
Issues In Implementing The Primal-Dual

Method for SDP

Brian Borchers
Department of Mathematics
New Mexico Tech
Socorro, NM 87801
borchers@nmt.edu



Outline

1. Cache and shared memory parallel computing concepts.

2. Key steps in the the primal-dual interior point method.

3. Parallelizing the primal-dual interior point method.

4. Computational results.

5. Conclusions.



Memory Latency And Caches

• Latency is simply the time that it takes to retrieve a number or
other data from a computer’s memory.

• With today’s machines, a processor can typically execute one
hundred instructions in the time that it takes to retrieve a
floating point number from main memory.

• To overcome this mismatch of processor speed and memory
latency, modern microprocessors incorporate small low latency
memories called caches. Data are prefetched into cache
memory so that they will be available when the processor needs
the data. There may be two or even three levels of cache
memory in a system.

• A typical level one cache has a latency of one nanosecond, while
a level two cache might have a latency of five nanoseconds, and
main memory might have a latency of 50 to 100 nanoseconds.



Memory Bandwidth

• Bandwidth is the rate at which data can be transferred from
main memory into a cache or from one level of cache to a lower
level of cache.

• On today’s machines it’s quite common for a processor to
exhaust the available bandwidth while working on very large
data sets, because the rate at which instructions are executed
is faster than the rate at which data can be moved from main
memory into the cache and to the processor.

• For problems with smaller data sets that reside in cache, main
memory bandwidth is typically not a limiting factor.



The Importance Of Higher Level Operations

• In numerical linear algebra with n element vectors most
operations take O(n) time and operate on each element of the
vectors exactly once. For these level one operations it’s not
possible to reuse data in the cache.

• For operations on n by n matrices such as matrix addition or
matrix vector multiplication the operations take O(n2) time
and operate on O(n2) elements of the matrices. For these level
two operations there is also no opportunity to reuse data in the
cache.

• For O(n3) operations on n by n matrices such as matrix
multiplication or Cholesky factorization, we access O(n2) data
and perform O(n3) operations, so there are opportunities to
reuse data in the cache, particularly if we use algorithms that
operate on blocks of the matrices.



Shared Memory Architecture

• In recent years Intel and AMD have begun producing
microprocessor chips that have two or four microprocessor
cores on a single chip. Computers may have 1, 2, or more of
these multicore processor chips.

• Each processor core has shared access to all of the memory.
Processes cooperate in performing operations on data in the
shared memory.

• Programs for these shared memory systems can be written
using C or Fortran with parallel processing extensions such as
POSIX Threads (pthreads) and OpenMP.

• Contrast this with distributed memory Beowulf clusters, in
which programs running on separate computers communicate
with each other by sending messages across a network.



Intel’s Shared Memory Architecture

Cache

Core 1

Core 2

Core 3

Core 4

RAM

RAM

RAM

QPI
Cache

Core 8

Core 7

Core 6

Core 5 RAM

RAM

RAM



Parallel Efficiency And Amdahl’s Law

• A classic measure of parallel performance is the speedup,
obtained by dividing the running time on a single processor by
the running time on N processors.

• Ideally, we’d get speedup of S = N by using N processors.

• The parallel efficiency of a code is the percentage of this N fold
speedup that we actually attain.

• If P is the fraction of the run time of a single processor
program that can be parallelized with speedup S, then the
overall speedup is

1
(1− P ) + P

S

.

• Speedups beyond 1/(1− P ) simply aren’t possible no matter
how many processors we use.



The SDP Problem

max tr (CX)

(P ) A(X) = b

X � 0

where

A(X) =


tr (A1X)

tr (A2X)

. . .

tr (AmX)

 .

Note that

tr(CX) =
n∑

i=1

n∑
j=1

Ci,jXj,i =
n∑

i=1

n∑
j=1

Ci,jXi,j .



The Dual Problem

min bT y

(D) AT (y)− Z = C

Z � 0

where

AT (y) =
m∑

i=1

yiAi.



The Algorithm

• CSDP implements a predictor–corrector variant of the
primal-dual interior point method of Helmberg, Rendl,
Vanderbei, and Wolkowicz (1996.) This method is also known
as the HKM method, since the same algorithm was discovered
by two other groups of authors (Kojima et al. 1997; Monteiro
and Zhang, 1997.)

