may be represented as an activity
network (AN), such as an activity on node (AoN) network. These networks
are reviewed in [8, 23]. Using an AoN network, the precedence constraints
form a digraph G(V, E). Set V represent the tasks i ∈ {0, . . . , n + 1}, where
tasks 0 and n + 1 are the dummy tasks for the start and end of the project.
Set E contains arcs that represent precedence constraints where the weights of
the arcs indicate the duration of the preceding task. If i precedes j, then arc

13

Si + pi ≤ t Deadline constraint, i finished before t
Si ≥ t Release constraint, i cannot start until t
Si + pi ≤ Sj Precedence constraint, i finished before j starts
Si + pi ≤ Sj or Sj + pj ≤ Si Disjunctive constraint, i and j cannot overlap in time

Table 3.1: Common Scheduling Constraints

(i, j) ∈ E = {(i, j)| Sj ≥ Si + pi, i, j ∈ V}. The properties of activity networks
make it possible to determine if a scheduling problem is feasible. A scheduling
problem, without release dates or deadlines, is feasible if there are no cycles in the
precedence graph. Precedence constraints are given for all initial and terminal
activities, so that all tasks occur between S0 = 0 and Sn+1 = maxi∈V{Si + pi}.
An upper bound h called a horizon can be given on the duration of the project,
where h = ∑n

i=0 pi and Sn+1 ≤ h. Scheduling problems are reviewed in [5, 23].

3.1.1 Resource Constrained Project Scheduling Problems (RCPSP)

If a task requires resources to be performed, resource constraints will
be applied to a task. This brings us to the topic of Resource Constrained
Project Scheduling Problems (RCPSP). Resource Constrained Project Scheduling
problems are treated in [2, 5, 23]. Each task i requires a constant amount of
available resources. These resources are assumed to be renewable, so that when
a task is completed, the amount of resources it required become available for
use again. Adding resources to the scheduling problem means that a feasible
schedule must be both time and resource feasible. A task i requires an amount
rik, called a demand, of resource rk. Given a set of renewable resources R =
{rk|k ∈ {1 . . . K}}, the total resource requirements for a resource rk at any time
has an upper limit which is called the resource capacity Rk.

An active set A(S, t) is a convenient way of denoting which tasks are in
progress at a time period t for a given schedule S, where A(S, t) = {i ∈ V|Si ≤
t < Si + pi}. The usage of resource rk at time t is given by rk(S, t) = ∑i∈A(S,t) rik.
Renewable resources limit the number of tasks that can be performed at the same
time. There is an optimal solution to the RCPSP if there are no cycles in the AoN
precedence graph and there is a feasible solution.

The Resource Constrained Project Scheduling Problem with minimum

14

makespan objective can be stated as:

Min Sn+1

subject to rk(S, t) ≤ Rk , k ∈ {1 . . . K}, t ∈ [0, h)
Si + pi ≤ Sj , f or (i, j) ∈ E

Si ≥ 0 , i ∈ {1 . . . n + 1}
S0 = 0

rk(S, t) ≤ Rk Cumulative Renewable Resource Constraint
rk(S, t) ≤ 1 Disjunctive Cumulative Renewable Resource Constraint

Table 3.2: Common RCPSP Constraints

3.1.2 Multi-Mode Resource Constrained Project Scheduling Problems
(MMPSP)

The RCPSP can be further specialized by allowing a task’s resource re-
quirements to be satisfied by more than one resource, which results in the
Multiple-Mode Resource Constrained Project Scheduling Problem (MMPSP). The
MMPSP is given a general review in the following papers [3, 11]. Methods for
solving the MMPSP are discussed in the following [2, 23].

If tasks in a project may be satisfied by different combinations of resources,
then those tasks may be performed in different modes. Each task i has an integer
total number of modes Mi that the task may be performed in. In addition to
solving the problem under temporal constraints, a feasible mode assignment
x ∈ N n needs to be made that also satisfies the resource constraints. The
multimode problem also adds the potential for using non-renewable resources,
where the resources that are used by a task are consumed and no longer available
to other tasks. Task durations may depend on the mode x so that the task
duration is now written as pi(x).

The set of renewable resources is now denoted Rρ and the set of non-
renewable resources is denoted Rν. A renewable resource limits the number of
tasks that can be executed in parallel which depend on that resource, but the
resource is available at all times during the project. A non-renewable resource
may be used up, and limits all tasks which depend on that resource for the entire
duration of the project. The active set and resource usage also depend on the
mode of the project, where

A(S, t, x) = {i ∈ V|Si ≤ t < Si + pi(x)}

15

rk(S, t, x) = ∑
i∈A(S,t,x)

rik(x)

The definition of resource usage changes with the mode assignment x, so
that

rik(x) = ∑
m∈Mi

rikmxim

xim =

{
1 if task i executed in mode m
0 otherwise

The MMPSP can be stated as: [2, 23]

Min f (S)
subject to rk(S, t, x) ≤ Rk , f or rk ∈ R = Rρ ∪Rν, t ∈ [0, h)

n

∑
i=1

rik(x) ≤ Rk , f or k ∈ Rν

Si + pi(x) ≤ Sj , f or (i, j) ∈ E

Si ≥ 0 , i ∈ {1 . . . n + 1}
S0 = 0

rk(S, t, x) ≤ Rk, k ∈ Rρ Mode Dependent Cumulative Resource Constraint
∑n

i=1 rik(x) ≤ Rk, k ∈ Rν Non-Renewable Resource Constraint

Table 3.3: Common MMPSP Constraints

3.1.3 Multi-Skill Resource Constrained Project Scheduling Problems
(MSPSP)

One version of the MMPSP that is relevant to this project, is the Multi-Skill
RCPSP (MSPSP). This problem is treated in [2, 7, 15, 17, 28].

In one variation of the MMPSP, employees are the resources that are used
by each task. The skill constraints for a task are met by assigning employees that
have those skills to the task. Employees can only be assigned to a single task
during a time period. Employees are treated as a disjunctive renewable resource,
where a resource rk is disjunctive if the capacity Rk = 1. In this problem, no other

16

resources are considered except employees. For this Multi-Skill example, task
durations do not vary with the mode of the task.

Employees with the same skills are interchangeable. Any employee with
some skills required by a task may be assigned to that task. Each assignment
of employees to a task, represents a mode of execution for that task. Since
employees are interchangeable, the number of modes for this problem is usually
large. Enumerating all of the modes in order to solve the problem can be
unreasonably difficult.

A set of skills that will be considered in the project are given as a set
L = {L1, . . . , Lp}. The skill requirements for a task are satisfied by assigning
resources that possess those skills to a task. An employee that does not have
a skill to contribute to a task should not be assigned to a task. The number of
resources required to satisfy a skill requirement is bij for task i and skill Lj. An
employee has a 1 or 0 value of the skill. Let ljk represent the whether or not an
employee k has skill j. Instead of allowing there to be a single mode for every
possible assignment of employees to tasks, it is easier to represent the mode x as
a n× k matrix, where xik = 1 if employee k ∈ {1 . . . K} is assigned to task i, and
xik = 0 otherwise. Then the skill constraint is a sum, such that for task i and skill
j, ∑

p
s=1 ∑K

k=1 xiklsk ≥ bij.

This formulation of the problem below is simplified from the version
presented in [2]:

Min f (S)
subject to rk(S, t, x) ≤ 1 , f or k ∈ {0, K}, t ∈ [0, h)

Si + pi ≤ Sj , f or (i, j) ∈ E
p

∑
s=1

K

∑
k=1

xiklsk ≥ bij , f or i ∈ {1 . . . n}, j ∈ {1 . . . p}

Si ≥ 0 , i ∈ {1 . . . n + 1}
S0 = 0

∑
p
s=1 ∑K

k=1 xiklsk ≥ bij Skill/Assignment Requirement Constraint
rk(S, t, x) ≤ 1 Disjunctive Cumulative Resource (Employee) Constraint

Table 3.4: Common MSPSP Constraints

3.2 Solving Scheduling Problems

The problem considered by this paper is an MMPSP that has skill require-
ments similar to an MSPSP. Approaches to solving the MMPSP include enumer-
ative and heuristic methods. The following books contain common methods for

17

solving the MMPSP [2, 23]. For this project, Constraint Programming will be used
to search for solutions to a problem in disaster recovery scheduling.

3.2.1 Constraint Programming

Constraint Programming (CP) is a method that can be used to solve,
among other things, combinatorial optimization problems. It comes from re-
search in Artificial Intelligence (AI) and Operations Research (OR). The purpose
of CP is to determine if a problem has a solution, given some constraints and
variables with associated domains. A solver is used to determine if a problem
has a solution. The solver may do this by performing search and constraint prop-
agation. A brief introduction to these concepts will be given in the following
sections. Introductions to CP can be found in [12, 18]. More thorough coverage
can be found in [29].

3.2.2 Variables and Constraints

A variable xi is given an associated domain di from which it might take
values. A shorthand notation [a..b] is used to represent a set of integer values
{a, a + 1, . . . , b}. A partial assignment is made when only some of the variables
of interest have been given values, and an assignment is made when all variables
have been given values. A primitive constraint cj on variables x1, . . . , xk maps
to true or false. Constraints may be formed from the usual combinations of
mathematical operations and relations on integers, such as +, ×, =, <, ≤, etc.
An example primitive constraint is xi ≤ xj + xk. Primitive constraints are true if
they hold under some assignment of values to the variables from their respective
domains, otherwise the constraint is false. A constraint is satisfiable if it has an
assignment for which it holds.

