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ABSTRACT 26 

Creating accurate soil maps at small scales using traditional methods is a time-consuming 27 

and expensive process. However, remote-sensing techniques can provide spatially and spectrally 28 

contiguous data in a timely manner. For this study, 20 root zone soil moisture maps derived from 29 

Landsat images during the growing season were used for the detection of soil boundaries. A split 30 

moving-window analysis along two demonstration transects in, respectively, a semi-arid desert 31 

and riparian area located in the Middle Rio Grande Valley of New Mexico showed that remotely 32 

sensed root zone soil moisture can reveal subsurface trends that can be used to identify soil 33 

boundaries that do not have a strong surface expression. Overall, the use of multiple remotely 34 

sensed root zone soil moisture and Landsat images for soil boundary delineation shows great 35 

promise of becoming a valuable tool in the field of digital soil mapping. 36 

INTRODUCTION 37 

Soil conditions have an impact upon virtually all aspects of Army activities and are 38 

increasingly affecting its systems and operations. One critical soil condition is soil moisture 39 

because it affects operational mobility (Lessem et al., 1996), detection of landmines and 40 

unexploded ordnance [[OK?]] (Borchers et al., 2000; Das et al., 2001; Hong et al., 2001, 2002; 41 

[[Please note: Citations changed to chronological order for consistency with other 42 

chapters.]] Hendrickx et al., 2003; Van Dam et al., 2003, 2005; Miller et al., 2004), military 43 

engineering activities, blowing dust and sand, watershed responses (Senarath et al., 2000; 44 

Downer et al., 2002; Downer and Ogden, 2003, 2004; Niedzialek and Ogden, 2004), and 45 

flooding (Ogden et al., 2000; Dingman, 2002). Soil moisture also determines near-surface 46 
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atmospheric conditions and the partition of incoming solar and long-wave radiation between 47 

sensible and latent heat fluxes (Shukla and Mintz, 1982; Milly, 1994). Atmospheric turbulence 48 

can hamper the performance of optical and infrared sensors as well as acoustic detection 49 

systems. The lack of reliable soil moisture maps for weather prediction models can result in 50 

significant over- or under-estimation of surface evaporation, which results in great 51 

[[“considerable”?]] uncertainty for the predictions of cloud cover, precipitation, air and soil 52 

temperature, and humidity (van den Hurk et al., 1997). 53 

Soil moisture is a very dynamic variable subject to rapid changes in time as well as with 54 

depth and space. Soil moisture fields are not continuous but are full of discontinuities caused by 55 

many factors, including: strong precipitation gradients, snowfall redistribution, topographical 56 

divides, slope-aspect, land use, differences in soil hydraulic properties, fluvial and/or aeolian 57 

deposition, human intervention (irrigation, drainage, and flooding), and vegetation cover. The 58 

existence of discontinuities in soil moisture fields and their temporal variability make it difficult 59 

to use statistical interpolation techniques based on a limited number of point measurements for 60 

the generation of high-resolution soil moisture maps. Predictions of regional soil moisture 61 

distributions with distributed hydrological models will be greatly improved when accurate soil 62 

maps are available that capture soil heterogeneities on a scale of tens of meters. 63 

Soil maps of non-agricultural areas of the United States are usually Level Three surveys 64 

at a scale of 1:24,000, due to the logistical and cost constraints. However, there is an increasing 65 

demand for more accurate soil information of such areas for monitoring the impacts of climate 66 

change, environmental modeling, trafficability, land mine detection, etc. The traditional method 67 

of developing Level Three soil maps is through extensive use of aerial photographs, expert local 68 

knowledge of soil patterns, and limited validation through soil pit descriptions (Soil Survey 69 
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Staff, 1975). The technical limitations associated with producing larger-scale soil maps mean 70 

that remote sensing of soil properties is the only option for producing larger-scale soil maps of 71 

non-agricultural areas. [[Sentence is a bit unclear. Would the following work: “Due to 72 

technical limitations associated with developing Level Three soil maps, remote sensing is 73 

the only option for producing larger-scale soil maps of non-agricultural areas.”?]] 74 

