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ABSTRACT 10 

 11 

The major problem with high spatial resolution satellite images from Landsat 7 is that 12 

imagery is not available very often (i.e. every 16 days or longer) and the coverage area is 13 

relatively small (swath width 185km), while images of lower spatial resolution from MODIS are 14 

available daily and one image covers a relatively large area (swath width 2,330km). This paper 15 

considers the feasibility of applying various down-scaling methods to combine MODIS and 16 

Landsat imagery in order to obtain both high temporal and high spatial resolution. The Surface 17 

Energy Balance Algorithm for Land (SEBAL) was used to derive daily evapotranspiration (ET) 18 

distributions from Landsat 7 and MODIS images. Two down-scaling procedures were evaluated: 19 

input down-scaling and output down-scaling. In each down-scaling scheme, disaggregated 20 

imagery was obtained by two different processes: subtraction and regression. The primary 21 

objective of this study was to investigate the effect of the different down-scaling schemes on the 22 

spatial distribution of SEBAL derived ET. We found that all of the four proposed down-scaling 23 

methodologies can generate reasonable spatial patterns of the disaggregated ET map. The results 24 
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of this study show that output down-scaling with regression between images is the most 25 

preferred scheme and input down-scaling with subtraction is the least preferred scheme. 26 

 27 

1.  INTRODUCTION 28 

 29 

Routine monitoring of surface conditions with high spatial resolution satellite data is 30 

difficult due to the long return period between successive satellite overpasses. Although the 31 

temporal resolution of Landsat is 16 days, even in arid regions only monthly coverage is a 32 

reasonable expectation for the availability of clear high-resolution satellite images due to 33 

periodic cloud cover (Moran et al., 1996). High-temporal resolution (daily or more frequent) but 34 

coarser spatial resolution satellite data including Moderate Resolution Imaging 35 

Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR) and 36 

Geostationary Orbiting Environmental Satellite (GOES) have therefore been used to conduct 37 

routine ET monitoring (e.g. Seguin et al., 1991; e.g. Mecikalski et al., 1999). Coarse resolution 38 

images like MODIS provide very useful opportunities to monitor the surface conditions at meso-39 

scale with a temporal resolution of one day. Therefore, down-scaling from MODIS to Landsat 40 

scale is a very useful technique to combine the advantages of high temporal and spatial 41 

resolutions. 42 

 43 

Down-scaling is defined as an increase in spatial resolution following disaggregation of 44 

the original data set (Bierkens et al., 2000; Liang, 2004). The process of down-scaling 45 

accomplishes a restoration of the variation at a specific scale by assuming that the values of the 46 

larger scale are the average of the values at the finer scale and that more uncertainties exist in 47 
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down-scaled products than up-scaled products because infinitely many down-scaled products are 48 

possible (Bierkens et al., 2000). Down-scaling is generally required for the use of available 49 

information at a desired fine resolution (Price et al., 2000; Maayar and Chen, 2006). In the last 50 

decade, many studies have examined the effects of spatial resolution on surface characteristic 51 

representation, but information on down-scaling is limited since most studies have examined up-52 

scaling procedures only (Nellis and Briggs, 1989; Turner et al., 1989; Lam and Quattrochi, 1992; 53 

Stoms, 1992; Brown et al., 1993; Vieux, 1993; De Cola, 1994; Mark and Aronson, 1994; 54 

Wolock and Price, 1994; Zhang and Montgomery, 1994; Bian et al., 1999; Hong et al., 2009).  55 

 56 

Traditionally, down-scaling procedures have been tested in the fields of meteorology and 57 

climatology to obtain local climatological information from coarse-resolution remote sensing 58 

imagery, but only a few studies have applied disaggregation schemes to surface parameters to 59 

increase resolution (Liang, 2004). Most previous research regarding down-scaling using remote 60 

sensing imagery has focused on attempting to disaggregate the land cover information. Among 61 

the most popular techniques for disaggregation of land cover are artificial neural networks 62 

(Kanellopoulos et al., 1992; Atkinson and Tatnall, 1997), mixture modeling (Settle and Drake, 63 

1993; Kerdiles and Grondona, 1996), and supervised fuzzy c-means classification (Bezdek et al., 64 

1984; Foody and Cox, 1994). These techniques have been successfully applied to estimate the 65 

proportions of specific classes that occur within each pixel. While this disaggregation 66 

information expressed land cover composition, it did not provide any indication of spatial 67 

location within the pixel. Atkinson (1997) proposed an idea for an alternative method called 68 

“sub-pixel mapping”. The proposed technique aimed to determine where the relative proportions 69 

of each class are most likely to occur. 70 
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 71 

More recently, an algorithm for sharpening thermal imagery algorithm called DisTrad 72 

was introduced by Kustas et al. (2003). DisTrad sharpens thermal band data to that of the visible 73 

and near-infrared bands by using the relationship between radiometric surface temperature (Trad) 74 

and the Normalized Difference Vegetation Index (NDVI). The DisTrad technique is based on 75 

fitting a second order polynomial between Trad and the aggregated NDVI to the resolution of Trad. 76 