Complex constraints may be made by combining multiple constraints.
Primitive constraints may be connected by logical operations to form new con-
straints, such as by conjunction ∧, disjunction ∨, negation ¬, implication →,
and equivalence ≡. Another complex constraints might describe set member-
ship where P(x) is true if and only if x ∈ S . A constraint might describe
sequences or whether a list of variables is sorted. One common constraint is
AllDi f f erent(x1, . . . , xk), which is true only if xi 6= xj for i, j ∈ {1, . . . , k}. More
complicated constraints like the AllDi f f erent constraint are called global con-
straints. It is often better to model a problem using available global constraints,
rather than attempting to model them as primitives. A summary of global con-
straints, including AllDi f f erent, is given in [27].

A solver is used to determine if there is an assignment of values to
x = (x1, . . . , xn) such that all of the constraints are satisfied. A solver may search
for solutions to the problem by assigning values to variables and then shaving

18

down the domains for the remaining variables until each variable has taken on a
single value. At this point, the solver has arrived at a potential solution for the
problem, which then needs to be evaluated to determine if it is feasible. If the
solution to the problem is not unique, the solver may arrive at different solutions
by choosing to cut down the domains in a different way, and assigning different
values to the variables. From this point on← will be used to denote assignment,
as in the computer programming sense.

3.2.3 Consistency

Consistency checks are performed in CP to determine if the domains of
variables contain values that are inconsistent with their constraints. A feasible
solution can not be formed from values of variables that are inconsistent, so
those values can be removed from the domains of their associated variables.
This pruning of the domains is constraint propagation, which is one of the
core features of CP. Different methods are used, such as node, arc, bounds, or
other more complex checks. The checks that are used are often polynomial time
methods. Finding domains that are consistent for all of the constraints does not
usually result in a solution to the problem. Having consistent domains indicates
that there might be a feasible solution, but it does not guarantee it.

Node consistency is achieved when the domain of a single variable is
consistent with the constraints that only involve that single variable. Given a
constraint X ≥ 5, for d = [0..10], the values from [0..4] can be removed from the
domain, and after reassignment d ← [5..10] the domain d is consistent with the
constraint. If there are no values in a domain that are consistent, then d = ∅ and
there is no solution to the problem.

Arc consistency is achieved when the domain of two variables are consis-
tent with the constraints that involve only those two variables. Given constraints
Xi + Xj ≤ 5 and di = [2..5], dj = [0..5], the values [4..5] can be removed from do-
main dj, and after reassignment dj ← [0..3] the two domains become consistent
with the constraints.

Each time values are pruned from a domain for one variable, all of the
other constraints involving that variable need to be checked again for consistency,
which means checking the domains of all of the variables involved in those
constraints. Since simply finding consistent domains does not usually result in
finding a feasible solution, a guess and check type process called search is used to
assign a value to a variable and then check to see if that leads to inconsistencies.

3.2.4 Search

Search is used in an attempt to determine if a feasible solution exists to a
problem. A variable is unbound if its value is still unknown and may be any one

19

of multiple values from its domain. An unbound variable is selected and a value
is assigned to that variable from its domain. After the variable is set, propagation
occurs to determine if the constraints are still satisfiable after the assignment has
been made. After propagation, if there is a domain di = ∅ then the value that was
assigned to the variable cannot lead to a feasible solution and the search process
undoes the previous decision and assigns a different value to the variable. If
there are no inconsistencies after propagation, then the next variable is chosen
and assigned a value. This process continues until a feasible solution is found, or
until the search process has proven that there are no solutions.

This describes backtracking, which is a common search process. A tree
search is used. Nodes in the tree represent states which describe which variables
have been assigned variables and the domains of all variables. A value is selected
and assigned to the variable at the current search depth, and the tree search
follows a branch to a new state. Propagation occurs, and if all the resulting
domains are consistent, the process is repeated. A potential solution is found
when the search reaches a leaf node of the tree, which corresponds to the event
that all of the variables are assigned values. The assignment at this node is
evaluated to determine if it is a feasible solution. If it is, then the search process
can stop. If it is not a feasible solution, then the search backtracks up the
tree and then chooses a different value for the variable at that search depth.
Backtracking can be used to make a complete solver, which if given sufficient
time is guaranteed to reject all infeasible solutions and find all feasible solutions if
they exist. The problems treated by CP are often NP-Complete, which means that
the length of time required by the solver to locate a feasible solution or determine
that there are no solutions grows exponentially with the number of variables used
to model the problem. Heuristic search methods are often used to approach these
problems, where the method is not guaranteed to find good solutions, but may
work well enough for the user’s needs in practice.

If an objective function is made that associates a real number with an as-
signment, an optimization process can be performed. The objective is evaluated
at each feasible solution and its value is recorded for that assignment. After find-
ing a feasible solution, the search may continue for other feasible solutions. At the
end of the process, the assignment with the best objective value is selected. This
makes it possible to find optimal solutions through backtracking if they exist.

As an example for backtracking, suppose we have a problem for x =
(x1, x2) with initial domains d1 = [a1..b1], d2 = [a2..b2]. A solution is required
that satisfies the following constraints:

x1 + x2 ≥ k
x2 ≤ x1 − 2

The solver may choose a value x1 = a1 from d1. Suppose propagation
occurs because of the second constraint, and the domain for x2 is updated to

20

Figure 3.1: Descent to Leaf Node

(x1∈[a 1..b1] , x 2∈[a2 ..b2])

x 2=a2

(x1=a1 , x2=a2)

x1=a1

(x1=a1 , x2∈{a2, a1−2 })

x1=a1

(x1∈[a 1..b1] , x2∈[a2 ..b2]) (x1∈[a 1..b1] , x2∈[a2 ..b2])

d2 = {a2, a1 − 2}. After propagation is complete, the solver assigns a value to
x2, which brings the solver to the leaf node at x = (a1, a2). If this assignment
was a feasible solution, the solver could stop the search at this point and return
the assignment as a solution. This is the final assignment in Figure 3.1. Suppose
that the assignment is not feasible, because it violates the first constraint, and
x1 + x2 = a1 + a2 < k. The solver rejects the solution at this leaf node, and
backtracks to the previous node, except a2 is removed from the set of possible
values that the x2 can take. Then the next value for x2 is chosen, where x2 =
a1 − 2. This is the final assignment in Figure 3.2.

Figure 3.2: Backtrack

(x1=a1 , x2=a1−2)

x2=a2

(x1=a1 , x2=a2)

x1=a1

(x1∈[a 1..b1] , x2∈[a2 ..b2])

x2=a1−2x2=a2

(x1=a1 , x2=a2)

x1=a1

(x1∈[a 1..b1] , x2∈[a2 ..b2])

a1+a2<k

21

3.2.5 Cumulative Constraints and Scheduling

In scheduling problems, variables may represent start times, task dura-
tions, employee assignments, etc. Most of the constraints given in Table 3.1 may
be expressed as primitives. In order to express the constraints of the RCPSP and
MMPSP, complex constraints are needed. In addition to the simple constraints
such as precedence c ← (Sj ≥ Si + pi), cumulative resource constraints are be
used. This constraint ensures that the resource demands of tasks in progress at
the same time do not exceed the capacity of the resource. This has the same effect
as the constraints on r(S, t) in the RCPSP. The difference, is that in implementa-
tion the cumulative constraint is supported by an algorithm that allows a solver
to remove inconsistent values from the domains for the start times Si in a way
that preserves solutions if they exist.

A cumulative resource constraint requires a set of tasks T′ = {i1, . . . , im}
with their associated resource demands r′ = {ri1k, . . . , rimk}, and the capacity
of the resource they share Rk. The cumulative constraint may be written as
Cumulative(T′, r′, Rk). This constraint will take into account the durations of the
tasks, their start times, and will adjust their domains.

A simple review of the cumulative constraint is given in [18]. Algorithms
for implementing cumulative constraints are given by [19, 30, 36]. One method
for implementing a cumulative constraint is called edge finding. For the method
given by Vilim, the constraint keeps track of a lower bound on the early comple-
tion time of a set of tasks and the resource usage that results from those tasks.
The tasks in the set do not necessarily have to be performed at the same time.
It groups the tasks according to the latest completion time of a task. As it adds
tasks to the group, at some point a task newly added to the group may cause
the resource capacity to be exceeded. This indicates that the recently added task
must occur later in time, and early start times for that task are pruned until the
resource conflict is resolved.

This manner of edge finding described here is implemented using energy
based reasoning, as described by [30, 36]. The energy of a task i is its resource
demand multiplied by its duration, ei = ri pi. The energy of a set Θ is eΘ =
∑i∈Θ ei. Using this energy based rule, if a set of tasks Θ is already grouped
together then another task i can be checked to see if its start time needs to be
changed by adding it to the group. Let the capacity of the resource be R. If
the energy of the combined set is eΘ∪{i} > R(lctθ∪{i} − ectΘ) then this tells us
something about the completion time of all tasks in the set versus the completion
time of the task i, Cj < Ci for all j ∈ Θ. This allows the start times of individual
tasks to be adjusted by comparing them to groups of tasks. If i satisfies the
inequality such that Cj < Ci for all j ∈ Θ, then the early start time of i can be

increased to esti = maxω⊆Θ(estω + deω−(R−ri)(lctω−estω)e
R). A similar rule exists

which is used to adjust the end times of tasks.
To demonstrate the cumulative constraint, suppose there are three tasks

that require the same resource with a capacity of R = 3:

22

Task esti lsti pi r
Task 1 0 7 3 1
Task 2 0 7 3 2
Task 3 0 7 3 3

The solver may begin the search by selecting Task 1 and fixing its start time at
S1 = 0. Since Task 3 demands the full capacity of the resource, the cumulative
constraint will prune the domain for the start time of Task 3 by pushing its early
start time up to est3 = 3 to prevent a resource conflict. The resource demand of
Task 2 will conflict with the demand of Task 3, but neither of their domains will
be pruned since they can be scheduled to occur at different times. The search may
then choose Task 2, whose resource demand is low enough that the start time of
Task 2 can be fixed at S2 = 0, and Task 2 may occur at the same time as Task 1.