The goal of mapping soils is to identify parts of the landscape that are relatively 75 

homogeneous with respect to the soil properties of interest. A key element of soil mapping is to 76 

identify and accurately locate the boundaries between units containing different soil properties. 77 

Soil boundaries are located where the rate of change of soil properties between two different 78 

units is the greatest. Identification of this point in the landscape is not always easy. Numerous 79 

studies have identified some of the difficulties of demarcating places where soil properties are 80 

changing significantly (Gile, 1975a; Burrough et al., 1997; Greve and Greve, 2004). 81 

The traditional approach for soil map unit boundary detection is based on qualitative 82 

evaluation of soil morphological characteristics with emphasis on texture. Because texture 83 

strongly affects soil moisture properties (Taylor and Ashcroft, 1972), it can be expected that 84 

boundaries based on soil moisture conditions would show good agreement with those detected 85 

using soil morphological characteristics. Analysis of several soil moisture data sets along 86 

transects in southern New Mexico using the moving split window [[“split moving-window”?]] 87 

technique (Webster, 1973; Webster, 1978) found good agreement between boundaries located 88 

qualitatively based on soil morphological characteristics and those located quantitatively based 89 

on soil water content measurements with depth (Hendrickx et al., 1986, 1990; Wierenga et al., 90 

1987). An important observation of these studies was that using multiple days of soil moisture 91 

observations over longer periods yields more information than a single data set for one day only. 92 
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Therefore, these studies firmly established that a series of soil water content measurements with 93 

depth provide sufficient information for soil boundary detection in semi-arid New Mexico. 94 

Unfortunately, taking soil water content measurements along transects on the km-scale is 95 

logistically impractical for mapping soils. Even when non-invasive electromagnetic induction is 96 

used for soil water content measurements (Kachanoski et al., 1988, 1990, 2002; Sheets and 97 

Hendrickx, 1995), the effort is too large to obtain data sets that can cover an entire watershed. 98 

Only by Using operational remote-sensing satellite imagery one can is the only method to 99 

prepare regional root zone soil moisture maps at an acceptable cost [[OK?]] (Scott et al., 2003; 100 

Fleming et al., 2005). 101 

Geographic information systems (GIS) and remote sensing are the basis of digital soil 102 

mapping (Lagacherie et al., 2007). For example, the Landsat Multispectral Scanner (MSS) and 103 

Thematic Mapper (TM) have been successfully used to map land cover, soils, terrains, and man-104 

made features such as dams and urban areas (Baban and Yusof, 2001). The use of the India 105 

Remote Sensing satellite Linear Imaging Self-scanning Sensor (IRS-1B LISS-II) can provide 106 

details about soil classes that are often not found on existing soil maps produced by more 107 

traditional means (Karale et al., 1991). While these are only two examples of the types of 108 

surveys and methods using remotely sensed data, they have one facet in common with most other 109 

studies: all use digital values from a single image that only provide information about the land 110 

surface, i.e., reflectance of the visible, near-infrared and mid-infrared bands and long-wave 111 

emission of the thermal infrared band. In general, such data represent the top few cm of the soil 112 

surface at best; or under full vegetative cover, the data represent the characteristics of the 113 

vegetation that may or may not be related to soil type. Since in semi-arid New Mexico some soil 114 

boundaries have surface expressions while others do not (Gile, 1975a, 1975b), it is expected that 115 
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the use of digital data of the reflectances from Landsat images only will be insufficient to detect 116 

all soil boundaries in the landscape. In addition, we will use the values of relative soil moisture 117 

as determined by the Surface Energy Balance Algorithm for Land (SEBAL) code as a second 118 

method for determining soil map unit boundaries. 119 

Soil map unit boundaries on traditional soil maps are all shown to be sharp boundaries, 120 

indicating the soil properties change significantly over a short distance. However, it has been 121 

recognized that soil properties can change abruptly or gradually; so not all soil map unit 122 

boundaries are the same. Identification of the nature of soil map unit boundaries has been one of 123 

the areas of focus for the Digital Soil Mapping Community (McBratney et al., 2003). Sharp or 124 

crisp boundaries are usually associated with landform boundaries, whereas gradual changes in 125 

soil properties are termed fuzzy or gradual boundaries (Burrough et al., 1997; Greve and Greve, 126 

