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Abstract

This paper describes an experimental code that has been developed
to solve zero-one mixed integer linear programs. The experimental code
uses a primal-dual interior point method to solve the linear programming
subproblems that arise in the solution of mixed integer linear programs
by the branch and bound method. Computational results for a number

of test problems are provided.



Introduction

Mixed integer linear programming problems are often solved by branch and
bound methods. Branch and bound codes, such as the ones described in [7,
11,12], normally use the simplex algorithm to solve linear programming sub-
problems that arise. In this paper, we describe an experimental branch and
bound code for zero—one mixed integer linear programming problems that uses
an interior point method to solve the LP subproblems.

This project was motivated by the observation that interior point methods
tend to quickly find feasible solutions with good objective values, but take a
relatively long time to converge to an accurate solution. For example, figure 1
shows the sequence of dual objective values generated during the solution of a
sample LP by the primal-dual method. After five iterations, the solution 1s dual
feasible and a lower bound is available. After ten iterations, the dual solution
has an objective value within 2% of the optimal objective value. However,
it takes eighteen iterations to solve the problem to optimality. Furthermore,
the solution estimates generated by an interior point method tend to converge
steadily to an optimal solution. Figure 2 shows the sequence of values of the
variable x1g for the sample LP. After about ten iterations, 1t becomes apparent
that x1g 1s converging to a value near 0.6.

Within a branch and bound algorithm, accurate solutions to the LP sub-
problems are often not needed. Any dual solution with a higher objective value

than a known integer solution provides a bound sufficient to fathom the current
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Figure 1: Lower bounds for a sample problem.
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subproblem. Furthermore, if it becomes apparent that the optimal solution to
the current subproblem includes an integer variable at a fractional value, we
can branch early without solving the current subproblem to optimality. As we
shall see later, this early branching significantly improves the performance of
our branch and bound code.

However, the simplex method has a significant advantage over interior point
methods within a branch and bound algorithm. In the branch and bound algo-
rithm we can warm start the solution of each new subproblem with the optimal
solution from the parent subproblem. Using the simplex method, a new optimal
solution can usually be found after only a few simplex iterations. With interior
point methods, warm starts are not as effective.

In order to determine whether the advantages of using an interior point
method outweigh the advantages of using the simplex method, we have devel-
oped an experimental code that uses the primal—-dual interior point method and
early branching. We have tested this code on a number of sample problems and
compared the performance of the code to the simplex based branch and bound
code in IBM’s Optimization Subroutine Library (OSL). These computational
results are the first contribution of the paper. The second contribution of the
paper is the early branching idea, which might be applicable to other branch
and bound algorithms.

The paper is organized as follows. In section 1, we describe the interior

point method that we have used to solve the subproblems. We describe the



branch and bound algorithm in section 2. We present computational results for
a number of sample problems in section 3. Qur conclusions are presented in

section 4.

1 Solving the LP Subproblems

The experimental code solves problems of the form

(P) min ¢’z
subject to Ax = b
x > 0
r < u.

Some of the x variables are restricted to the values zero and one. Here A is
an m by n matrix, ¢ is an n by 1 vector, and b is a m by 1 vector. Some of
the primal variables may be unbounded. For these variables, we write u; = co.
We introduce slack variables s so that the constraint < u can be rewritten as
z + s = u, together with the nonnegativity constraint s > 0.

The LP dual of this problem can be written as

(D) max Ty —uTw
subject to ATy—w+2z = ¢
w,z > 0.

bl

If #; is an unbounded primal variable, then we fix w; at zero and let s; = co.
Within the branch and bound algorithm, we will solve a number of LP

relaxations of the original problem (P), using the primal-dual method described



in [3,14,15]. The primal-dual method is summarized in the following algorithm.

Algorithm 1

Gwen an initial primal solution x, s with x,s > 0 and  + s = u, and an

wmatial dual solution w, y, z, with w,z > 0, repeat the following iteration until

the convergence criterion has been met.

1. Compute p.

2. Compute © = (X~ 1Z4+S571W)~t and p(p) = p(S™ =X "He— (W —2)e.

3. Compute the Newton’s method steps Az, Ay, As, Aw, and Az using

(A0AT)Ay
Az
As
Az

Aw

(b— Ax) + AO((c — ATy — z +w) + p(n))
O(AT Ay — p(p) — (¢ = ATy — 2 + w))
—Az

XY =XZe + pe — ZAx)

S=H—SWe + pe — WAs).

4. Find step sizes ap and ag that ensure x + apAz > 0, s + apAs > 0,

24 agAz >0, and w+agAw > 0. If possible, make full steps with o, = 1

and avg = 1.