Task 1

Task 2

Task 3

0 2 4 6 8 10

Task 1

Task 2

Task 3

0 2 4 6 8 10

Figure 3.3: Cumulative Constraint: Before and After Propagation

To demonstrate the disjunctive cumulative constraint, suppose there are
two tasks that require the same disjunctive resource:

Task esti lsti pi r
Task 1 0 3 3 1
Task 2 0 7 3 1

The solver may begin the search by selecting Task 1 and fixing its start time at
S1 = 0. The cumulative constraint will then prune the domain for the start time
of Task 2 by pushing its early start time up to est2 = 3. The solver could have also
started by fixing the start time of Task 2 at S2 = 0 instead, and then pruning the
domain for the start time of Task 1 by pushing the early start up to est1 = 3. This
would have the effect of fixing the start time of Task 1 at time S1 = 3 without the
solver having to choose Task 1 and set its start time during search.

In some schedules, there may be a need for optional tasks. This occurs in
the MSPSP, where the mode of the task may be used to indicate whether or not
it is assigned to an employee. There are methods for scheduling optional tasks,
given in [37]. Instead of keeping a tally of which employees are assigned to which
task, an optional task may be created for each employee that may be assigned to
the task, which occurs at the same time as the actual task. Then, the optionality
of those tasks is constrained so that the skill constraint is met. Optional task

23

Task 1

Task 2

0 1 2 3 4 5 6 7 8 9 10

Task 1

Task 2

0 1 2 3 4 5 6 7 8 9 10

Task 1

Task 2

0 1 2 3 4 5 6 7 8 9 10

Figure 3.4: Disjunctive Cumulative Constraint: Before and After Propagation

scheduling works by allowing the resource demand of a task to vary with the
mode, so that the demand of task i on resource j is

rij(x) =

{
rij if x = 1 (task performed)
0 if x = 0 (task not performed)

The tasks are subject to the cumulative constraint, but only the performed tasks
count against the resource capacity at a given time. Constraint propagation may
render some tasks unperformed. If an optional task of unknown performance
becomes inconsistent, it is set to unperformed. The cumulative constraint on
optional tasks can be given a set of integer variables that indicate whether or
not their associated task is performed x′ = {xi1 , . . . , xim}, so that the cumulative
constraint for optional tasks might be written Cumulative(T′, r′, x′, Rk). This
notation is non-standard, but it is descriptive.

3.2.6 Bounds

The objective value at a feasible solution can be used as a bound on the
optimal objective value. Other bounds on the optimal solution can be determined
through a problem specific method. In the case of objective minimization, the
objective value forms an upper bound on the value of the optimal solution and
likewise a lower bound may be found. If the difference between the upper bound
and the lower bound is small enough, the search may quit as it is close enough
to an optimal solution for the user. Bounds may also be used to guide search
in cases where the lower bound of a parent node may be no less than the lower
bounds of its children. In this case a node with the least lower bound may be
explored in order to push up the lower bounds found during the search process,
so that the program can guarantee to the user that it found a solution within some
distance of the optimal solution. During the search process, it is common for the
lower bound and the objective value to approach each other quickly early on and
then slowly draw closer as the search is allowed to progress, as in Figure 3.5. In
order to avoid the computation time that is required for small improvements in
the solution, the user can set a limit β on the bound so that the search process

24

stops if objective value−lower bound
lower bound ≤ β. For example, if the user desires the process to

stop if a solution is determined to be within 5% of the optimal solution then the
user can set β = 0.05. All of the following lower bounds discussed are bounds on
the makespan of a project.

0 5000 10000 15000 20000 25000
50

55

60

65

70

75

Objective Value Over Time

time (ms)

m
a

ke
s

p
a

n

Figure 3.5: Objective Value Ap-
proaching Fixed Lower Bound

Lower bounds that are relevant to
the MMPSP are given by [15, 35]. One
simple lower bound on the makespan can
be found by dividing the horizon of the
project by the number of workers avail-
able. Other methods can be found using an
energy based approach. The energy based
approach is the same as the process used
in edge finding to estimate the early com-
pletion time of a project for the cumulative
constraint. The energy of a task i is its re-
source demand multiplied by its duration,
ei = ri pi. A lower bound can be put on the
duration of the time for a task to complete
by subdividing the task into a sequence of
unit duration tasks that contain a portion of the energy assigned to the original
task. Energy is allocated to each subtask by dividing the total task energy by the
capacity of the resource ei

Ri
. The new subtasks are allowed to be executed in paral-

lel. If the capacity of the resource is large enough to accommodate them, several
subtasks may be scheduled to occur in parallel.

Putting a lower bound on the duration of a single task might not make
sense when its duration is fixed, but the same reasoning is used to put a lower
bound on the duration of a set of tasks. The energy of a set of tasks Θ is the sum
of the energies of the tasks, eΘ = ∑i∈Θ ei. The set of tasks that require the same
resource are subdivided into unit duration tasks with their portion of energy
requirements, and the precedence constraints between tasks are temporarily
ignored. A lower bound on the duration of a group of tasks is d eΘ

Ri
e. The early

start time of a set of tasks Θ is estΘ = mini∈Θ{esti}. The lower bound on the early
completion time of set Θ is ECTLB(Θ) = estΘ + d eΘ

Ri
e. To get a lower bound on

the project duration, this lower bound can be found for each cumulative resource.
The largest of these lower bounds is still a lower bound on the duration of the
project, and this can be used to estimate how close the current solution is to
optimality.

Lower bounds can be found from disjunctive resources like employees by
summing the durations of the tasks that resource is required for. If an employee
is assigned to a set of tasks Θ, then a lower bound on the completion time
of the project is the total duration of tasks that the employee must perform,
beginning from the earliest start time of the tasks that they have to handle
ECTLB(Θ) = estΘ + ∑i∈Θ pi. This is just another form of finding lower bounds
through energy based reasoning, but for disjunctive constraints.

25

For the MMPSP with simple temporal constraints, it must be possible to
model the precedence constraints as an acyclic digraph for feasibility. An acyclic
digraph is one of the special cases where it is reasonable to find the longest path
in a graph. In general, finding the longest path is NP-complete. The durations
of the tasks act as distances, and the precedence constraints are the arcs between
tasks. The longest path is a lower bound on the duration of the project due to the
precedence constraints that must be respected. This lower bound can be found
by the Bellman-Ford algorithm using the dummy node for the start of the project
as the starting point.

A lower bound on the makespan of the project may be found by sifting
through the domains of the task start variables at different search depths and
finding the largest early completion for those tasks. When a variable is scheduled,
its start time Si is set to be equal to its early start time esti. The largest early
start time is estmax = max{est1, . . . , estn}. A set of tasks Θl that may affect the
completion time of the project is made where Θl = {i | lcti > estmax}. In order
to find the largest early completion time, the set of early completion times that
exceed estmax is found by looking at the set of tasks contained in Θl. A new set is
made Θe = {i | esti > estmax, i ∈ Θl}. The sets can be recorded at each level of
a tree search so that only a subset of the full list of variables needs to be checked
at each decision. When the solver backtracks, the set of late completion times can
be restored to its previous state.

26

CHAPTER 4

PREVIOUS APPROACHES TO OPTIMIZATION IN DISASTER
RECOVERY AND INFORMATION TECHNOLOGY

Models in disaster recovery may look at the problem from a broad range
of perspectives. The mathematical approach used to solve a disaster recovery
problem will vary with the intended recovery efforts. The final result may be a
simple assignment problem, a traveling salesman problem, a project scheduling
problem and so on. The disaster recovery problem is often split up into phases,
where the number and purpose of phases involved vary depending on the
phase definitions that are used. Distinguishing between phases of a disaster
recovery problem creates opportunities to optimize the disaster recovery process
at different points.

The four phase approach referenced by Altay et al. in recovery planning
for natural disasters is similar to the approach used by the US federal government
for containing computer security incidents on information systems [1, 4]. The
disaster recovery problem may be approached as a mitigation, preparedness,
response, or recovery issue [1]. This four phase approach will be adopted for
the following sections. The mitigation phase eliminates hazards before there
is a problem to lessen the potential impact of a disaster. The preparedness
phase distributes information to potentially affected parties and trains emergency
personnel to respond to a disaster. The response phase is the immediate reaction
after the declaration of a disaster in order to get the effects of the disaster under
control. The recovery phase is the longterm effort to bring the situation back
to normal. The efforts from one phase may fit into another phase, and the
distinctions between phases can become difficult.

4.1 Mitigation and Preparedness Phases

In IT, a common preparation for a disaster is backup planning. Backup
planning contains tasks that fit into both mitigation and preparedness. These
plans exist to prevent data loss in the event of a disaster. Duplicate copies of
important information are kept, and may be used to restore a system in the
event that it is disrupted. Decision theory may be used to select and compose
backup strategies to prepare for data loss [21]. The plans are formed by serial
or parallel combinations of storage technologies which provide comprehensive

27

backup strategies for different applications. The purpose of combining storage
methods in this way is to minimize the RTO, RPO, and cost associated with a
strategy.

An approach to optimizing disaster recovery can be made by composing
disaster recovery plans (DRP) out of smaller sub disaster recovery plans (SDRP).
One goal is to solve a sub-plan selection problem, in order to form a DRP [24,
38]. The term DRP was already used above, from NIST SP 800 documents, to
describe a recovery plan that requires relocation of computing resources. In this
case, a disaster recovery plan is any plan that is invoked during a disaster. An
SDRP is a plan to perform some restorative action in the event of a disaster and a
DRP can be treated as set of sub disaster recovery plans (SDRP) which have some
associated costs and resource requirements.