Disaggregated sensible heat flux fields estimated by the DisTrad technique using Landsat 7 77 

imagery agreed with ground measured fluxes to within 10 % (Anderson et al., 2004). Most of the 78 

very-fine resolution (< 5 m) satellites like IKONOS and Quickbird have visible and near-infrared 79 

bands but do not have thermal bands. DisTrad can generate IKONOS resolution thermal imagery 80 

with additional information. 81 

 82 

In this study, high quality Landsat 7 and Terra MODIS images (Figure 1) were selected 83 

to test various down-scaling procedures. Disaggregated daily ET rates from MODIS imagery 84 

were compared with the ET rates derived from Landsat imagery. SEBAL estimated daily ETs 85 

from Landsat imagery were compared against ground-based eddy covariance measurements in 86 

previous research and demonstrated very good agreement (Hendrickx and Hong, 2005; Hong, 87 

2008). The primary objective of this study was to investigate the effect of various relatively 88 

simple down-scaling schemes on the spatial distribution of the SEBAL estimated daily ET rate, 89 

especially noting how the relative accuracy of ET changes with increasing spatial resolution. 90 

 91 

2. METHODS AND MATERIALS 92 

 93 
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2.1. Study Area and Satellite Imagery 94 

The study area covers a portion of the Middle Rio Grande Valley in New Mexico 95 

(Figure 1). The Middle Rio Grande setting is composed of agricultural fields and riparian 96 

vegetation. The regional climate is classified as arid/semiarid; its annual precipitation 97 

distribution is bimodal, with more than half of the rainfall due to monsoonal patterns in the 98 

summer, although the proportion varies considerably from year to year. The average annual air 99 

temperature is 15 C. Summer daily temperatures range from 20 to 40 C, while winter daily 100 

temperatures range from -12 to 10 C. Mean annual precipitation is about 25 cm and mean 101 

annual potential ET is approximately 170 cm. (Stromberg, 1998; Costigan et al., 2000; Scott et 102 

al., 2000; Cleverly et al., 2002; Elmore et al., 2002). 103 

 104 

Clear-sky Landsat 7 and MODIS images from May 31 and June 16, 2002 were selected 105 

for the investigation of the effect of down-scaling processes. Table 1 shows the spectral bands of 106 

Landsat 7 and MODIS in the visible, near- to mid-infrared and thermal infrared wavelength 107 

regions used for SEBAL application. Both the Landsat data and the MODIS MOD 02 - Level-1B 108 

calibrated and geolocated at-aperture radiances have not been corrected for atmospheric 109 

conditions since no ground measurements were available to do so and –more importantly– the 110 

internal calibration of the sensible heat computation within SEBAL eliminates the need for 111 

refined atmospheric correction of surface temperature and reflectance albedo measurements 112 

using radiative transfer models (Allen et al., 2007; Bastiaanssen et al., 2005). Since MODIS 113 

images are already accurately georeferenced unlike Landsat images, two Landsat images used in 114 

this study were georeferenced to closely match each other as well as the MODIS images. This 115 

was done by identifying several accurate Ground Control Points (e.g. road intersections and 116 
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agricultural field boundaries) on the Landsat images and aligning them to fit on the images. The 117 

images used in this study covered an 18km x 90km area of the Middle Rio Grande Basin [upper 118 

left corner (long/lat): (106°49'W/35°14'N); lower right corner (long/lat): (106°36'W/34°25'N)] 119 

approximately from the city of Albuquerque to the Sevilleta LTER (Figure 1). 120 

 121 

2.2. Surface Energy Balance Algorithm for Land (SEBAL) 122 

We have selected SEBAL to estimate ET distributions in the Rio Grande Basin for the 123 

following reasons: (1) SEBAL consists of physically-based image analysis algorithms using 124 

standard satellites imagery and requires a minimum of ancillary meteorological information from 125 

surface measurements or atmospheric models. (2) SEBAL deals with a large number of 126 

environmental variables and does not assume variables to be constant over space as do many 127 

other methods. For example, some methods assume all variables besides surface and air 128 

temperatures are spatially constant (Seguin and Itier, 1983; Jackson et al., 1996). (3) In SEBAL 129 

the need for atmospheric correction of short-wave and thermal information in images is reduced 130 

(Tasumi, 2003), since SEBAL ET estimates depend only on radiometric temperature differences 131 

in the scene rather than on the absolute value of the surface temperature. (4) SEBAL has not only 132 

been used successfully with Landsat images at spatial scales of 30 – 60m, but also with AVHRR 133 

(Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging 134 

Spectroradiometer) images at spatial scales of 250 – 1000m (Bastiaanssen et al., 2002; Hong et 135 

al., 2005; Hafeez et al., 2006). (5) Recent studies with SEBAL in the heterogeneous arid riparian 136 

and desert areas of the southwestern US have been successful using Landsat and MODIS images 137 