5 Letx = x4+ apAzx, s = s+ apAs, y = y+ agAy, w = w+ agAw, and

7= z+ agAz.



For an initial solution, we use the method described in [14]. In step 2, we

compute y using the method of [3]. We consider the current solution feasible if

[[b — Az]]

<1078
L+ |||

and

||c—ATy—|—w—z||

<1078,
L+ |yl + llwll =+ (12|

We terminate the primal-dual algorithm and declare the current solution opti-

mal when the current solution is primal and dual feasible, and when

|cTe — (bTy — uTw)|

107%,
1+ 0Ty — uTw| <

This ensures that the solution is primal and dual feasible, and that the duality
gap 1s small relative to the objective value.

The most difficult part of the computation is calculating Ay in the primal-
dual step. Aslong as the constraint matrix A is sparse and has no dense columns,
we can hope that the matrix AD?>AT will also be sparse. The experimental
codes take advantage of this sparsity by saving the matrix in sparse form and
making use of routines from the Yale Sparse Matrix Package (YSMP) or IBM’s
Extended Scientific Subroutine Library (ESSL) to solve the systems of equations
[4,8]. We have found that the routines from YSMP are more effective on very
sparse problems, while the routines from ESSL work best on relatively dense
problems.

If the linear programming problem is primal or dual infeasible, then the

algorithm will loop without ever finding a feasible solution. However, in our



branch and bound algorithm it is reasonable to assume that the initial LP
relaxation of the problem will be primal and dual feasible. As a result, all of the
other subproblems in the branch and bound tree will be at least dual feasible,
and we need only detect LP subproblems which are dual unbounded and primal
infeasible.

In theory, we would know that a dual subproblem was unbounded if the
current dual solution was dual feasible, Aw > 0, Az > 0, and b7 Ay—u” Aw > 0.
However, because of numerical problems in the calculation of Aw and Az, this
does not work well in practice. We have developed an alternative procedure for
detecting infeasible subproblems.

After each primal—dual iteration we compute directions Aw and Az by

Aw; — min(Aw;, Az;)  if uy < o0
Aw; =

0 otherwise

and

Az — min(Aw;, Az)  if uy < o0
Az, =

Az otherwise

If the previous dual solution was feasible, and if 57 Ay—u” Aw > 0, then Ay, Aw
and Az give us a direction in which the dual solution is feasible and improving.
If Aw and AZz are nonnegative, then we can move as far as we wish in this
improving direction, and the dual problem is unbounded.

Within the branch and bound algorithm, we will need to restart the primal-

dual method after fixing a zero—one variable at zero or one. We could simply



use the last primal and dual solutions to the parent subproblem, but very small
values of x;, s;, w; or z; can lead to numerical problems. Instead, we use a warm
start procedure similar to the one described in [13]. If #; or s; is less than a
tolerance &, then we set the variable to &, and adjust the slack as needed. If w;
or z; is less than &, and x; has an upper bound, then we add & to both w; and
z;. This helps to retain dual feasibility. If x; has no upper bound and z; is less

than &, then we add & to z;. Our code uses £ = 0.1.

2 The Branch and Bound Algorithm

A flowchart of our branch and bound algorithm appears in figure 3. The algo-
rithm maintains one large data structure. This is the tree of subproblems. Each
leaf node in the tree is a record containing a description of which variables have
been fixed and the best known primal and dual solutions for that subproblem.
The dual solution consists of m + n numbers, while the primal solution consists
of n numbers. (We store only #, y and w. The values of s and z can be calcu-
lated when they are needed.) In contrast, a simplex based branch and bound
code would normally save only a list of the variables that had been fixed at zero
or one and a listing of the variables in the current basis. Thus our algorithm
uses somewhat more storage than a simplex based code.

In addition to the problem data and the branch and bound tree, the algo-

rithm maintains two variables. The upper bound wub is the objective value for
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Figure 3: The branch and bound algorithm.




the best known integer solution. It is initialized to +o0. For each subproblem,
we obtain lower bounds, /b, which can be used to fathom a subproblem when
b > ub.

In step 2, our algorithm uses a depth first search strategy to pick subproblems
until an integer solution has been found. From then on, it picks the remaining
subproblem with the lowest estimated objective value. These estimates are
based on pseudocosts, similar to those described in [11,12,16].