In solving the sub-plan selection problem, it is assumed that an organiza-
tion has already created a list of SDRPs to perform recovery actions as part of its
operations. The organization is assumed to have some desired features in mind
for their DRP, such as minimal cost or time to complete. The organization’s needs
are reflected in the objective function or constraints used in the model. These de-
sired attributes may come from a BIA in the form of time objectives such as MTD
and RTO. Bryson et al. approached the sub-plan selection problem by maximiz-
ing what was termed the overall protective value of the DRP [24]. The protective
value was determined from the costs and resources used by the SDRPs, an es-
timate of the reliability of an SDRP, and the likelihood that a disaster would be
covered by an SDRP.

Difficulties may come from the organization that will be implementing the
plan. In practice, the organization may not have enough previously established
SDRPs to adequately cover the disasters that they would like to be prepared for.
The resources listed for an SDRP may be a best guess since the SDRP planners
may not have an adequate understanding of the costs or resources required to
implement that SDRP. Attempting to solve the sub-plan selection problem may
highlight the shortcomings in the existing SDRPs or reveal missing SDRPs, and
help the organization to formulate more comprehensive plans.

The DRPs and SDRPs from the previous research papers are analogous
to ISCPs, DRPs, and COOP from NIST documentation. The issue of having
an inadequate number of SDRPs can be sidestepped by narrowing our focus
to organizations that meet FISMA requirements. An organization that meets
these requirements must have contingency plans for every important system.
However, the same human induced problems regarding estimation of a plan’s
cost and resource usage persist under the assumption of FISMA compliance.
Poor estimates in the disaster recovery plan could lead to an infeasible plan being
deemed feasible.

28

4.2 Response and Recovery Phases

Decision theory may be applied to the response and recovery phases of
disaster planning, by individually managing resources and personnel to handle
problems [28, 40]. Zeng et al. use a Markovian Decision Process (MDP) to rep-
resent the behaviors of actors during a disaster [40]. Actors are individuals that
have been assigned roles and responsibilities during a disaster recovery. These
actors may have responsibilities other than disaster response, such as reporters or
public relations workers. This process will lead the actors to make decisions dur-
ing a recovery. Zeng et al. proposed to represent the MDP using a language exten-
sion of DT-GOLOG, which is an implementation of a decision theoretic logic pro-
gramming language. This method appears to have no implementation to date.

Rolland et al., treated the disaster recovery process as a generalized mul-
tiple resource constrained project scheduling problem (MRCPSP), which they
called a disaster response scheduling problem (DRSP) [28]. This is an assignment
problem with a scheduling component. Emergency response teams are assigned
to tasks, where each task requires some resources to complete. Tasks may have
precedence relations, so that one task may be required to be completed before
another. Teams can be assigned to any task, but a mismatch cost will be incurred
if they are assigned to a task that they are not suited for. In this case, resources
are assigned to tasks and teams are scheduled to complete those tasks in order to
facilitate a disaster recovery. The objective is to minimize the costs incurred dur-
ing disaster recovery by scheduling the best available teams to handle disasters
in a reasonable order.

In the context of disaster recovery in an IT department, it may be possible
to treat the problem as Rolland et al. have done, by assuming that personnel
are able to operate different systems with differing skill levels. This would not
be unusual in an IT department, where for example, a Windows administrator
may occasionally be called upon to perform Linux administration tasks. If an
IT department collects metrics from all tasks that are assigned to its employees,
there may be sufficient data available to build reasonable penalties associated
with assigning personnel to tasks that they are not suited for.

However, unlike the case in natural disaster recovery, it is not likely to be
possible to assign IT personnel to all activities. It is often the case that personnel
in an IT department are granted or denied access to components of information
systems based on training plans, clearance levels, their work assignments, the
location of their work areas, and other company authorizations. It may be
assumed that personnel are only granted access to systems that they are qualified
to handle. Under the assumption of FISMA compliance, employee authorizations
and training are recorded. This information is may be queried from company
servers. Under these assumptions, any workers with access to a system are
equally qualified to restore the system. In this way, workers do not have to be
assessed for relative measures of competence because the organization grants or
denies administrative permissions based on the performance measures used in
their training program.

29

Ideally, only qualified workers are granted access to an information sys-
tem. This assumption may be problematic in reality, because workers are often
granted rights to systems they are not qualified to handle. This problem may
be partially resolved by considering the extent of the employee’s usual work ar-
eas. An employee can be assigned to restore systems to which they have access
within their usual work areas. The onus of responsibility falls to the organization
to maintain best practices in system administration and to keep their authoriza-
tions and training data up to date.

30

CHAPTER 5

DISASTER RECOVERY IN INFORMATION TECHNOLOGY
AS A PROJECT SCHEDULING PROBLEM

5.1 Recovery Problem

The recovery problem as a Multi-Mode Resource Constrained Scheduling
Problem has much in common with the MSPSP given earlier. Each task is
associated with a single skill, and no other task requires that skill. The skill
represents whether or not the employee is eligible to perform the task. A pool
of employees that possess that single skill will be formed for each task during
preprocessing. An employee has a unit skill value, so that the required skill level
for the task is the number of employees from the pool that must be assigned
to the task. An employee is a disjunctive renewable resource, in that they can
only perform one task at a time. Once assigned to a task, that employee must
carry it through to completion. This recovery problem differs from the MSPSP,
in that each task may also require renewable resources that are not employees.
To separate the set of resource that represent employees from other renewable
resources, a new set Re is used for the set of employees. An employee is
represented by an integer id number i ∈ Re. The resource requirement of a task
for employees is the skill requirement bij for task i and skill j, which is satisfied if
the mode for the task assigns the number of employees required for a task.

5.2 Summary of Method

A short summary of the proposed workflow for producing a disaster re-
covery schedule is presented first. Before a disaster occurs, the security packages
for information systems are collected, reviewed for obvious conflicts, and stored
in an accessible format. Obvious conflicts would be things like bad precedence
constraints, overly large resource requirements, or cyclic dependencies between
tasks. The data will be used to make an organizational precedence graph that
represents the information systems for the entire organization. The problem will
be stored in preparation for a disaster.

After a disaster occurs, an outage assessment is used to mark which sys-
tems were disrupted in the stored organizational precedence graph. This com-

31

Security
Packages

Check for
Cycles

Infer Release
Dates

Infer
Deadlines

Check
Employee

Requirements
Save Problem

Make
Organization
Precedence

Graph

Figure 5.1: Process Summary: Before Disaster

bined information is used to produce a new precedence graph which only rep-
resents disrupted systems. After the information regarding the disaster is pro-
cessed, a search is made for feasible recovery schedules by passing the problem
to a solver.

Load
Problem

Make
Recovery

Precedence
Graph

Outage
Assessment

Solve

Mark Disrupted Nodes
Discovered by Outage

Assessment

Figure 5.2: Process Summary: After Disaster

5.3 Problem Assumptions

In this paper, it is assumed that the planning organization is following
all relevant NIST guidance. Just assuming FISMA compliance is not enough to
form a feasible scheduling problem. Some loose requirements already present
in FISMA need to be strengthened. In this case, we must make assumptions
about the data that is provided by the security categorization, BIA, SSP, ISCP,
the availability of this data, and the accuracy of the data. If there are details that
are required in order to move forward with the project, but are not guaranteed
by NIST SP documents or FISMA, they will be noted.

In addition to the interconnection agreements from the SSP and some
precedence requirements from the ISCP, the precedence constraints between in-
formation systems are known. The dependencies between information systems
is critical since these determine which information systems must be restored first.

32

Due to the ambiguity introduced by the nested systems-of-systems concept asso-
ciated FISMA compliance, it is assumed that only the precedence and duration
requirements that come from the security package for a singleton information
system, a system which has no sub-components with their own security pack-
ages, can be respected. It is assumed that any cyclic dependencies in the graph
that defines the precedence constraints within the organization will be resolved
before the recovery plan is needed.

A finite number of personnel have limited access to buildings or comput-
ers. The only personnel that will be considered for restoring an information sys-
tem will be those listed in the ISCP. Among those administrators listed in the
ISCP, it is possible that only a subset of them have access to the information sys-
tem. In order to determine if an administrator has access to the information sys-
tem, the access controls for that system will need to be consulted. It is assumed
that the access controls are documented and accessible in order to decide whether
or not an administrator has access to an information system. This process will in-
clude verifying that the administrator has sufficient permissions, physical access,
etc, to ensure that they are able to perform the restoration task from start to finish
without interruption.

The BIA is used to provide a list of renewable resources that an informa-
tion system requires in order to be restored. No information system requires
more resources than are available. The BIA also gives priorities for information
systems, which are demands that indicate which information systems should be
restored in which order. These priorities are formed with business processes in
mind, which means that they can represent an infeasible restoration order. It is
assumed that the restoration order given in the BIA cannot be respected. Also,
due to the systems-of-systems concept, allowing nesting of systems, it cannot be
assumed that the RTOs or MTDs cannot be respected for all information systems.
It is assumed that the only RTOs and MTDs that will be respected are associated
with information systems that are singletons, which do not sub-components with
their own security packages.

A summary of problem assumptions:

• The recovery task for an information system is given by the ISCP for that
system.

• An access list containing the list of administrators that may restore a system
is available for all components of the information systems

• For every component that needs to be restored, there is an administrator
with access to the system. If there is a system that requires restoration, and
there is no administrator for it, then the schedule is infeasible.

• There are adequate resources available for all restoration tasks.

• The resources required by a single task cannot exceed the availability of any
resource.

33

• It must be possible to restore the dependencies of a component before the
restoration of the component itself.

• Task durations have been estimated. An RTO/MTD is estimated for all
components of an information system to be restored.

• There is a complete list of available administrators.

• Administrators are not reassigned tasks based on task escalation or due to
the absence of another administrator.

• The scope of the restoration process is known in advance due to disaster
planning and outage assessments. The systems that have been affected by
the disaster are known.

• Once an administrator begins a task, it continues to completion. There is no
preemption.