2004). A more refined boundary definition has been proposed by Lagacherie et al. (1996) [[Not 127 

in reference list?]] where boundaries were defined on the basis of the abruptness of the change 128 

in soil properties (fuzziness) and on the certainty (uncertainty) of the location of the boundary. 129 

Four situations were defined: (1) high fuzziness, low uncertainty; (2) high fuzziness, high 130 

uncertainty; (3) low fuzziness, low uncertainty; and (4) low fuzziness, high uncertainty. 131 

Traditionally in large-scale soil mapping, boundaries are identified using proxy data such as 132 

landform or vegetation boundaries and slope properties. Gile (1975a, 1975b) described a number 133 

of geomorphic and pedogenic processes that result in boundaries between different soil map 134 

units and showed that in many instances there is no surficial expression of the boundary. Shallow 135 

subsurface geophysical techniques such as electromagnetic induction methods are increasingly 136 

being used to provide information on soil properties; they have the advantage of being quick and 137 

easy to apply but are still logistically difficult to apply over large areas. The only logistically 138 
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viable method of obtaining landscape-scale data on soil properties is through analysis of remote-139 

sensing images. Furthermore, in traditional chloropeth maps, all boundaries are represented as 140 

being the same, so gradational and intergrade boundaries that may occur over several hundred 141 

meters cannot be separated from sharp boundaries. Analyzing a series of remote-sensing images 142 

allows identification of boundary movement due to changing environmental conditions. The 143 

objective of this study is to determine whether remotely sensed root zone soil moisture can be 144 

used to detect soil map unit boundaries—in particular,[[OK?]] whether the use of multiple 145 

images from several years provides a more robust data set for the identification of soil map units. 146 

STUDY AREA 147 

Two field areas in central New Mexico, USA, were used in this study: the Sevilleta 148 

National Wildlife Refuge (NWR) and the Hilton Ranch (Fig. 1). These areas were chosen in part 149 

because the soils had been recently mapped by the Natural Resources Conservation Service 150 

(NRCS). A landform map was produced from analysis of aerial photographs and field validation 151 

at a scale of 1:24,000 (Rinehart (unpublished map)[[Please incorporate data in paper, convert 152 

to personal communication, or delete.]], 2009). These soil and landform maps were used to 153 

evaluate how well remotely sensed satellite imagery detects soil map unit boundaries. 154 

The Sevilleta National Wildlife Refuge is located in central New Mexico and covers an 155 

area of ~1000 km2. This area contains four major ecosystems: the Chihuahuan desert, Great 156 

Plains grasslands, Colorado Plateau shrub-steppe, and conifer woodlands (Sevilleta Long Term 157 

Ecological Research Site; http://sev.lternet.edu). Landforms include alluvial fans, pediments, and 158 

terraces of various ages and active channels. The NRCS map includes 17 soil associations and 159 

complexes (Johnson, 1984). 160 
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The Hilton Ranch is located on the east side of the Rio Grande opposite the town of 161 

Socorro, New Mexico. The range of landforms is similar to those of the Sevilleta. However, due 162 

to its proximity to the Rio Grande, more riparian vegetation is present along the floodplains. 163 