(Fleming et al., 2005; Hendrickx and Hong, 2005; Hong et al., 2005). 138 

 139 



 7 

SEBAL is a remote sensing flux algorithm that solves the surface energy balance on an 140 

instantaneous time scale and for every pixel of a satellite image (Bastiaanssen et al., 2005; 141 

Hendrickx and Hong, 2005; Allen et al., 2007b; Hong, 2008). The method is based on the 142 

computation of surface albedo (), surface temperature (Ts), and NDVI from multi-spectral 143 

satellite data. The  was calculated from visible to mid-infrared bands (Landsat 7: bands 1 – 5 144 

and 7; MODIS: bands 1 – 4, 6 and 7); the Ts from visible, near-infrared and thermal-infrared 145 

bands (Landsat 7: band 3, 4 and 6; MODIS: bands 1, 2, 31 and 32); the NDVI from visible and 146 

near-infrared bands (Landsat 7: bands 3 and 4; MODIS: bands 1 and 2). Note that SEBAL also 147 

uses 250m and 30m resolution of visible and near-infrared from MODIS and Landsat 7, 148 

respectively, to calculate Ts and . Therefore, the spatial resolution of NDVI, Ts and  estimates 149 

in this study are all the same. 150 

 151 

The  was used to calculate net short wave radiation, and Ts was used for the calculation 152 

of net long wave radiation, soil heat flux and sensible heat flux for each pixel. The NDVI 153 

governs the soil heat flux by incorporating light interception effects by canopies and was used to 154 

express spatial variability in the aerodynamic roughness of the landscape. The surface slope and 155 

aspect of the study area were calculated from a digital elevation model (DEM) of 30 and 250m 156 

resolutions. The latent heat flux was computed as the residue of the surface energy balance.  157 

 158 

HGRLE n        [1]  159 

 160 

where Rn is the net radiation flux density [Wm
-2

], G is the soil heat flux density [Wm
-2

], H is the 161 

sensible heat flux density [Wm
-2

] and LE (= ET) is the latent heat flux density [Wm
-2

], which 162 
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can be converted to the ET rate [mms
-1

] at the time of satellite passover using the latent heat of 163 

vaporization of water λ [Jkg
-1

].  164 

 165 

The SEBAL approach has demonstrated a high accuracy for evaporation mapping worldwide 166 

with typical accuracies of about 15% and 5% for, respectively, daily and seasonal evaporation 167 

estimates (Bastiaanssen et al., 2005; Hendrickx and Hong, 2005). Validation of SEBAL 168 

evaporation in Idaho using precision lysimeter measurements (considered the best standard) has 169 

shown SEBAL evaporation estimates to be within 10% at the sub-field scale for daily, monthly 170 

and annual time scales (Morse et al., 2000; Allen et al., 2003; Allen et al., 2007a). For more 171 

details of the SEBAL algorithm, the reader is referred to the papers (Bastiaanssen et al., 1998; 172 

Hendrickx and Hong, 2005; Allen et al., 2007b; Hong, 2008). 173 

 174 

2.3. Down-Scaling (disaggregation) Process 175 

Image down-scaling or disaggregation consists of using information taken at larger 176 

scales to derive processes at smaller scales. The total number of pixels increases and each output 177 

pixel represents a smaller area. Prior to applying the down-scaling procedures suggested in this 178 

study, we prepared maps of , NDVI, Ts and daily ET from Landsat 7 and MODIS images on 179 

June 16, 2002 and May 31, 2002 (Figure 2).  180 

 181 

In this study, we have disaggregated MODIS scale (250m) imagery to Landsat scale 182 

(30m) imagery using four different down-scaling methods (Table 2 and Figure 3). The “input 183 

down-scaling” consists of disaggregating MODIS-scale pixels of , NDVI, and Ts values to 184 

obtain pixels at the Landsat-scale prior to applying SEBAL to estimate daily ET. Note that 185 
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although the SEBAL ET is a nonlinear function of theses inputs, the input down-scaling scheme 186 

implicitly assumes linearity. As we shall see later, the nonlinearity does not seem to cause 187 

problems in practice. The “output down-scaling” scheme required running SEBAL first and then 188 

disaggregated SEBAL estimated daily ET from MODIS to Landsat pixel scale.  189 

 190 

Two different disaggregation schemes, subtraction and regression are used in this study 191 

(Figure 3). The subtraction method disaggregated imagery by applying the distribution of pixel 192 

by pixel difference between two MODIS products to previous or subsequent Landsat images 193 

covering the same area. The fine-scale variability within a MODIS pixel is assumed unchanged 194 

during the time interval (16 days or longer) between two high quality Landsat images.  195 

 196 

For example, in order to disaggregate ET imagery obtained from MODIS imagery of 197 

June 16, 2002 with output down-scaling with subtraction (ID #1 in Table 2), first the pixel-by-198 

pixel difference map between MODIS ET on June 16, 2002 and May 31, 2002 was calculated. 199 