• Self-referencing or circular dependencies among information system have
been resolved before attempting to schedule a recovery. If they have not,
then there is no feasible schedule.

Concerns that cannot be met or guaranteed:

• The RTO/MTD may not be respected for information systems that are
composed of other information systems

• Restoration priorities given by the BIA may not be respected

• Minimum or maximum response times by employees may not be respected

5.4 Data Collection

The set of information systems that are singletons will be collected. These
are information systems that are not composed of other systems that have their
own security packages. A precedence graph will be formed from the set of col-
lected security packages. The resources that are associated with the informa-
tion system will be recorded. ISCPs will be checked for potential individuals or
groups that will be assigned to the recovery. Then, information system access
controls will be consulted to determine if each individual in the list of adminis-
trators has access to the information system. Only the list of administrators that
have proper access will be retained. The personnel that have access to the infor-
mation system will be added to a set from which administrators will be chosen
as they are assigned tasks. One of these sets will exist for each recovery task rep-
resented by an ISCP. If this set is empty, a warning should be issued since a task
with unassigned personnel may render the schedule infeasible if it does not occur
automatically.

34

After the graph has been created, it needs to be checked for errors that
would render any disaster recovery plans derived from it infeasible. The graph
needs to be checked for cycles. If there are cycles, then the problem is infeasible.
Cycles will be reported to the user, and they will need to resolve them. This graph
will represent the entire organization at a time when it is completely functional
and there is no disaster. At this point, it does not make sense to look for release
dates and deadlines, because the time constraints that can be inferred from the
graph will change after the outage assessment that marks disrupted nodes.

A B C

E

F

D

Figure 5.3: Organizational
Precedence Graph

Using the outage assessment data,
nodes in the larger precedence graph for the
company will be marked as disrupted. These
nodes will be added to a smaller graph. Us-
ing the original graph, precedence require-
ments will be determined between the dis-
rupted nodes. This can be done using a depth
first search and noting that if there is a path
from a disrupted node A to a disrupted node
B, then B depends on A. This smaller graph may have redundant arcs. At this
point, the task duration information needs to be associated with the disrupted
nodes. If there is disaster recovery testing/training/exercise (TT&E) data for an
information system, or records kept after an actual recovery, then any RTAs will
be associated with the information system as the task duration. Otherwise, any
RTOs will be associated with the information system as its task duration. If we
wish to attempt to respect the MTDs associated with a business process that is
supported by this information system, this would be the time to set the MTD
as a deadline or due date for the task. However, in the event of a disaster that
stretches personnel thin enough, treating the MTDs as deadlines may render the
schedule infeasible from the outset.

s A0 B1 e2

Figure 5.4: Initial Graph
s A0 B-1 e-2

Figure 5.5: Finding Release
Dates

s A0 B-1 e-2

Figure 5.6: Finding Deadlines

The transitive reduction of this graph
can be found, in order to remove the redun-
dant arcs if needed. This new smaller graph,
is the one that should be used to form the
scheduling problem that is used to schedule
employees to perform disaster recovery tasks.

Some preprocessing can be applied to
reduce the sizes of the domains for the task
start variables before the solver begins search-
ing for solutions. From the graph of disrupted
nodes, an inferred release date esti and a min-
imum time delay di from the end of the task
to the end of the project can be determined for
each task. Since the graph used for scheduling is a directed acyclic graph, it
is possible to find longest paths between nodes in O(|E||V|). First, negate the
weights of all the arcs in the recovery graph so that the Bellman-Ford algorithm
can be used to find longest paths between nodes. Using the start node as a source,
the negative of the inferred release date for each task will be found, such that

35

Si ≥ esti. This is the smallest start time for each task. After this, reverse the direc-
tion of all the arcs in the graph. Using the Bellman-Ford algorithm with the end
node as a source, this will find the negative of the minimum amount of time that
each task must precede the end of the project, di. This will produce a constraint
on the latest time that a task may be completed, so that lcti ≤ Sn+1 − di. The
initial domain for a task start variable for task i is esti ≤ Si ≤ horizon− (di + pi).

A B C

E

F

D

Figure 5.7: Disrupted Organiza-
tional Precedence Graph

A

E

F

Figure 5.8: Recovery Precedence
Graph

A E F

Figure 5.9: Transitively Reduced
Recovery Precedence Graph

This documentation will also include
security categorizations, resource require-
ments, and access controls for its components.
The resource requirements can be used to es-
tablish resource constraints. The access con-
trols will be used to establish constraints on
technician assignments.

The access restrictions, work areas,
group memberships etc. will be condensed
into a task eligibility matrix M, where an entry
Mij is 1 if employee i has the necessary rights
to perform task j. The number of tasks that
an employee is eligible to perform should be
much smaller than the number of tasks in the
project. This matrix is expected to be sparse.

5.5 Determining Access Requirements

The access requirements to an informa-
tion system my vary wildly depending on the
system. Based on the requirements of FISMA, it should be possible to consult
any number of databases or documents to determine if an administrator has ac-
cess to the components of an information system. A non-exhaustive list of access
requirements that must be met in order to access an information system are given
below:

• Has physical access, if required, to the area/facility/building/room/datacentre,
etc.

• Has an account on the network

• Has permissions to access the system, including user/group, local adminis-
trator, or access granted by active directory or locally set user group access
dependent upon NIS or LDAP, etc.

• Has other computing/electronic authorizations granted by management.

• Has authorizations granted by training, etc.

• Has authorization based on security clearance level, etc.

36

Since these access requirements to an information system vary, a general
process cannot be given in this paper for checking them. However, it can
be assumed that the organization has established a comprehensive process for
determining whether an administrator has access to a given information system,
and whether they have the necessary permissions to perform a restoration task
on that system. By comparing the complete list of administrative permissions to
the list of users or groups that are expected to be capable of restoring the system,
only those administrators that have all of the required permissions to the system
should be added to a set of workers that are capable of performing restorative
actions. It is from this authorizations list that workers will be selected from the list
and later assigned to tasks in a disaster recovery schedule. The list of users that
are expected to be perform a task will be given in the ISCP. In the previous section,
users with proper permissions were enumerated in a 0-1 matrix. However, there
is additional requirement that a user does not just have proper permissions, they
must also be listed as an authorized employee in the ISCP. A second 0-1 matrix M
of size m× n can be formed for m restoration tasks and n administrators, where
an entry Mij is 1 if administrator j is both listed as an employee that may handle
a task and has the necessary permissions to perform task i.

5.6 Problem Formulation

After the recovery graph has been made, that data is provided to the
solver. In this implementation, the information is saved to a file to be read in
by the solver. The solver used is the Google OR-Tools constraint programming
API [10]. The file format used adds some fields to the RCP format used with the
benchmark resource constrained scheduling library, PSPLib. Test problems from
PSPLib were changed to contain employees, skills, and skill requirements using
the NetworkX package [22]. In a real world scenario, the data that is required to
form a project scheduling problem would be queried from a database. But for this
project, the data must be simulated. For simulated project scheduling data, the
Project Scheduling Problem Library (PSPLib) is a source for small test problems
[16, 26]. The PSPLib tool is still available, but only runs on older platforms,
making it difficult to generate new test problems. However, some problems are
available for download.

5.6.1 Implementation

Single mode PSPLib problems were changed to represent MMPSPs. A
PSPLib problem was read in from an RCP file by a Python script. The number
of available employees is provided, along with the maximum and minimum
number of employees required by any task in the project. For each task, a
random subset of employees is chosen that may perform the recovery task, and
a random skill requirement is set between the minimum and maximum set size.

37

The NetworkX package is used to check for cycles, and to apply the Bellman-Ford
algorithm for preprocessing the start times of the tasks. The minimum start time
for a task is associated with the task in the output file, as well as the minimum
delay from the end of the task to the end of the project.

The output from this operation is an MMPSP where the modes correspond
to the employee assignments, and there are at least as many employees available
as are required to perform the task. These files represent the organization after
the outage assessment has occurred A list of problems to be solved is collected
together into a file, dubbed a manifest, which tells the solver which MMPSP
problems to solve. After each file was read in, the solver was allowed to run
for a specified time limit before moving on to the next problem. Results were
dumped to log files, which form the data for the results section.

5.6.2 Constraint Program

A method to model an MMPSP was suggested by one of the authors of
Google OR-Tools. Instead of associating numeric modes that describe resource
consumption with tasks, the modes are represented by optional tasks that con-
sume the mode dependent resources required by the original task. These optional
tasks are then constrained to occur at the same time as the original task. Proceed-
ing in this manner, each employee that is eligible to perform a disaster recovery
task is given an optional task that is synchronized in time to the original task.
If there are ten employees that are eligible to perform a task, then ten optional
tasks are made in addition to the original task. This is one possible method for
modeling an MMPSP using OR-Tools.

For each task i, a fixed duration interval variable Ti is made, which
represents all time information of the task. The task interval represents the start
time Si, the completion time Ci, the early start time esti, late start time lsti, early
completion time ecti, late completion time lcti, and duration pi = RTOi of the
task. The start time Si is allowed to be in the interval [esti, h− (di + pi)], where esti
was found in preprocessing by the Bellman-Ford algorithm to be the least start
time for task i. The task interval variable implicitly sets constraints on minimum
and maximum start time of the task, so that these do not need to be added. If all
of the domains for the start variables are set above zero, then the dummy task at
S0 does not need to be added to the project.

After all of the tasks have been read in, precedence constraints are made
between the variables. If an arc (i, j) is given in the precedence graph, then
a constraint is made such that Sj ≥ Si + pi. The makespan is represented
by a maximum function provided by the solver API. The makespan is set as
Sn+1 = maxi∈V{Si}. It is at this point that a lower bound for the makespan is
set, where Sn+1 ≥ distmax(0, n + 1) in the precedence graph.