• CSDP uses an infeasible interior point version of the HKM
method.

• The basic idea is to apply Newton’s method to a system of
equations that can be thought of as a perturbed version of the
KKT conditions for the primal/dual SDP’s or the KKT
conditions for a pair of primal and dual barrier problems.



The Algorithm

• The equations for the Newton’s method step can be reduced to

O∆y = A(Z−1(C −AT (y) + Z)X) +A(µZ−1)− b.

Here

O =
[
A(Z−1A1X) . . . A(Z−1AmX)

]
is a symmetric and positive definite matrix.

• This is similar to the fully reduced system of equations in
interior point methods for linear programming, except that O
is typically fully dense.



The Algorithm

• We can also write Oi,j as

Oi,j = tr (AiZ
−1AjX).

• If a constraint matrix Aj is dense, then it may be worthwhile to
compute Z−1AjX using a dense matrix multiplication routine
and then apply the A operator to get the jth column of O.

• However, if the Ai and Aj matrices are both sparse, it can be
less expensive to compute Oi,j by directly adding up the
contributions to the trace from the nonzero entries of Ai and
Aj .



Computational Complexity

• Multiplying matrices of size n takes O(n3) time.

• Factoring matrices of size n takes O(n3) time.

• For dense constraint matrices, constructing the Schur
complement matrix takes O(mn3 +m2n2) time.

• For sparse constraint matrices with O(1) entries, constructing
the Schur complement matrix takes O(mn2 +m2) time.

• In practice, most problems have m > n and sparse constraint
matrices.

• Thus we would expect the most time consuming steps in the
algorithm to be the computation of the elements of the Schur
complement matrix and the Cholesky factorization of this
matrix.



Computational Results

• Our tests were performed on a Dell 5500 workstation with two
2.4 GHz quad core Intel Xeon E5530 processors.

• The four cores in each Xeon processor share an 8 megabyte
level 3 cache.

• Each core has its own 256K byte level 2 cache and separate
32K byte level 1 code and data caches.

• The system has 12 gigabytes (6x2 Gbyte DIMMS) of
DDR3-1066 RAM.

• The QPI between the two processor chips runs at 5.86
Gtrans/sec.



Computational Results

• The following tests were run under Ubuntu Linux. The codes
were compiled using Intel’s icc 11.1 with OpenMP.
BLAS/LAPACK routines from Intel’s MKL were used.

• Each code was tested with one, two, four, and eight processor
cores.

• Wall clock times and parallel speedups and efficiencies were
measured for each code.

• For the SDP test problems we computed CPU times and
efficiencies for the major steps of the algorithms as well as the
total run time.



Memory Bandwidth

• The shared memory limits parallel performance in situations
where there isn’t enough memory bandwidth to keep the
processors busy.

• The stream benchmark is a good way to demonstrate this.
This benchmark simply copies data from one area of main
memory to another as fast as possible.

• Using a single core, we can copy data at a rate of 6,000
megabytes per second (actually 3,000 megabytes per second
read and 3,000 megabytes per second written.)

• Using two cores we can copy data at a rate of 11,000
megabytes per second. This increases to 16,000 megabytes per
second with four cores and 18,000 megabytes per second using
all eight cores.



Matrix–Matrix Multiplication (DGEMM)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100

n

%
 p

ar
al

le
l e

ffi
ci

en
cy

 w
ith

 8
 c

or
es



Cholesky Factorization (DPOTRF)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100

n

%
 p

ar
al

le
l e

ffi
ci

en
cy

 w
ith

 8
 c

or
es



Matrix–Vector Multiplication (DGEMV)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100

n

%
 p

ar
al

le
l e

ffi
ci

en
cy

 w
ith

 8
 c

or
es



A Parallel Version Of CSDP

• A 64-bit parallel version of CSDP has been developed to run on
a shared memory multiprocessor using OpenMP.

• The code makes use of parallelized BLAS and LAPACK
routines such as ATLAS, Intel’s MKL, IBM’s ESSL, or Sun’s
performance library.

• Our first attempt used automatic compiler parallelization.
However, the performance of code was unsatisfactory.

• Although the Cholesky factorization was reasonably well
parallelized, the computation of the elements of the Schur
complement matrix was a significant bottleneck.



A Parallel Version Of CSDP

• The routine that computes the elements of the Schur
complement matrix was rewritten using OpenMP directives.