In step 6, we use a heuristic to determine if any of the zero—one variables
appear to be converging to fractional variables. If the heuristic determines
that one of the zero—one variables 1s approaching a fractional value, then the
algorithm branches on the current subproblem to create two new subproblems.
The heuristic could be wrong in a number of ways: the current subproblem could
have an integer optimal solution, the current subproblem could be infeasible,
or the optimal value of the current subproblem could be higher than ub, which
would allow us to fathom the current subproblem. In each of these cases, the
algorithm would have to consider more subproblems than if it had not branched
early. However, the algorithm will eventually recover from such a mistake, since
the zero—one variables will eventually all be fixed at zero or one, and at that
point each subproblem will be solved to optimality, fathomed by lower bound,
or shown to be infeasible.

Our heuristic is based on the work of El-Bakry, Tapia, and Zhang [5], who

k41

k+1
have shown that for a fractional variable z;, the ratios x;k and s;k go to

z
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k+1
one as the solution approaches optimality. Furthermore, the ratios w&)k and

z

k+1
Z’Zk go to zero as the solution approaches optimality. Although the version of

z

the primal-dual method used by El-Bakry, Tapia, and Zhang is slightly different
from the version that we use, these ratios still provide a good heuristic indication
of whether or not a variable is tending to a fractional value.

Our version of the heuristic is as follows. First, we do not search for fractional
variables until we have a solution which is dual feasible and within 10% of
primal feasibility. Furthermore, we do not search for fractional variables if
it appears that the optimal value of the current subproblem might be large
enough to fathom the subproblem by bound. We base this decision on the
last two dual objective values. If (bTy*+1 — uTwk+1) 4 (BT y* 1 — wTwh+l) —
(bTy* — uTw*)) > ub, then we delay searching for fractional variables in hopes
of fathoming the current subproblem by bound. Although this prevents the
algorithm from branching as early as possible, this safeguard acts to reduce the
total number of subproblems solved.

Once the above conditions are met, we declare a zero—one variable z; frac-

tional when it satisfies

pRH1
——1] < 0.1

k41
i——1] < 0.1

- < 0.6
Skt
e < 0.6.

In this heuristic, we put more stress on the ratios of # and s, because we have
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found that the ratios of the w and z variables do not go to zero as quickly as

the ratios of the  and s variables go to one.

3 Computational Results

We tested our experimental codes on seven sets of sample problems. The first
three sets of sample problems consist of randomly generated set covering prob-
lems. The fourth set of sample problems is a set of capacitated facility location
problems taken from the literature [1]. Problem set five consists of two problems
given to us by AT&T Bell Laboratories. Problem set six consists of the problem
khb05250 from the MIPLIB collection of test problems[2]. Problem set seven
consists of the problem misc06 from the MIPLIB collection of test problems.

Table 1 gives statistics on size of these test problems. For each problem,
we give the number of rows, columns, and zero—one variables. We also give
statistics on the density of the constraint matrix A, the density of A@AT and
the Cholesky factors of A© AT after minimum degree ordering.

All computations were performed in double precision on an IBM ES/9580
under the AIX/370 operating system. The experimental codes were written
in Fortran and compiled with the VS Fortran version 2 compiler and VAST?2
preprocessor [9,10]. CPU Times were measured with the CPUTIME subroutine
of the Fortran run-time library. These times exclude the time required to read

in the problems and to output solutions. For comparison, we also solved the
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sample problems using routines from release 2 of IBM’s Optimization Subroutine
Library (OSL) [11].

The optimal objective function values and solutions from OSL were given
to seven significant digits. The experimental codes were designed to find an
optimal objective value good to about eight significant digits. In all cases, the
experimental codes produced the same integer solutions as OSL. The optimal
objective values generally matched to seven significant digits, although there
are slight differences in the seventh digit in some cases.

For each set of problems, we first solved the LP relaxations of the problems
using the OSL simplex routine EKKSSLV, the OSL primal-dual routine EKKB-
SLV, and our implementation of the primal-dual method, called SOLVELP. Fig-
ure 4 shows how the two implementations of the primal-dual method performed
in comparison to OSL’s simplex method. For the problems in problem sets one,
two, and three, the primal-dual codes were competitive with EKKSSLV, while

on problems sets four, five, six, and seven the EKKSSLV routine was faster. The

Problem Set | rows | columns | 0-1 variables density

A ] A0 AT L
1| 410 4020 10 | 0.49% | 5.00% | 5.29%
2| 420 8040 20 | 0.48% | 9.31% | 9.74%
3| 810 8010 10 | 0.25% | 2.56% | 2.70%
4 66 832 16 | 2.97% | 19.9% | 26.5%
5| 198 1927 25 | 1.97% | 32.5% | 46.6%
6| 101 1324 24 | 1.96% | 26.9% | 31.5%
7| 820 2404 112 1 0.33% | 1.15% | 3.37%

Table I: Sample problem statistics.
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Figure 4: LP solution times, relative to OSL simplex.