Second, the calculated difference was added to prior Landsat ET imagery on May 31, 2002 to 200 

predict disaggregated ET imagery on June 16, 2002.  201 

 202 

The regression method disaggregated imagery by applying linear regression between 203 

two MODIS products to the previous or subsequent Landsat product. In this application of output 204 

down-scaling with regression, a 1
st
 order linear regression between two ET maps was first 205 

calculated, and then the regression was applied to the ET map derived from the prior Landsat 206 

image of May 31, 2002 to predict the disaggregated imagery on June 16, 2002. The 1
st
 order 207 

regression line was not constrained to zero intercept in order not to change the meaning of the 208 
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regression coefficients. The regression method used in the study has an assumption that the 209 

linear relationship between coarse resolution images is valid between fine-scale resolution 210 

imagery and that the fine-scale variability of the area of interest changes linearly during the time 211 

interval between two satellite-estimated maps.  212 

 213 

The spatial distribution and statistical features of the disaggregated ET maps generated 214 

by four different down-scaling schemes were compared with each other. The down-scaled ET 215 

maps were also evaluated against the ET map directly derived from Landsat imagery. The 216 

performance of the different down-scaling schemes was examined by inspection of: (1) the 217 

spatial distribution of disaggregated imagery by each down-scaling scheme to evaluate the 218 

changes in spatial pattern after disaggregation and (2) histograms and descriptive statistics of the 219 

disaggregated data from each down-scaling scheme. The differences in spatial details between 220 

the disaggregated imagery and the original imagery from Landsat were considered. In this study, 221 

difference images were created by subtracting the disaggregated pixels from the pixels of the 222 

direct Landsat-based estimates (ETdown-scaled – ETLandsat). The statistical and spatial characteristics 223 

of the differences were evaluated by displaying their spatial distribution and calculating the mean 224 

and standard deviation of the absolute differences. Descriptive statistics were calculated based on 225 

the absolute value of the difference so that large positive and negative differences would not 226 

cancel each other out when the mean difference were calculated. 227 

 228 

3. RESULTS AND DISCUSSION 229 

 230 

3.1. Landsat and MODIS Imagery Preparation 231 
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Landsat- and MODIS-derived , NDVI, Ts and daily ET distributions on May 31 and 232 

June 16 in 2002 are shown in Figures 4 and 5. The area of coverage is 90 x 18km
2
 which 233 

contains 3000 x 600 pixels for Landsat scale (30m) and 360 x 72 pixels for MODIS scale 234 

(250m). The histogram and descriptive statistics including mean and standard deviation (Std) of 235 

SEBAL estimates are also shown in Figures 4 and 5. In order to show the spatial distribution in 236 

detail, an enlarged area of 6 x 9 km
2
 in the Rio Grande riparian area is presented at the bottom of 237 

the figures. Linear regressions of Landsat and MODIS scale pixels used in down-scaling with 238 

regression method are presented in Figure 6. 239 

 240 

3.1.1 Spatial distribution of Landsat- and MODIS-based maps 241 

The frequency distribution and descriptive statistics in Figures 4 and 5 show a wide pixel 242 

value range due to the heterogeneous surface covers including riparian vegetation, the Rio 243 

Grande River, agricultural fields, bare soil, desert vegetation and urban areas in the study area. 244 

Note that a great portion of the pixels (~ 40%) in the study area have close to zero ET rates (0 – 245 

0.5 mmd
-1

). Lower ET rates correspond to the higher Ts and  and lower NDVI values. In both 246 

Landsat and MODIS estimates, the mean values of ET and NDVI of June images were higher 247 

but Ts was lower than those from the May images. This indicates that vegetation growth activity 248 

(transpiration) increased from the end of May to the middle of June. However, it is difficult to 249 

ascertain a significant difference in  values between the two dates.  250 

 251 

The full scene of Landsat- and MODIS-based ET, Ts,  and NDVI maps on the same 252 

date showed overall similar distributions, but many of the fine details found on the Landsat-253 

based maps have disappeared on the MODIS-based maps. For example, all of the images clearly 254 
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show that higher ET, low Ts, lower  and higher NDVI occur in the irrigated fields and riparian 255 

areas along the Rio Grande Valley, while lower ET, higher Ts and  and lower NDVI values 256 

occur in the adjoining desert. The city of Albuquerque has much higher ET rates than the 257 

surrounding desert due to the grass and trees in the urban environment. The high spatial 258 

resolution of the Landsat-based image resulted in many homogeneous pixels with either high or 259 

low ET, Ts,  and NDVI. The low spatial resolution of the MODIS-based map resulted in many 260 

mixed pixels consisting partly of high ET, Ts,  and NDVI and partly of low ET, Ts,  and 261 

NDVI. The mixed pixels issue is well presented in the NDVI maps. The minimum value of 262 