For each task i that demands a non-employee resource k, a resource
demand rik is made. For each non-employee cumulative resource k, an integer

38

resource capacity Rk is made. For each resource k a cumulative constraint is made
that involves all tasks that use that resource

Cumulative({Si | Task i requires resource k},
{rik | Task i requires resource k},
Rk)

For each task i, there is a set of employees that may perform that task Li.
This is the set of employees that have the skill Li. The employees are tracked
by their numeric ids, so that Li = {j | employee j may per f orm task i}. An
optional task interval Tij is made for each employee id j in Li. A constraint is
placed on the start time of Sij of task interval Tij, so that Sij = Si. The duration
of Tij is pi. Whether or not an optional task interval Tij is performed is set by a
boolean valued variable xij. Task i is performed by employee j if xij = 1. The
skill requirement bi is the number of employees that are required for task i. This
requirement is met by setting a constraint that ∑j∈Li

xij = bi. For each employee
j involved in the recovery, an integer resource capacity Rj = 1 is made. For each
employee j a cumulative constraint is made that involves all optional tasks that
may use that employee.

Cumulative({Sij | j ∈ Li f ori ∈ V},
{1},
Rj = 1)

A constraint program is given below which incorporates all of the above,
to represent a disaster recover problem as an MMPSP.

39

Min Sn+1

subject to Cumulative({Si | Task i requires resource k},
{rik | Task i requires resource k},
Rk) f or k ∈ Rρ

Cumulative({Sij | j ∈ Li f ori ∈ V},
{1},
Rj = 1) f or j ∈ Re

∑
j∈Li

xij = bi f or i ∈ V

Sij = Si, f or j ∈ Li and i ∈ V

Si + pi ≤ Sj , f or (i, j) ∈ E

Si ≥ Si,min , f or i ∈ V
S0 = 0

5.7 Objective Functions

5.7.1 Makespan

A common objective is to minimize the duration of a project, where the
duration is called the makespan. A constraint solver can perform optimization
like this by putting constraints on the makespan during the search process. When
the problem is first being formed, the makespan will be assumed to be between
0 and a large number. If a solution is found that is feasible, a constraint will
be added that will put a maximum on the next makespan that might be found,
C′max, such that C′max ≤ Cmax − δ. The step size δ controls whether or not the
solver will continue searching for solutions that are not at least δ better than the
previous solution. For example, if the programmer only cares if each step is at
least a fraction of the horizon H better, then they can set δ = dαHe, 0 < α < 1.
The search process can be sped up by using step sizes at the cost of losing better
solutions. If a lower bound CLB is placed on the objective function at each node in
the search, the solver can be made to backtrack at a node in the tree if the lower
bound is not some step size better the previous objective value Cprev, such that
CLB ≤ Cprev − δ. In the case where the objective value is an integer, increasing
the step size above 1 may discard any guarantee that a solution can be found for
a problem that has at least one solution.

One formulation of a makespan objective is to say that Cmax = Sn+1.
This will judge schedules with the same makespan as being equally desirable,

40

regardless of the scheduling time of the tasks between the start and end. Another
way to handle it might be to minimize C = ∑n

i=1 Ci , which is the summation of
the completion times of all tasks, which will not only reduce the makepsan but it
will prioritize all tasks to occur as soon as possible.

For this project, there may be issues with minimizing the makespan under
the assumption of FISMA compliance. The RTO is meant to be set as an up-
perbound on the task duration before the task affects the MTD of the business
process it supports. This means that scheduling using RTOs as task durations is
attempting to minimize an upper estimate of the makespan of the project. An
implicit assumption is made, that the RTO is a reasonable estimate of the task du-
ration. The outcome from scheduling like this will be affected by how poorly the
RTOs reflect the actual task durations. This is why the RTAs need to be derived
from TT&E data if it is available.

Another way to model a makespan objective, is as sum of weighted
completion times, C = ∑n

i=1 wiCi. This would allow the schedulers to prioritize
systems with larger weights to be scheduled earlier. As for scheduling with
FISMA, there is a problem in determining the weights that might be applied to
a system. It would be possible to simply use the security categorizations as the
weights if they were defined numerically. Recall that the security categorization
is the tuple that is assigned to every information system that determines if it is
a high, moderate, or low priority system. Each system has a level that rates its
confidentiality, integrity, and availability between high and low. The scheduler
would need to determine which category and level they think needs to be
weighted more highly. The high water mark could be used instead, so that each
system would only have a single weight to choose from. The trouble with this,
is that there is still no guarantee that higher priority systems are not dependent
upon lower priority systems which could lead to a less desirable recovery.

5.7.2 Lateness

Lateness and tardiness are relevant if tasks are assigned due dates. A task
should be scheduled before its due date. A due date differs from a deadline,
because the schedule is not treated as infeasible if the task is scheduled beyond
this point [23]. The lateness of task i is the amount of time that a task’s completion
time Ci exceeds its due date di, so that Li = Ci − di . Another concept related to
lateness is tardiness, Ti where the tardiness is Ti = max(Ci − di, 0).

One objective, is to minimize the total lateness of the schedule, L =
∑n

i=1 Ci − di. This will prioritize schedules that finish before their due dates, but
it allows for schedules that may exceed them. Under FISMA, lateness might be
modeled by how much the completion time of a task exceeds its MTD if that task
is started too late, Li = Ci −MTDi. It does not make sense to treat the MTD as a
deadline, because the MTD of a business process cannot be respected. If it is only
important for a schedule to make sure that tasks occur before their due dates,
then the sum of tardiness can be minimized instead.

41

5.7.3 Cost

In simple cases, a cost based objective function is just a weighted sum of
completion times, Cost = ∑n

i=1 wiCi. The weights wi represent rates with units of
cost
time . A better schedule prioritizes systems with higher cost rates. In other cases,
costs may be functions of the completion time, so that the cost function is given
by Cost = ∑n

i=1 fi(Ci).
The cost of disaster recovery is difficult to calculate using only the assump-

tion of FISMA compliance. Costs are really associated with the downtime of busi-
ness processes by the BIA. A business process is affected by many information
systems, so that a cost for the downtime of a business process isn’t associated
with a single information system. Sometimes there may be costs associated with
specific information systems. However, it appears for the most part, there will
not be a simple way to associate costs with individual information systems.

In a schedule where simple monetary penalties are only applied at a given
rate if a task exceeds its due date, the cost function may be modeled by a weighted
sum of tardinesses, Cost = ∑n

i=1 wimax(Ci − di, 0). In other cases, the cost may
be a sum of functions of tardiness Cost = ∑n

i=1 fi(Ti). These tardiness costs
are relevant to FISMA, because stiff monetary penalties may be associated with
important information systems that exceed their MTD. However, these costs may
not be simple rates, and instead may be penalties that are applied if the tardiness
exceeds a given sequence of thresholds, in cost

day . Not all information systems will
come with penalties, and a schedule that minimizes penalties might not be a very
good schedule from other points of view like makespan, or even lateness.

42

CHAPTER 6

DISCUSSION

6.1 Results

The following results were found from solving PSPLib problems after
adding skill requirements to the tasks. The sets of problems are grouped by the
number of tasks in the schedule, based on what was available in the RCP file
format. For each problem, many MMPSPs were formed by the method given
in section 5.6.1. These were formed by adding skill requirements to each task.
The number of available employees was capped at 10. An MMPSP was formed
from each problem for every combination of available employees a ∈ {1, . . . , 10}
and maximum employees m ∈ {1, . . . , a}. The step size was set based on the
horizon H, at δ = (0.01)H. The time limit for the solver to search for solutions
was capped at 30 seconds. For each problem, if a feasible solution was found
then the properties of the solutions were recorded. If no solution was found, it
only contributed to the number of unsolved problems.

The original PSPLib problems were generated based on parameters that
the authors used to estimate the difficulty in solving those problems. The kinds
of parameters that are used to predict the complexity of scheduling problems are
discussed in [6, 16]. Unfortunately, the way that the problems were converted
into MMPSPs did not take these difficulty measures into account. That makes
these results difficult to interpret, as the predictors of complexity were changed
when the employee skill requirements were added to the tasks.

Tasks Problems %DiffMax %DiffAvg Feasible %Feasible
30 2640 69.28 22.14 1199 45.42
60 2640 68.64 19.15 835 31.63
120 3300 63.79 16.96 440 13.33
Tasks AvgNumSoln MaxNumSoln Unsolved %Unsolved
30 2.01 8 1441 54.58
60 1.86 7 1805 68.37
120 1.39 4 2860 86.67

Table 6.1: Summary of Results for Disaster Recovery MMPSPs

43

The default search process used by OR-Tools is a depth first left to right
tree search. The search process does not change the values of the start times for
variables near the top of the tree very often. Because of this search method, the
lower bounds on the early completion time of the project do not increase very
quickly. In all problems from this data set, the initial lower bound that was found
before the search started based on the energy, longest path, and work load per
employee was better than the lower bound based on the largest early completion
time found during search for all problems where feasible solutions were found.
If the structure of the problem does not yield an optimal solution near this lower
bound, the estimate of how close the objective value is to the lower bound will
not be very good.

6.2 FISMA and NIST SP 800 series

The following is a discussion of the documentation provided by NIST
which forms the basic requirements for FISMA compliance, as well as the sug-
gestions that guide other practices.

6.2.1 Business Impact Analysis

The requirements that are set for the Business Impact Analysis have some
issues that affect scheduling. The problems dealt with here are the durations of
tasks, deadlines, costs of downtime. The definition of an RTO is meant to be an
upper bound on the amount of the time a task may take to complete. If the task
exceeds its RTO, it is already late. However, the RTO is the only estimate of task
duration that is given if there is no TT&E data. This means that any schedule that
is produced by using the RTOs as task durations while minimizing the makespan
is finding some schedule that is attempting to minimize a worst case scenario. If
the RTOs are large and overestimate the recovery time, then the schedule that is
produced may be poor.