OSL implementation of the primal-dual method is generally faster than our ex-
perimental implementation of the primal-dual method. This can be explained
by more sophisticated sparse matrix linear algebra routines and by OSL’s use
of the predictor—corrector scheme [6].

In order to determine the effectiveness of the early branching heuristics,
two versions of the experimental code were developed. The first version of

the code, called BB, uses early branching as described in the previous section.
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The second version of the code, called FULLBB, solves each subproblem to
optimality without any early branching. Thus we can determine the effectiveness
of the early branching heuristics.

We then solved the sample problems with the two experimental codes and
with the OSL subroutine EKKMSLV. EKKMSLV is a sophisticated branch and
bound code that uses the dual simplex method to solve the linear programming
subproblems. Figure 5 shows the number of subproblems solved by the two
versions of the experimental code, relative to the number of subproblems solved
by EKKMSLV. In general, the two experimental codes solved about as many
subproblems as OSL. Furthermore, the version of the code with early branching
did not solve more subproblems than the version of the code without early
branching. This indicates that the use of early branching did not significantly
increase the number of subproblems solved.

Problem seven is unusual. Although this problem had over a hundred zero-
one variables than any of the other test problems, EKKMSLV was able to solve
the problem with only 228 LP subproblems. The BB code solved 309 subprob-
lems, while the FULLBB code solved 637 subproblems. For this problem, it
appears that our procedure for selecting subproblems to be solved was not as
effective as OSL’s.

Early branching was able to reduce the number of iterations per subproblem
used by the experimental code. Figure 6 shows the number of iterations per

subproblem for the two experimental codes. In each case, the BB code, with

17



Subproblems Solved, . BB
Relativeto EKKMSLV

D FULLBB
4 —
3 —
2 —
1 I[— —
Setl Set 2 Set 3 Set4 Set 5 Set 6 Set7

Figure 5: Subproblems solved, relative to EKKMSLV.
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Figure 6: Iterations per Subproblem.
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Figure 7: CPU times, relative to EKKMSLV.
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early branching, used fewer iterations per subproblem. In most cases, the BB
code used significantly fewer iterations per subproblem than FULLBB.

Figure 7 shows the total CPU time used by the experimental codes, relative
to the CPU time used by EKKMSLV. On problem sets one, two, and three, the
experimental code BB is reasonably competitive with EKKMSLV. On problem
sets four, five, six, and seven, OSL dominates. However, OSL’s simplex method
was signficantly faster than our primal-dual codes in solving the LP relaxations
of these problems, and it is not surprising that the simplex based branch and

bound code is superior.

4 Conclusions

The experimental code was not competitive with OSL’s simplex based branch
and bound procedure on most of the test problems. Since the experimental
code and EKKMSLV generally solved about the same number of subproblems, it
appears that the advantage of warm starting the simplex method in EKKMSLV
outweighed the advantages of early branching in the experimental code.
However, there are a number of ways in which the experimental code could
be improved. First, the implementation of the primal-dual method could be
speeded up. In some cases, our primal-dual LP solver took twice as long to
solve the LP relaxation of a problem as OSL’s implementation of the primal-

dual method. Second, a better procedure for warm starting the primal-dual
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method could be developed. This is an area in which very little work has been
done to date. Third, improvements in the heuristics for detecting fractional
variables might be possible. Fourth, the experimental code is lacking in support
for special ordered sets, implicit enumeration, and other techniques that can
speed up the branch and bound algorithm.

Furthermore, our computational testing has been limited to relatively small
problems. The largest test problem that we have solved has fewer than 1000
rows. Since interior point methods for linear programming are generally more
effective on larger problems, it i1s possible that a branch and bound code using
an interior point method would be superior to a conventional branch and bound
code on larger problems.

Although the computational results in this paper are not immediately en-
couraging, we feel that progress in interior point methods for linear program-
ming or the need to solve larger mixed integer programming problems will make
further research worth while.

The second contribution of this paper was the early branching technique.
In most cases, the code with early branching solved about the same number
of subproblems as the code without early branching. At the same time, the
code with early branching used significantly fewer iterations per subproblem.
As a result, the experimental code with early branching was significantly faster
than the code without early branching. The early branching idea might also be

applicable to branch and bound algorithms for other problems, such as mixed

22



integer nonlinear programming problems.
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