NDVI in the Landsat-based estimate is negative (water pixels) (-0.46 for June 16, 2002 and -0.36 263 

for September 14, 2000), but the MODIS-based NDVI has a positive minimum number. This 264 

shows that the 250 x 250 m
2
 MODIS pixel size is too big to be composed entirely or mainly of 265 

water in our study area.  266 

 267 

Also in Figures 4 and 5, the increase in mixed pixels in the MODIS-based maps is 268 

clearly presented in the histograms and descriptive statistics. Due to the increase in mixed pixels 269 

as spatial resolution increases, MODIS-based ET, Ts,  and NDVI distributions produced a 270 

tighter and taller histogram than the one from Landsat imagery. As shown in the table of 271 

descriptive statistics, mean values of Landsat and MODIS estimated images are very similar 272 

(Figures 4 and 5). However, maps of ET, Ts, , and NDIV derived from the Landsat 7 image 273 

show a greater standard deviation than the maps derived from the MODIS images. The temporal 274 

changes in ET, Ts,  and NDVI in the area of agricultural fields along the Rio Grande River are 275 

significant between images of 16 days apart. The abrupt changes are clearly shown in Landsat-276 

based maps in the 6 km by 9 km enlarged area. These changes can be detected in the MODIS 277 
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estimated maps, but are not as clearly represented as they are in the Landsat scale images due to 278 

the coarse spatial resolution of the MODIS pixels. 279 

 280 

3.1.2. Linear regression between Landsat- and MODIS-based maps 281 

Figure 6 presents the linear regressions of two Landsat and two MODIS estimates, 282 

respectively, on May 31, 2002 versus June 16, 2002. The 1:1 line is also drawn in the graphs. 283 

Figure 6 was generated in order to answer to the question of whether relationships between ET, 284 

Ts,  and NDVI are identical for a MODIS and Landsat image of the same day. The data show a 285 

decent agreement in linear regressions between Landsat and MODIS. Therefore, it confirms the 286 

feasibility of using the down-scaling methods; especially the regression based ones that are 287 

proposed in this study. The regression lines in Figure 6 also support that the ET and NDVI were 288 

higher but Ts was lower for the June images than those from May images in both Landsat and 289 

MODIS estimates.  290 

 291 

3.2. Comparison of Different Down-scaled Maps 292 

Spatial and statistical characteristics of four different down-scaled products at 30m 293 

resolution from coarse 250m resolution MODIS-based imagery are presented in Figure 7. The 294 

difference maps between MODIS- and Landsat-based ET on June 16, 2002 and between down-295 

scaled daily ET maps versus Landsat-based ET at 30m resolution are shown in Figure 8. 296 

 297 

3.2.1. Down-scaling with output subtraction and regression 298 

The mean value of the down-scaled ET map of June in Figure 7 (1) is larger than 299 

Landsat-based ET of May (: 1.79 mmd
-1

), and also greater than the mean value of the original 300 
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June Landsat-based ET (: 1.81 mmd
-1

). The larger mean values of the down-scaled ET map can 301 

be explained by the larger positive pixel-by-pixel difference between the two MODIS-based ET 302 

of June and May images than the one between Landsat-based ET images. From Figures 4 and 5, 303 

the mean difference between the MODIS-based ET in June and the May MODIS-based ET is 304 

calculated as 0.09 mmd
-1

. This difference is larger than the difference between the original 305 

Landsat-based ET of June and May (0.02 mmd
-1

). Therefore, when these differences between the 306 

two MODIS-scale images were added to the Landsat-based ET on May 31, 2002, the down-307 

scaled ET values were higher than the original Landsat-based ET of June 16, 2002. The 308 

difference in the SEBAL outcome between Landsat 7 and MODIS is mainly a result of slightly 309 

different band widths for each sensor. The band widths of MODIS in the visible and near-310 

infrared, with the exception of Band 3, are narrower than those of Landsat 7. This results in 311 

different responses from the surface, which in turn may alter the computed surface , NDVI and 312 

Ts. 313 

 314 

The down-scaled map in Figure 7 (2) was produced by applying a linear regression 315 

obtained from two MODIS scale images to the Landsat-based ET on May 31, 2002. Therefore, 316 

the overall spatial distribution of down-scaled imagery should be similar to the original Landsat-317 

based ET map of May. Compared to Figure 7 (1), Figure 7 (2) shows a smoother pattern (lower 318 

standard deviation). This is because regression method does not produce any sharp transitions in 319 

the down-scaled image of MODIS scale pixel and is less vulnerable to the georeferencing 320 

disparity between Landsat and MODIS images than the subtraction method. In Figure 7 (2), 321 

sharp transitions of MODIS scale are easily recognized along the Rio Grande River and also in 322 

the lower right side of the enlarged image. Another advantage of regression over subtraction is 323 
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that a few outliers will hardly affect the linear regression since so many pixels are available for 324 

the regression. Most outliers can be caused by georeferencing disagreement among the different 325 

satellite images or by abrupt temporal changes between two different dates‟ images resulting 326 

from a rainstorm or irrigation over part of the area.  327 

 328 

3.2.2. Input and output down-scaling 329 

The down-scaled ET maps in Figure 7 (3) and 7 (4) were generated after applying 330 