There are six soil complexes and associations in this area (Johnson, 1984). 164 

METHODS 165 

Just as in our previous studies (Hendrickx et al., 1986; Wierenga et al., 1987), we used 166 

the split moving-window technique (Webster, 1973, 1978) for soil boundary detection. However, 167 

instead of ground-measured soil water contents, we employed a relatively new technique for 168 

determination of root zone soil moisture content from Landsat images (Scott et al., 2003; 169 

Fleming et al., 2005). Twenty Landsat 5 TM and Landsat 7 ETM+ images captured during the 170 

growing season from April to October (Table 1) were used to map root zone soil moisture using 171 

SEBAL. Fourteen of the images were used for the Sevilleta, due to lack of full coverage of the 172 

study area, and all 20 were used for the Hilton Ranch. The pixel size of the Landsat 5 TM and 173 

Landsat 7 ETM+ images is 30 m for bands 1, 2, 3, 4, 5, and 7 with visible, near-infrared and 174 

mid-infrared light reflectances and, respectively, 120 and 60 m, for the band 6 with thermal 175 

emissions. The root zone soil moisture maps that are used for soil boundary detection have a 176 

pixel size of 30 m. 177 

Surface Energy Balance Algorithm for Land (SEBAL) 178 

Each image was processed through SEBAL, which is a remote-sensing flux algorithm 179 

that solves the surface energy balance on an instantaneous time scale for every pixel of a satellite 180 

image (Bastiaanssen et al., 1998a, 1998b, 2002; Allen et al., 2007a, 2007b). The method 181 

computes evapotranspiration and root zone soil moisture. It considers a user-defined wet and dry 182 

pixel to assume the sensible heat flux is zero and the latent heat flux is zero, respectively. The 183 
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radiation balance can then be solved for each pixel in the entire image relative to those two 184 

points (Bastiaanssen et al., 1998a, 2000). Surface Energy Balance Algorithm for Land is a 185 

physically based analytical method that evaluates the components of the energy balance and 186 

determines the ET rate as the residual 187 

, (1) 188 

where R
n
 is the net incoming radiation flux density (W m-2), G is the ground heat flux density (W 189 

m-2), H is the sensible heat flux density (W m-2), and E is the latent heat flux density (W m-2), 190 

which is converted to the ET rate. The parameter  is the latent heat of vaporization of water (J 191 

kg-1), and E is the vapor flux density (kg m-2 s-1). Evaporation E includes both bare soil 192 

evaporation and canopy transpiration. The SEBAL method uses an internal auto-calibration 193 

process that greatly eliminates the need for atmospheric corrections, and it does not require 194 

actual measurements on the ground. The method computes the surface albedo, surface 195 

temperature, and vegetation index from multispectral satellite data. The surface albedo is used to 196 

calculate net short-wave radiation and surface temperature for the calculation of net long-wave 197 

radiation, soil heat flux, and sensible heat flux. The vegetation index governs the soil heat flux 198 

by incorporating light interception by canopies and is used to express the aerodynamic roughness 199 

of the landscape. The latent heat flux is computed as the residue of the surface energy balance. 200 

Air humidity measurements are not needed because evaporation is computed from the latent heat 201 

flux. The SEBAL method has been applied for water balance estimations (Pelgrum and 202 

Bastiaanssen, 1996), irrigation performance assessment studies (Roerink et al., 1997), and for 203 

weather prediction studies (Van den Hurk et al., 1997). 204 

Co-author Hendrickx and his research group have applied SEBAL within the United 205 

States in New Mexico, Arizona, California, Wyoming, Illinois, and Texas as well as in Panama, 206 



Publisher: GSA 
Journal: GSABK: GSA Books 

Article ID: REG022-12 

Page 10 of 27 

Morocco, and the Volta Basin in West Africa (Hendrickx and Hong, 2005; Hendrickx et al., 207 

2005, 2006; Alkov, 2008; Compaoré et al., 2008; Hong et al., 2008, 2009). Soil moisture 208 

conditions in the root zone can be determined from the evaporative fraction using the empirical 209 

relationship (Ahmad and Bastiaanssen, 2003): 210 

, (2) 211 

where S is relative degree of saturation,  is volumetric water content, sat is volumetric water 212 

content at saturation, and  is the evaporative fraction defined as the ratio E/(Rn  G[[OK?]]). 213 