The definition of MTD and its relationship to RTOs used in NIST SP 800-
34 is vague. The document states that exceeding the RTO will impact the MTD,
but it is not clear if that means the MTD will be exceeded. If a Work Recovery
Time (WRT) is used, where RTO + WRT ≤ MTD, the duration of additional
tasks that must be performed after the IT department has restored an information
system may be represented. If the RTO is surpassed, then the additional tasks
corresponding to the WRT may complete after the MTD. If staying below the
MTD is a primary concern, then it would be important to also take into account
the office tasks that fill the WRT and impact the MTD. None of the SSP, ISCP, BIA,
require non-IT tasks to be represented. Any schedule that is produced without
taking office tasks and their precedences into account may be poor if the office
tasks can significantly impact the outcome of the disaster. This might be the
case if the penalties for exceeding the MTD are large, and minimizing cost is

44

the objective of the recovery. The objective functions that can be formed from the
data required by FISMA to be in the BIA may not be very good measures of the
actual properties of the recovery of business processes because the disruption of
a business process depends on factors that are not information systems.

One of the problems with FISMA compliance, is that it does not give
a good way to associate a single information system with the disruption of a
business process. Due to the fact that an information system may be a collection
of information systems, one parent information system that is associated with a
business process may contain collection of child information systems. Without
having clear impacts on business processes or other information systems stated
in the BIA for each child information system, it would be difficult to infer which
child information system might be able to disrupt the parent system and in turn,
the business process. This makes it difficult to determine which information
systems’ completion times may contribute to the cost or lateness and tardiness
with respect to the MTD of a business process. Downtime propagation may
be one way to model this situation, and this is treated in [39]. These authors
give a method that would be applicable to assessing the feasibility of conflicting
requirements imposed on nested information systems. However, their method
uses more information than is required to be kept under FISMA requirements and
could not be met in the general case. This method would require organizational
policies that imposed better documentation.

6.2.2 Precedence Issues

To be able to form a schedule from recovery tasks, it is important that the
precedence constraints and task durations be predictable. However, the ISCPs
allow that a disrupted information system may be replaced by a different system
in a different location as long as the original functionality that was provided
by system is restored. There may be recovery modes with different precedence
constraints, security controls, and required employees than the original task. The
simple 0-1 matrix that records if employees are eligible to perform tasks may
itself be mode dependent for a task and the precedence constraints for a task may
be mode dependent. This means that the organizational precedence graph that
was formed during the planning stage before the disaster may be invalid if the
precedence constraints of an information system change after the occurrence of a
disaster.

One of the concepts that was ignored in this paper is the recovery of
information systems that have dependencies that involve or are affected by
networking requirements. If one information system depends upon another,
and it needs to communicate with that system over the network, then some
communication pathway needs to exist between them. Since computer networks
can route information along different pathways there may be more than one
way to satisfy the precedence requirement that one information system is able to
communicate with another. The tasks for recovery will need to be subdivided in

45

a way that the precedence requirements are predictable and can be known before
a disaster occurs. This leads to a problem with implicit dependencies that may
exist and are unknown to the owners of an information system. The introduction
of computer networking into the disaster recovery process also introduces the
issue that converting the PSPLib problems into MMPSPs may not be a very good
reflection of the kinds of problems that would arise in a networked environment.
In order to study these kinds of problems, either real world data would be
required in the form of cases studies, or simulated data would need to be made
based on computer network analysis.

NIST contingency planning documents do not require that tasks which
can be run in parallel be noted as such in the ISCP or BIA. They also do not
require for the steps in the ISCP to be segmented into sections with their own
time estimates. Consider the following example of why this can cause the method
used in this paper to fall short. On the client side of IT, a single technician may
perform many setup tasks in parallel, while finishing tasks may be executed in
sequence. One example where this can occur is in setting up clients using disk
imaging technologies. The technician may insert a CD into the client computer
that directs the client to automatically set itself up by retrieving the operating
system from a server on the network. The technician may begin the setup process
for many clients in parallel, and then wait for them to finish. A finishing step in
the process may require the technician to retrieve a user’s personal data from the
network and direct their programs to use that data. Retrieving a user’s personal
data may take the technician’s full attention, so that only one finishing task can be
performed by that technician at a time. In this case, the technician may start many
setup tasks and a single finishing task in parallel. Without information regarding
which tasks may occur in parallel, and which must occur in sequence, we may
only safely assume that the tasks recorded in accordance with NIST guidance
must be performed in sequence. This may lead to an inefficient recovery plan
when attempting to schedule client recovery tasks.

The BIA only requires that interdependencies between information sys-
tems be recorded. If some elements of an information system are not large enough
to warrant having their own ISCPs with their own documentation of precedence
constraints it is possible for a perfectly valid cyclic dependency to be formed be-
tween two information systems, which the method in this paper cannot deal with.
Consider the following example, suppose there are two information systems A
and B. There are two services on A, labeled A1 and A2, where B depends on A1,
and A2 depends on B. By denoting this at the information system level, a cyclic
dependency is formed between A and B, which renders the scheduling problem
infeasible. This problem can be solved representing information system A as two
separate subsystems, A1 and A2. This results in a modeling issue that can only
be solved through human intervention.

46

6.2.3 Contingency Plan

The testing, exercise, and recording requirements that are associated with
the ISCP could be used to derive an RTA for a task duration. The RTA is a closer
estimate to the actual duration of a task than an RTO. RTOs may not be very
good estimates of the maximum downtime of an information system. In the usual
case with an organization composed mostly of office workers, the IT department
is likely to have significant experience with restoring client computers. If the
IT department keeps data on client recovery they should be able to provide
good estimates on the RTAs for clients. This would mean that it might be
possible to apply stochastic optimization methods to client machines which are
likely outnumber servers and network equipment. It is unclear to this author if
client machines are covered by common controls such that the actual precedence
requirements of individual client machines are documented. Recall that controls
are the source of contingency plans. In this author’s experience, it is more likely
the case that IT support personnel have a general idea of what their customers
may require in an area in the sense of precedence requirements, but that a
contingency plan that could be used for scheduling likely does not exist for each
client computer. In the server side case, it is expected that there will not be nearly
enough data points for this portion of the recovery to be treated with stochastic
optimization. This volume of data that would be required to apply stochastic
optimization to the server side/network equipment side of the problem would
need to come from case studies across organizations.

A list of administrators should be provided in the ISCP that have the abil-
ity to perform restorative actions associated with an information system. This list
of administrators may name specific administrators, or administrative groups
that should perform the task. If the document names an individual, that indi-
vidual’s access to the system needs to be verified. For example, it would not be
uncommon for an administrator to be granted permission to perform remote ad-
ministrative tasks, but not be granted physical access to the facility or datacentre
where the server itself resides. In the event of a disaster, the usual administra-
tor may not have the ability to perform the necessary restorative actions. During
the disaster planning process it will be necessary to enumerate all possible per-
missions that are required for an administrator to perform restorative actions,
including the unusual permissions that would only be required in the event of a
disaster. An example of unusual permissions might be the authorization for an
employee to retrieve data backups from an offsite facility.

The assumption that a 0-1 matrix can be made that represents whether or
not an administrator that is listed in the ISCP has the permissions to perform a
recovery task may be difficult to accept in practice. The information for controls
can be kept in anything from databases to handwritten entries on paper forms.
Collecting this information from scattered sources and expecting it to be up to
date or correct for the use of scheduling may be a tall order as the absence of a
single permission can disallow an administrator access to an information system.
This has the potential to cause what was found to be a feasible schedule according
to the data on hand to be infeasible in reality. A second issue that should be

47

considered, is the fact that most administrative personnel that are listed in the
ISCP are likely to be specified as groups of employees, rather than by name as
individuals. The solution space of the problem grows quickly with the number
of employees that are available to perform tasks. By specifying groups to handle
tasks, rather than smaller lists of individuals that are likely to handle those tasks,
the complexity of the scheduling process is much larger than it needs to be.

A rescheduling method would be needed for this kind of disaster recovery
planning to become useful. Discoveries may be made during the recovery process
that will render the current schedule infeasible. These discoveries may include
mode varying precedence requirements, insufficient user permissions, invalid
task durations or resource requirements. Problems are expected to arise during
disaster recovery and the organization needs to be able to respond to that kind of
change. A good place to start may be with the rescheduling methods for RCPSPs
that are discussed in [2].

6.3 Constraint Programming Solver

Google OR-Tools was used as the solver in this project. At the time of
this writing, both the solver and its documentation are incomplete. The only
method for scheduling that is included by default is a depth first search with
backtracking. For reasonably sized problems the first choice of variable is fixed
for the duration of the search. This means that the lower bound that is calculated
at the root node tends to be the lower bound which is used to determine how
close a solution is to optimality. This search process may be modified through
the design of custom decision builders and search monitors, but that requires a
fair amount of knowledge of the internal workings of OR-Tools.

In Google OR-Tools, there is a method available to implement local heuris-
tic search, which may speed up the discovery of solutions. This would be critical
for disaster response, as the scheduler cannot be expected to take an excessive
amount of time to find a schedule when the organization is pressed for time. A
popular heuristic method for the MMPSP and MSPSP is Tabu search. Heuristics
for solving these problems are given in [3, 7, 15, 28].

6.4 Issues Modeling Employee Schedules

This method of scheduling is not entirely realistic. It ignores both week-
ends and periods before and after work hours. The tasks are allowed to be sched-
uled at any time of day and run to completion. During disaster recovery, even if a
company began operating twenty-four hours a day until it completed the recov-
ery, there would still need to be adequate constraints in place to keep employees
from working too many hours in a day or keep them from being scheduled to
work during periods when they are off. An implicit assumption for this project is

48

that the schedule is cut off at the beginning and end of the workday and contin-
ues on to the next day. The schedule that is produced in this way may not be as
good as a schedule that explicitly assumes that there are pre-emptive tasks. For
larger tasks, it would be reasonable to assume that assignment of the task may
transfer between administrators so that the first portion of the task is handled by
the first and the latter portion of the task is handled by the second.