SEBAL with down-scaled 30m pixel size of SEBAL input parameters (Ts,  and NDVI) with 331 

subtraction and regression method, respectively. The disparity among the down-scaled ET maps 332 

between (3) and (4) in Figure 7 is similar to the disparity among the maps in (1) and (2). For 333 

example, the maps in Figure 7 (4) are smoother (lower standard deviation) than the maps in 334 

Figure (3), because again subtraction method generates a sharp transition and also the 335 

georeferencing disagreement between the two MODIS images is smaller than the difference 336 

between MODIS and Landsat imagery. 337 

 338 

Little differences exist in standard deviation between the maps in Figure 7. However, 339 

any difference between input and output down-scaled maps results first from the imperfection of 340 

the down-scaling procedure which leads to a disparity between the down-scaled input parameters 341 

and the parameters from the original MODIS sensor. Second, the disparity between the input and 342 

output down-scaling is also due to the non-linearity of the SEBAL model and the application of 343 

different dT-Ts relationships for different pixel size imagery (Hong, 2008). For the input down-344 

scaling 71541810 .T.dT s   was used and 13642090 .T.dT s   was used for the output 345 

down-scaling. That is, because input and output down-scaling used different dT-Ts relationships, 346 
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the output down-scaled ET imagery must be different from the input down-scaled ET one, even 347 

with the linearly related two input data set. Nevertheless, as demonstrated by visual examination 348 

of the spatial distribution of ET in Figure 7, the contrast as well as the basic patterns (high and 349 

low values and their relative locations) of ET between output down-scaling and input down-350 

scaling show only slight disagreement. The input down-scaling procedure is more complicated 351 

than the output down-scaling procedure, since it needs to disaggregate three images compared to 352 

one image for output down-scaling. In addition, longer SEBAL processing time is required for 353 

input down-scaling because the input images have a higher resolution and a larger file size. 354 

 355 

3.3. Limitation of the Proposed Down-scaling Method 356 

The proposed down-scaled method does not always produce reliable results. This section 357 

analyzes differences between the down-scaled images and investigates the limitations of the 358 

down-scaling schemes. 359 

 360 

3.3.1. Difference between down-scaled ET and original Landsat-based ET 361 

Descriptive statistics of the absolute difference of four different down-scaled ET maps 362 

against the original Landsat-based ET of June 16, 2002 are shown in Table 3. Descriptive 363 

statistics in Table 3 show that mean values of the absolute difference are similar to each other 364 

and range from 0.53 to 0.57 mmd
-1

, but the standard deviation from the regression method is a 365 

little lower than from the subtraction method. Table 3 also supports that the difference in down-366 

scaled ET maps between input and output down-scaling schemes was not significant. However, 367 

any slight difference between input and output down-scaling can be explained by the difference 368 

between the down-scaled input parameters and the original parameters from MODIS imagery. 369 
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 370 

3.3.2. Georeferencing disagreement among images 371 

Figure 8 shows examples of pixel-by-pixel difference maps between MODIS- and 372 

Landsat-based ET and between down-scaled ET and original Landsat-based ET to examine the 373 

effect on georeferencing disagreement between images on down-scaling. In general, the satellite 374 

image has a georeferencing difference of a size of one or two pixels; therefore, the disparity of 375 

the georeferencing accordance between images is easily more than a couple of pixel sizes. Also 376 

note that the georeferencing match between images from different satellite sensors is poorer than 377 

the ones from same sensors. As shown in Figure 8, the pixel by pixel difference between the 378 

MODIS- and Landsat-based ET map shown in (a) has higher standard deviation than the ones in 379 

(b) and (c). From the difference in (a), areas with apparently high ET differences ( 2.0 mmd
-1

) 380 

having brown and blue colors are dominantly observed along the boundary between Rio Grande 381 

River riparian areas (high ET) and surrounding deserts (low ET). Since the difference maps in (a) 382 

were produced by subtracting Landsat-based ET from MODIS-based ET [ETMODIS –ETLandsat], 383 

the red-colored pixels of the difference maps of (a) represent where the MODIS-based ET is 384 

considerably higher than Landsat-based ET. Of course, areas showing blue-colored pixels 385 

represent points where the ET from Landsat is considerably higher than the ET from MODIS-386 

based imagery. These extremes are mostly due to pixel size difference or mixed pixels, and 387 

disagreement in image georeferencing between Landsat- and MODIS-based imagery.  388 