The validity of Equation 2 has been tested in several studies (Ahmad and Bastiaanssen, 2003; 214 

Scott et al., 2003) including one in New Mexico (Fleming et al., 2005). 215 

Where Equation 2 is used over homogeneous soils with known porosity or saturated 216 

volumetric water content, it can yield the volumetric water content in the root zone after sat is 217 

moved toward the right-hand side of the second equal sign in the equation. However, in semi-218 

arid terrain with heterogeneous soils that still need to be mapped, porosity is not known, and we 219 

can use Equation 2 only to estimate the relative degree of saturation in the root zone. The 220 

disadvantage of S is that no direct relationship exists for determination of the amount of water in 221 

the soil, but it has been our experience that the wetness index S performs quite well for boundary 222 

detection. 223 

Split Moving-Window Analysis 224 

We selected split moving-window analysis for the detection of soil boundaries for several 225 

reasons: (1) the method had been successfully used for boundary detection of soil series on the 226 

basis of soil water content measurements in a semi-arid landscape (Hendrickx et al., 1986; 227 

Wierenga et al., 1987); (2) the method is very simple to implement; and (3) successful 228 
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applications by other researchers (Webster, 1973, 1978; Ludwig and Tongway, 1995; Panis and 229 

Verheyen, 1995; Nash et al., 1999). An alternative method is the maximum level-variance 230 

analysis (Hawkins and Merriam, 1973, 1974), but it was not considered for this exploratory 231 

study since its effectiveness for boundary detection is similar to split moving-window analysis 232 

(Webster, 1978). 233 

The split moving-window analysis was applied[[“is applied”?]] as follows: (1) starting 234 

at one end of the transect, select an even number of pixels that occupy the “window”; (2) split 235 

this window with spatially contiguous soil moisture or digital values into two equal groups; (3) 236 

compute a dissimilarity index between these two groups; (4) move the window one position 237 

further along the transect and compute another dissimilarity index; and (5) make a plot of the 238 

dissimilarity indices (on the vertical axis) versus distance along the transect (on the horizontal 239 

axis) (Webster, 1973, 1978; Hendrickx et al., 1986; Ludwig and Tongway, 1995). In this study, 240 

Student’s t-statistic is used as the dissimilarity index to compare whether the two groups within 241 

one window are different, since the t-statistic is an effective measure for dissimilarity between 242 

two small groups (McClave and Dietrich, 1979). First, a t-value is calculated for each window; 243 

then, these values are plotted on the horizontal axis at each window mid-point. Boundary 244 

locations are identified by peaks in the plot of t-values versus distance. Sampling at equal 245 

distances along a transect is quite different from the random and independent sampling required 246 

for hypothesis testing using the t-statistic. Therefore, we cannot put a true significance level on 247 

the t-values, but instead we have used our field knowledge for the approximation of t-values that 248 

are sufficiently large as to detect a boundary. 249 

Sixteen transects were randomly selected in our field areas for analysis (Engle, 2009), but 250 

for this “method paper,” we will only present data from transects 3 and 10. For the split moving-251 
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window technique (Webster, 1973, 1978), a window size of five pixels was selected because it is 252 

sufficiently narrow to capture boundaries that occur over short distances but also adequate to 253 

minimize noise. A t-test was used to determine the statistical difference between the windows; 254 

boundaries should coincide with maximum t-values. We used four t-values (6, 8, 10, and 12) to 255 

identify soil boundaries. More boundaries are identified at lower t-values, and the higher the t-256 

value, the more robust the boundary. 257 

While we can determine the soil moisture status of an individual pixel, for mapping 258 

purposes, the smallest area that can be clearly defined is ~1 cm2. At a scale of 1:15,000, a 1 cm2 259 