• The matrix is split into strips, with each processor working on
one strip at a time.

• With this change, the computation of the elements of the Schur
complement matrix became much more efficient.

• On single processor systems that don’t support OpenMP the
same C code is used in a single processor version. The
OpenMP directives are simply ignored by compilers that don’t
support OpenMP.



A Parallel Version Of CSDP

For example, the following bit of code uses an OpenMP directive to
parallelize a loop.

#pragma omp parallel for shared(O,ldam,k) private(i,j)

for (j=1; j<=k; j++)

for (i=1; i<=k; i++)

O[ijtok(i,j,ldam)]=...



control10

The control10 problem has m = 1326 and nmax = 100.

Run Times 1 Core 2 Core 4 Core 8 Core

Elements 44.7 20.1 12.7 6.5

Cholesky 4.3 2.0 1.2 0.6

Other 7.1 5.3 5.1 5.7

Total 56.2 27.4 18.9 12.9

Efficiency 1 Core 2 Core 4 Core 8 Core

Elements 100% 111% 88% 86%

Cholesky 100% 108% 90% 90%

Other 100% 67% 35% 16%

Total 100% 103% 74% 54%



theta6

The theta6 problem has m = 4375 and n = 300.

Run Times 1 Core 2 Core 4 Core 8 Core

Elements 8.7 4.5 2.3 1.4

Cholesky 49.9 25.5 13.1 7.7

Other 4.8 4.2 3.8 4.2

Total 63.4 34.2 19.3 13.3

Efficiency 1 Core 2 Core 4 Core 8 Core

Elements 100% 97% 95% 78%

Cholesky 100% 98% 95% 81%

Other 100% 57% 32% 14%

Total 100% 93% 82% 60%



maxG32

The maxG32 problem has m = 2000 and n = 2000.

Run Times 1 Core 2 Core 4 Core 8 Core

Elements 1.5 0.8 0.4 0.3

Cholesky 4.9 2.5 1.3 0.8

Other 154.5 88.5 56.3 45.1

Total 161.0 91.9 58.1 46.2

Efficiency 1 Core 2 Core 4 Core 8 Core

Elements 100% 94% 94% 63%

Cholesky 100% 98% 94% 77%

Other 100% 87% 69% 43%

Total 100% 88% 69% 44%



maxG32

The majority of the “other” time is spent in BLAS/LAPACK
routines operating on the X and Z matrices.

Run Times 1 Core 2 Core 4 Core 8 Core

DGEMM 109.5 55.2 28.0 17.0

DGEMV 7.3 4.5 3.5 3.0

DPOTRF 12.6 6.5 3.4 2.1

DTRTRI 11.4 6.6 4.2 4.5

Efficiency 1 Core 2 Core 4 Core 8 Core

DGEMM 100% 99% 98% 81%

DGEMV 100% 81% 52% 30%

DPOTRF 100% 97% 93% 75%

DTRTRI 100% 86% 68% 32%



Conclusions

• The computation of the elements of the Schur complement
matrix is efficiently parallelized.

• The efficiency of the Cholesky factorization of the Schur
complement matrix improves as m increases but seems to be
limited to about 75%. This could reflect fundamental
architectural limitations as well as problems with the efficiency
of the MKL BLAS.

• On some problems other operations on the X and Z matrices
dominate the total execution time and are not as efficiently
parallelized.

• Further improvements in the parallel efficiency of CSDP will
depend primarily on increased memory bandwidth and
improvements in the efficiency of the BLAS/LAPACK library
routines.



Conclusions

• Modern computer architecture is a very complicated subject,
but getting good performance out of your code requires some
understanding of these issues.

• Limited memory bandwidth can really slow down certain
operations and make high parallel efficiency unachievable.

• It’s a good idea to make use of library routines that have been
optimized for your machine. Let someone else do the hard
work!

• Programming with OpenMP is probably the easiest approach
to parallel computing for a novice.



Getting CSDP

The current stable version of CSDP is version 6.0.1. You can
download the code and a user’s guide from

http://projects.coin-or.org/Csdp
The software is available under the Common Public License (CPL).
Hans Mittelmann’s benchmarks comparing SDP solvers can be
found at

http://plato.la.asu.edu/bench.html

http://projects.coin-or.org/Csdp/
http://plato.la.asu.edu/bench.html