 389 

Dealing with the georeferencing of two maps with spatial resolutions differing by an 390 

order of magnitude is not an easy problem. In fact, it was impossible for us to identify accurate 391 

common ground control points from both Landsat and MODIS imagery directly because of the 392 
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huge difference in the spatial resolution. Therefore, it was very difficult to perform 393 

georeferencing of two different scale satellite images correctly. The georeferencing difference 394 

also appears in histograms. Histograms in Figure 8 indicate that the frequency of almost zero ET 395 

difference pixels of (a: 32.4%) is less than the frequency in (b: 39.7 and c: 42.0%). In addition, 396 

since georeferencing disagreement between Landsat and MODIS is also embedded in down-397 

scaling with subtraction, the map of (b) in Figure 8 also shows significant differences along the 398 

area between riparian and desert areas. These large differences did not appear in Figure 8 (c). 399 

This indicates that the georeferencing disagreement between the two Landsat images on June and 400 

May is quite small. 401 

 402 

3.3.3. Areas having dynamic temporal changes 403 

As mentioned earlier, the subtraction method assumes that fine-scale variability within 404 

one MODIS scale pixel is unchanged during the time interval between previous and subsequent 405 

imagery. To examine the fine-scale variability in the time interval between previous and 406 

subsequent fine-resolution imagery, the spatial distribution of Landsat-based ET on May 31, 407 

2002 and June 16, 2002 was examined. No precipitation was recorded during this 16 day period. 408 

Three different land use types including riparian, desert, and agricultural field are shown in the 409 

area of 1000m by 1000m (Figure 9). As shown in Figure 9, the spatial variability of daily ET in 410 

riparian and desert areas is almost consistent over the 16 day interval. However, agricultural 411 

fields show dynamic changes in daily ET over the 16 days due to irrigation or other agricultural 412 

activities. Therefore, although the subtraction method may produce a reliable down-scaled image 413 

in less dynamic (for example, no localized rainfall event) areas such as riparian and desert 414 
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environments; it is impossible to precisely predict down-scaled imagery in areas experiencing 415 

dynamic changes such as agricultural fields.  416 

 417 

The method of down-scaling with regression method is dependent upon the regression 418 

slope and intercept between two MODIS-based images. The regressions in Figure 6 do not allow 419 

abrupt changes (greater than 20%) in ET and other surface parameter between May 31 and June 420 

16. Therefore, the regression method has limitations in areas experiencing a dynamic temporal 421 

change in a short period of time. 422 

 423 

 424 

4. CONCLUSIONS 425 

 426 

Despite encountering some issues, this study has shown that all of the proposed down-427 

scaling methodologies could be used to predict reasonable spatial patterns of daily ET within 428 

each coarse MODIS scale pixel over the Middle Rio Grande Basin. This study also indicates that 429 

down-scaled ET values from coarse resolution remotely sensed data are not always reliable. In 430 

particular, the area of interest for image disaggregation needs to be in less temporally dynamic 431 

conditions at the coarse MODIS scale in order to produce reliable results. 432 

 433 

Georeferencing disagreement between Landsat and MODIS images is the most 434 

significant issue for the application of the down-scaling schemes suggested in this study. Based 435 

on our results, the regression method is less vulnerable to this georeferencing disagreement 436 

between different satellite images than the subtraction method; therefore regression produces 437 
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more reliable results than subtraction. We also found that the differences in down-scaled ET 438 

maps between input and output down-scaling schemes were not significant. However, since the 439 

input down-scaling procedure is more complicated and requires longer SEBAL processing time 440 

than output down-scaling, we recommend output down-scaling over input down-scaling. 441 

Therefore, we conclude that output down-scaling with regression is the most preferred scheme 442 

among the four proposed down-scaling schemes. The least preferred scheme is input down-443 

scaling with subtraction. 444 

 445 
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Table 1. Band spatial resolutions (m) and wavelengths (m) of Landsat 7 and MODIS sensors. 607 
 608 

Sensors 

 

 

Band number 

 

1 

 

2 

 

3 

 

4 

 

5# 

 

6 

 

7 

 

31 

 

32 

 

Landsat 7 

Pixel 

size 

[m] 

 

30 

 

30 

 

30 

 

30 

 

30 

 

60 

 

30 

 

NA* 

 

NA* 

Band 

width 

[m] 

 

0.45–0.51 

 

0.52–0.60 

 

0.63–0.69 

 

0.75–0.9 

 

1.55–1.75 

 

10.4–12.5 

 

2.09–2.35 

 

NA* 

 

NA 

 

MODIS 

Pixel 

size 

[m] 

 

250 

 

250 

 

500 

 

500 

 

500 

 

500 

 

500 

 

1000 

 

1000 

Band 

width 

[m] 

 

0.62–0.67 

 

0.84–0.87 

 

0.46–0.48 

 

0.54–0.56 

 

1.23–1.25 

 

1.63–1.65 

 

2.11–2.15 

 

10.8–11.3 

 

11.8–12.3 

 609 
 610 
#
MODIS band5 is not used in this study because of streaking noise, *Not available 611 

612 



 26 

Table 2. Four different down-scaling methods used in this study. 613 
 614 

Down-scaling 

approach 

Down-scaling 

operation 
ID Method 

Output 

(ET) 