area on a map would equal 150 m2 on the ground or five pixels (Vink, 1963). In general, sharp 260 

boundaries such as landscape boundaries are distinct. However, gradational boundaries are 261 

harder to detect because they do not exhibit the sudden change in properties that generates a 262 

large t-value in the split moving-window analysis. Transitional boundaries (boundaries that shift 263 

locations due to antecedent conditions) are also hard to detect because they may occur in slightly 264 

different locations on different days. All boundaries detected were classified based on two 265 

properties: the percentage of image days over which each boundary is present (the boundary 266 

strength) and the spatial range over which they occur (Table 2). 267 

The split moving-window technique was applied to four different sets of variables: (1) 268 

the first principal component of the digital values of the seven Landsat bands for each day 269 

(daily[[“digital”?]] values[[OK?]] [DV] principal component analysis [PCA], Fig. 2A); (2) the 270 

first principal component of the digital values of the seven Landsat bands for all days (overall 271 

DV PCA, Fig. 2B); (3) the root zone soil moisture values of each day (daily RZSM, Fig. 2A); 272 

and (4) the first principal component of the root zone soil moisture (RZSM) values for all days 273 



Publisher: GSA 
Journal: GSABK: GSA Books 

Article ID: REG022-12 

Page 13 of 27 

(overall RZSM, Fig. 2B). The principal components were calculated using ERDAS IMAGINE 274 

and captured ~70% of the variability in the data. 275 

RESULTS AND DISCUSSION 276 

Figures 2 and 3 show the results of the split moving-window technique along transects 3 277 

and 10. Transect 3 (Fig. 2) crosses a number of landform and soil map boundaries including the 278 

ephemeral stream channel of the Rio Salado. In the daily data (Fig. 2A), the northern boundary 279 

of the Rio Salado is clearly seen in all data sets, while the southern boundary is not readily 280 

apparent. Some of the boundaries correspond with landform and soil map boundaries; others do 281 

not and could either be false detections or boundaries that were not identified in the previous soil 282 

mapping. The overall PCA data show similar results (Fig. 2B), but use of the daily data yields 283 

more boundary information (Fig. 2A). The northern boundary of the Rio Salado appears in only 284 

one data set (overall digital value PCA). The third and fourth boundaries seen at 2280 and 2500 285 

m in the daily data appear in the overall PCA data also. There are boundaries, mostly in the 286 

northern section of the transect, that do not correspond to previously identified boundaries. 287 

However, they are also identified in the daily data, which is further evidence that they are real 288 

boundaries that have not previously been mapped. 289 

Transect 10 (Fig. 3) is an example of a transect crossing agricultural fields and the Rio 290 

Grande floodplain representing the most complex soil landscape in both study areas. As a result, 291 

many boundaries were detected in both the root zone soil moisture and the digital value PCA. 292 

Because the fields are often irrigated separately, the moisture content in each field will be 293 

different so that the boundaries detected are the edges of the field. Most of the boundaries 294 

detected have high t-values, which attest to their strength. The start of the fields can be detected 295 

easily with this method due to the difference between the fields and the surrounding desert. The 296 
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overall PCA data show similar results (Fig. 3B), but use of the daily data yields more boundary 297 

information (Fig. 3A). 298 

In these two examples along a one-dimensional transect, both the daily root zone soil 299 

moisture and daily digital value PCA (Figs. 2A and 3A) were successful at detecting boundaries, 300 

while the overall data sets (Figs. 2B and 3B) were not as efficient. There are cases where daily 301 

root zone soil moisture detects soil boundaries better than the daily digital value PCA. For 302 

example, inspect for t-values of 12 in Figures 2A and 3A the two lowest lines: in Figure 2A, the 303 

daily DV PCA 12 detects one boundary versus four with the daily RZSM 12; while in Figure 3A, 304 

it is three boundaries versus eight. This suggests that the root zone soil moisture is detecting 305 

changes at depth that did not have a surficial expression detectable by Landsat digital values. 306 