One of the assumptions of this manner of scheduling is that response
times, travel times, and setup times are included in the RTO. This assumption
could lead to a schedule being less than optimal if employee travel times become
a significant factor in the duration of tasks. In the case of recovery in an IT
department, one administrator may handle multiple groups of users that are
separated into clusters within work areas. It may be more efficient for the
administrator to handle several tasks in one area at a time, rather than traveling
between many tasks in different areas.

Without some form of constraint on the number of hours that a worker
may be assigned to tasks, and without taking their personal schedules into
account, the schedules that are produced may not be feasible. This means that
one administrator may be eligible to perform a task at one time and not another.
Constraints may need to be used to make sure that the amount of work that is
assigned to different employees is more evenly distributed.

6.5 Conclusion

In this project, a disaster recovery problem was treated as a Multi-Mode
Resource Constrained Project Scheduling Problem. A method for forming MMP-
SPs from FISMA compliance documents was proposed. Test problems taken from
PSPLib were extended to include employee assignment information relevant to
this disaster recovery scheduling problem. The resulting problems were then
used to demonstrate the feasibility of solving this problem for small cases. A
Constraint Programming solver (Google OR-Tools) was used to search for so-
lutions to these problems. The author’s implementation of the solver was able
to find feasible solutions, but was not able to obtain good lower bounds on the
makespan of the project due to difficulties in implementing the search procedure.

This implementation struggles to find solutions to problems with 120
tasks and 10 employees, when IT disaster recovery problems involving upwards
of 10,000 tasks have been encountered by real world organizations. FISMA
compliance does not make strong enough requirements for this method to work
well with the data that is expected to exist in the corporate world. Additional
organizational policies to enforce the recording of precedence constraints will
be needed. The organizations will also need to digitize paper records used to
track employee permissions and make them accessible. The problem formulation
requires additional work in order for this method of disaster recovery scheduling
to be feasible. A rescheduling method is needed to respond to unexpected
events such as missing or incorrect precedence requirements. Better handling

49

of employee schedules is needed, to prevent employees from being scheduled
to work when they should not be. Heuristic methods will be needed to find
solutions to this problem quickly.

50

BIBLIOGRAPHY

[1] N. Altay and W. G. Green III. “OR/MS research in disaster operations
management”. In: European Journal of Operational Research 175.1 (Nov. 2006),
pp. 475–493.

[2] C. Artigues, S. Demassey, and E. Néron. Resource-constrained project schedul-
ing : models, algorithms, extensions and applications. 1st. Control Systems,
Robotics, and Manufacturing Series. Wiley, 2008.

[3] P. Brucker et al. “Resource-constrained project scheduling: Notation, classi-
fication, models, and methods”. In: European Journal of Operational Research
112.1 (Jan. 1999), pp. 3–41.

[4] P. Cichonski et al. Computer Security Incident Handling Guide. Special Pub-
lication 800-61 Revision 2. National Institute of Standards and Technology,
2012.

[5] E. L. Demeulemeester and W. Herroelen. Project Scheduling: A Research
Handbook. Boston: Kluwer Academic Publishers, May 2002.

[6] E. Demeulemeester, M. Vanhoucke, and W. Herroelen. “RanGen: A ran-
dom network generator for activity-on-the-node networks”. In: Journal of
Scheduling 6.1 (2003), pp. 17–38.

[7] L. E. Drezet and J. C. Billaut. “A project scheduling problem with labour
constraints and time-dependent activities requirements”. In: International
Journal of Production Economics. Special Section on Recent Developments in
the Design, Control, Planning and Scheduling of Productive Systems 112.1
(Mar. 2008), pp. 217–225.

[8] S. E. Elmaghraby. “Activity nets: A guided tour through some recent
developments”. In: European Journal of Operational Research 82.3 (May 1995),
pp. 383–408.

[9] Federal Information Security Management Act (FISMA) Implementation Project.
http://www.nist.gov/itl/csd/soi/fisma.cfm.

[10] Google OR-Tools, GitHub. https://github.com/google/or-tools.

[11] S. Hartmann and D. Briskorn. “A survey of variants and extensions of the
resource-constrained project scheduling problem”. In: European Journal of
Operational Research 207.1 (Nov. 2010), pp. 1–14.

51

[12] P. V. Hentenryck. Constraint Satisfaction in Logic Programming. Cambridge
Massachusetts: MIT Press, 1989.

[13] P. V. Hentenryck, R. Bent, and C. Coffrin. “Strategic Planning for Disaster
Recovery with Stochastic Last Mile Distribution”. en. In: Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems. Ed. by A. Lodi, M. Milano, and P. Toth. Springer Berlin Heidel-
berg, Jan. 2010, pp. 318–333.

[14] Joint Task Force Transformation Initiative. Security and Privacy Controls for
Federal Information Systems and Organizations. Special Publication 800-53
Revision 4. National Institute of Standards and Technology, 2013.

[15] Y. Kadrou and N. Najid. “A new heuristic to solve RCPSP with multiple
execution modes and Multi-Skilled Labor”. In: IMACS Multiconference on
Computational Engineering in Systems Applications. Oct. 2006, pp. 1302–1309.

[16] R. Kolisch and A. Sprecher. “PSPLIB - A project scheduling problem li-
brary: OR Software - ORSEP Operations Research Software Exchange Pro-
gram”. In: European Journal of Operational Research 96.1 (Jan. 1997), pp. 205–
216.

[17] H. Li and K. Womer. “Scheduling projects with multi-skilled personnel by
a hybrid MILP/CP benders decomposition algorithm”. en. In: Journal of
Scheduling 12.3 (Sept. 2008), pp. 281–298.

[18] K. Marriott and P. J. Stuckey. Programming with Constraints: An Introduction.
Cambridge Massachusetts: MIT Press, 1998.

[19] L. Mercier and P. Van Hentenryck. “Edge Finding for Cumulative Schedul-
ing”. In: INFORMS Journal on Computing 20.1 (Feb. 2008), pp. 143–153.

[20] Minimum Security Requirements for Federal Information and Information Sys-
tems. Federal Information Processing Standard 200. National Institute of
Standards and Technology, 2006.

[21] T. Nayak et al. “End-to-end disaster recovery planning: From art to sci-
ence”. In: Apr. 2010, pp. 357–364.

[22] NetworkX, GitHub. https://networkx.github.io/.

[23] K. Neumann, C. Schwindt, and J. Zimmermann. Project Scheduling with
Time Windows and Scarce Resources: Temporal and Resource-Constrained Project
Scheduling with Regular and Nonregular Objective Functions. Berlin: Springer,
2003.

[24] K.-M. (Noel) Bryson et al. “Using formal MS/OR modeling to support
disaster recovery planning”. In: European Journal of Operational Research
141.3 (Sept. 2002), pp. 679–688.

52

[25] Oil giant Saudi Aramco back online after 30,000 workstations hit by malware |
Naked Security. https://nakedsecurity.sophos.com/2012/08/27/saudi-aramco-
malware/.

[26] Project Scheduling Problem Library - PSPLib. http://www.om-db.wi.tum.de/
psplib/main.html.

[27] J.-C. Régin. “Global Constraints: A Survey”. en. In: Hybrid Optimization.
Ed. by P. v. Hentenryck and M. Milano. Springer Optimization and Its
Applications 45. Springer New York, 2011, pp. 63–134.

[28] E. Rolland et al. “Decision support for disaster management”. en. In: Oper-
ations Management Research 3.1-2 (Mar. 2010), pp. 68–79.

[29] F. Rossi, P. v. Beek, and T. Walsh. Handbook of Constraint Programming.
Elsevier, 2006.

[30] J. Scott. “Filtering algorithms for discrete cumulative resources”. PhD the-
sis. Uppsala: Uppsala University, 2010.

[31] Standards for security categorization of federal information and information sys-
tems. Federal Information Processing Standard 199. National Institute of
Standards and Technology, 2004.

[32] M. Swanson, J. Hash, and P. Bowen. Guide for Developing Security Plans for
Federal Information Systems. Special Publication 800-18 Revision 1. National
Institute of Standards and Technology, 2006.

[33] M. Swanson et al. Contingency Planning Guide for Federal Information Systems.
Special Publication 800-34 Revision 1. National Institute of Standards and
Technology, 2010.

[34] L. P. Taylor. FISMA Compliance Handbook. Second Edition. Waltham MA:
Syngress, 2013.

[35] P. Vilím. “Edge Finding Filtering Algorithm for Discrete Cumulative Re-
sources in O(kn log n)”. 2009.

[36] P. Vilím. “Global Constraints in Scheduling”. PhD thesis. Prague: Charles
University, 2012.

[37] P. Vilím. Max Energy Filtering Algorithm for Discrete Cumulative Resources.
2009.

[38] K. Wang et al. “A Mathematical Approach to Disaster Recovery Planning”.
In: Nov. 2005, pp. 46–46.

[39] E. Zambon et al. “A Model Supporting Business Continuity Auditing and
Planning in Information Systems”. In: Second International Conference on
Internet Monitoring and Protection, 2007. ICIMP 2007. July 2007, pp. 33–33.

53

[40] W. Zeng et al. “Research on Formal Representation and Decision Theoretic
Planning of Emergency Plan”. In: GCIS ’10 Proceedings of the 2010 Second
WRI Global Congress on Intelligent Systems. Vol. 1. Dec. 2010, pp. 161–164.

54

SCHEDULING DISASTER RECOVERY OPERATIONS IN
INFORMATION TECHNOLOGY UNDER FISMA

by

Joshua Brashear

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the last page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and may require a fee.

55