Subtraction 1 (MCET250 – MPET250) + LPET30 

Regression 2 Regr*(MPET250, MCET250) to LPET30 

Input 

(, NDVI, Ts) 

Subtraction 3 (MCANT250 – MPANT250) + LPANT30 

Regression 4 Regr(MPANT250, MCANT250) to LPET30 

 615 
*1

st
 order regression, for example Regr(x,y) to z represents applying 1

st
 order regression between x (predictor) and y 616 

(response) to z as a predictor. 617 
LPET30: 30m resolution ET map from prior (May 31, 2002) Landsat 618 
LPANT30: 30m resolution of , NDVI and Ts maps from prior Landsat 619 
MCET250: 250m resolution of ET map from current (June 16, 2002) MODIS 620 
MPET250: 250m resolution of ET map from prior (May 31, 2002) MODIS 621 
MCANT250: 250m resolution of , NDVI and Ts maps from current MODIS 622 
MPANT250: 250m resolution of , NDVI and Ts maps from prior MODIS 623 
ET: daily evapotranspiration rate [mmd

-1
], : surface albedo [-], NDVI: Normalized Difference Vegetation Index [-], 624 

and Ts: surface Temperature [K]625 
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Table 3. Descriptive statistics of the difference [mmd
-1

] of down-scaled ET against original 626 
Landsat-based ET of June 16, 2002. (note: mean and standard deviation are calculated from the 627 
absolute difference). 628 
 629 

Down-scaling 

approach 

Down-scaling 

operation 
ID 

Mean 

absolute difference 
Standard deviation 

Output 

Subtraction 1 0.53 0.72 

Regression 2 0.57 0.70 

Input 

Subtraction 3 0.55 0.77 

Regression 4 0.54 0.70 

 630 
631 
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Figure 1. Location of the study area (18km by 90km). True color Landsat 7 (30m by 30m 648 
resolution) and MODIS (250m by 250m resolution) images on June 16, 2002. 649 

650 
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 669 
Figure 2. Preprocessing for down-scaling scheme. [LPET30: 30m resolution ET map from prior (May 31, 670 
2002) Landsat, LCET30: 30m resolution ET map from current (June 16, 2002) Landsat, LPANT30: 30m resolution of 671 
, NDVI and Ts maps from prior Landsat, LCANT30: 30m resolution of , NDVI and Ts maps from current Landsat, 672 
MCET250: 250m resolution of ET map from current MODIS, MPET250: 250m resolution of ET map from prior  673 
MODIS, MCANT250: 250m resolution of , NDVI and Ts maps from current MODIS, MPANT250: 250m resolution 674 
of , NDVI and Ts maps from prior MODIS] 675 
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Figure 3. Schematic of two disaggregation methods used in this study. 692 
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 695 
 696 

Figure 4. SEBAL estimated ET, Ts,  and NDVI from Landsat 7 on June 16, 2002 and May 31, 697 

2002 (30m by 30m resolution). Bin size of the ET, Ts,  and NDVI histogram is 0.5 mmd
-1

, 2.5 698 
K, 0.02, and 0.05, respectively and frequency occurrence exceeding 20% marked next to the 699 
arrow. 700 

701 
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 702 

 703 
 704 

Figure 5. SEBAL estimated ET, Ts,  and NDVI from MODIS on June 16, 2002 and May 31, 705 
2002 (250m by 250m resolution). 706 
 707 

708 
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Between Landsat estimates on May 31, 2002 and June 16, 2002 714 
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Between MODIS estimates on May 31, 2002 and June 16, 2002 725 
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 739 
Figure 6. Linear regressions used in down-scaling scheme. 740 
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Std 2.45 2.40 2.47        2.37 
 748 

                                                  749 
 750 
 751 
 752 
Figure 7. Down-scaled ET map from (1) output with subtraction, (2) output with regression, (3) 753 
input with subtraction and (4) input with regression. Bin size of the ET is 0.5 mmd

-1
 and 754 

frequency occurrence exceeding 20% marked next to the arrow. Enlarged areas (6 x 9km
2
) 755 

shown at the bottom correspond to the dotted square of the upper images. 756 
757 
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 772 
 773 
 774 
Figure 8. Pixel by pixel difference ET map (a) between MODIS- and Landsat-based ET maps on 775 
June 16, 2002, (b) between down-scaled ET (output with subtraction) and Landsat-based ET of 776 
June and (c) between down-scaled ET (output with regression) and Landsat-based ET of June. 777 
Bin size of the ET difference in the histogram is 0.25 mmd

-1
. 778 
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            Riparian area (May 31, 2002)                               Riparian area (June 16, 2002) 782 
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           Desert area (May 31, 2002)                                Desert area (June 16, 2002) 787 
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 793 

                794 
 795 
 796 
 797 
Figure 9. 3-D spatial distribution of Landsat-based ET of different land cover types at 30 x 30m

2
 798 

resolution in area of 1000 x1000m
2
 on May 31, 2002 and June 16, 2002. 799 
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