Because most of these images were taken during the growing season, the root zone moisture 307 

conditions vary temporally and spatially across the study areas. By combining multiple images, 308 

we can reduce this effect while still incorporating a sequence of varying levels of soil moisture. 309 

Thus, we are able to enhance the spatial trends while minimizing the temporal effects of 310 

localized wetting due to precipitation or irrigation. 311 

Valuable information can be gained from the SEBAL-derived root zone soil moisture; but 312 

under certain environmental conditions, valuable information can also be taken from the daily 313 

DV PCA. When all data sets were combined, the efficiency of the methodology at detecting 314 

confirmed boundaries decreased as the t-value increased (Figs. 2B and 3B). This was expected 315 

because as the t-value increases, the boundaries with lower differences across the windows will 316 

be filtered out leaving only the strongest boundaries. 317 

The overall digital value PCA performs better than the overall root zone soil moisture 318 

data in transect 3 (Fig. 2B) but not in transect 10 where the overall root zone soil moisture 319 
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detects more boundaries. This suggests that root zone soil moisture images might be more useful 320 

in areas of high soil moisture such as close to the rivers and streams or agricultural areas. On the 321 

other hand, the daily digital value PCA can convey a great deal of information in areas where 322 

there is little change in the soil moisture because the digital values will be detecting surficial 323 

properties such as color when there are few other physical changes. 324 

CONCLUSIONS 325 

Analysis of multiple images collected over several years revealed consistent response 326 

patterns in all data sets. The boundaries of these response patterns as determined by a split 327 

moving-window technique frequently coincided with soil map unit and/or landform boundaries. 328 

In such instances, these boundaries are termed hard or sharp boundaries, and they represent a 329 

significant change in soil properties over short distances. In other instances, the boundary 330 

location ranged over several pixels in the different images, suggesting that these were gradational 331 

or fuzzy boundaries representing a gradual spatial change in soil properties. It is only through a 332 

temporal analysis of the remote-sensing images that such boundaries can be identified. Root zone 333 

soil moisture identifies boundaries best under conditions when the moisture content is higher. 334 

The daily PCA data tend to identify landform boundaries and are more efficient when the soil 335 

moisture content is low, indicating that in conditions where soil moisture variability is low, the 336 

calculation using the SEBAL model may be unnecessary. 337 

The advantage to this method is that it is not expert knowledge-based, unlike traditional 338 

soil mapping methods. At a low t-value, over 70% of previously detected boundaries can be 339 

identified; however, the data suggest that there are previously undetected boundaries that may be 340 

also identified by this approach. Furthermore, this method allows identification of different types 341 
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of boundaries and the temporal strength of those boundaries, which is impossible under 342 

traditional mapping techniques. 343 

With a pixel size of 30 m and a split moving-window size of 5, the area being examined 344 

is ~150 m. If multiple boundaries occur in this distance, they will not be detected very 345 

accurately. Georeferencing is another source of error in our methodology. Because all Landsat 346 

images were individually georeferenced, there can be significant differences from one image to 347 

another. It is impossible that multiple georeferenced images lie exactly on top of each other. Five 348 

locations near the study areas were selected to analyze the georeferencing error. The first date for 349 

each location is used as a reference point, and each subsequent date is measured to that reference 350 

point. The resulting average georeferencing error is 74 m with a standard deviation of 30. There 351 

are Two dates of images—7 April 2000 and 3 August 2005—contribute the most to this error. 352 

The images used were randomly chosen from images taken during the growing season 353 

May to September. We believe that with images chosen for the moisture status (for example, 354 

close to a significant rainfall) would result in greater resolution of difference in soil properties. 355 

Future work will also focus on validating these boundaries and identifying the physical processes 356 

that produced changes in the satellite images. Overall, the use of multiple remotely sensed root 357 

zone soil moisture for soil boundary delineation shows great promise of becoming a valuable 358 

tool in the field of digital soil mapping, 359 
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 572 

FIGURE CAPTIONS 573 

Figure 1. Location of Sevilleta National Wildlife Refuge and Hilton Ranch in central New 574 

Mexico, USA. The lines depict the soil boundaries as they are currently mapped by the Natural 575 

Resources Conservation Service (NRCS).[[On map, please add North arrow.]] 576 

 577 

Figure 2. (A) Graphical representation of the boundaries generated using daily digital 578 

value[[“(DV)”?]] principal component analysis (PCA) and daily root zone soil moisture at 579 

critical t-values of 6, 8, 10, and 12, respectively, compared to landform and soil boundaries 580 

mapped along transect 3 (vertical lines). The dot size represents the percentage of days the 581 

boundary occurs, and the line length represents the spatial range over which it occurs. (B) 582 
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Graphical representation of overall root zone soil moisture and overall digital value PCA data at 583 

critical t-values of 6, 8, 10, and 12 along transect 3. The size of the dot represents the t-value of 584 

each boundary. The vertical lines represent landform and soil boundaries mapped along the 585 

transect. 586 

 587 

Figure 3. (A) Graphical representation of the boundaries generated using daily digital 588 

value[[“(DV)”?]] principal component analysis (PCA) and daily root zone soil moisture at 589 

critical t-values of 6, 8, 10, and 12, respectively, compared to landform and soil boundaries 590 

mapped along transect 10 (vertical lines). The dot size represents the percentage of days the 591 

boundary occurs, and the line length represents the spatial range over which it occurs. (B) 592 

Graphical representation of overall root zone soil moisture and overall digital value PCA data at 593 

critical t-values of 6, 8, 10, and 12 along transect 10. The size of the dot represents the t-value of 594 

each boundary. The vertical lines represent landform and soil boundaries mapped along the 595 

transect. 596 



 

TABLE 1. DATE, PATH, AND ROW NUMBERS OF LANDSAT 5 AND LANDSAT 7 IMAGES 
     Date  Path number  Row number  Landsat satellite  Study area(s)  
04/07/2000  33  36  7  Sevilleta, Hilton  
05/06/2002  34  36  7  Sevilleta, Hilton 
05/09/2000  33  36  7  Sevilleta, Hilton 
05/12/2004  33  36  5  Hilton  
05/22/2005  34  36  7  Sevilleta, Hilton 
05/28/2004  33  36  5  Hilton    
05/31/2002  33  37  7  Sevilleta, Hilton 
06/04/2001  34  36  7  Sevilleta, Hilton 
06/13/2004  33  36  5  Hilton    
06/16/2002  33  36  7  Sevilleta, Hilton 
07/02/2005  33  36  5  Hilton    
07/06/2004  34  36  5  Sevilleta, Hilton 
07/28/2000  33  36  7  Sevilleta, Hilton 
07/31/2004  33  36  5  Hilton    
08/03/2005  33  36  5  Sevilleta, Hilton 
08/19/2002  33  36  7  Sevilleta, Hilton 
09/14/2000  33  36  7  Sevilleta, Hilton 
09/17/2004  33  36  5  Hilton 
09/30/2000  33  36  7  Sevilleta, Hilton 
10/14/1999  33  36  7  Sevilleta, Hilton 
   Note: Sevilleta—Sevilleta National Wildlife Refuge; Hilton—Hilton Ranch.  



 

TABLE 2. CLASSIFICATION SCHEME FOR DETECTED BOUNDARIES 
    Days 
(%) 

Boundary strength Range 
(m) 

Boundary type 

0–30 Strong  0–100 Stable  
30–60 Intermediate  100–200 Intermediate/stable  
60–100 Weak  200–300 Intermediate/transitional 
   300–400 Transitional  

[[Should forward slashes between “Intermediate” and “stable” and  
“Intermediate” and “transitional” be replaced with “and/or” or en dashes?]] 


