
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 00, 19xx

A Branch and Cut Algorithm for MAX-SAT and Weighted
MAX-SAT

Steve Joy, John Mitchell, and Brian Borchers

Abstract. We describe a branch and cut algorithm for both MAX-SAT and
weighted MAX-SAT. This algorithm uses the GSAT procedure as a primal
heuristic. At each node we solve a linear programming (LP) relaxation of the
problem. Two styles of separating cuts are added: resolution cuts and odd
cycle inequalities.

We compare our algorithm to an extension of the Davis Putnam Love-
land (EDPL) algorithm. Our algorithm is more e�ective than EDPL on some
problems, notably MAX-2-SAT. EDPL is more e�ective on some other classes
of problems.

1. Introduction

The satis�ability problem (SAT) is a problem in propositional logic. A logic
formula consists of the conjunction of clauses. Each clause consists of a disjunction
of literals. Each literal is a variable or its negation. The SAT problem seeks to �nd
an assignment to the variables which satis�es the logic formula, or an indication
that no such assignment exists. The satis�ability problem is NP-complete [5].

There are a number of exact algorithms for the satis�ability problem. These
include Davis-Putnam-Loveland [4, 23], resolution [26], and integer programming
approaches [1, 16, 18, 20, 21]. A number of heuristics that use randomization
also exist; the �rst randomized local search algorithm for satis�ability was due to
Gu [9, 10, 11, 12]. Other algorithms include the GSAT heuristic [29, 30] and the
GRASP heuristic [25]. For surveys of algorithms for SAT problems see [13, 14].

In this paper we investigate the related MAX-SAT problem. Given a collection
of clauses, we seek a variable assignment that maximizes the number of satis�ed
clauses. The weighted MAX-SAT problem assigns a weight to each clause, and seeks
an assignment that maximizes the sum of the weights of the satis�ed clauses. Both
of these problems are NP-hard. It is possible to approximate MAX-SAT within a
factor of 1.325 in polynomial time [6].

Most SAT heuristics have been extended to MAX-SAT. Several heuristics for
MAX-SAT are summarized in Hansen and Jaumard [15]. The GSAT heuristic has
also been extended to weighted MAX-SAT [22].

1991 Mathematics Subject Classi�cation. 03B05, 49M35, 65K05, 90C10.
Research supported by ONR Grant N00014{94{1{0391 to Rensselaer Polytechnic Institute.

c0000 American Mathematical Society
1052-1798/00 $1.00 + $.25 per page

1

2 STEVE JOY, JOHN MITCHELL, AND BRIAN BORCHERS

In this paper we investigate a branch and cut approach to MAX-SAT. We then
report on computational results using both our approach and an extension of the
Davis-Putnam-Loveland procedure [2].

1.1. MAX-SAT as an Integer Programming Problem. A logical vari-
able vi can be TRUE or FALSE. We replace this variable with a corresponding
integer variable xi. This variable takes on value 1 when vi is TRUE and 0 when it
is FALSE.

An unnegated literal vi is simply replaced with the expression xi. A negated
literal such as vi can be replaced with the expression 1 � xi. When vi is TRUE,
vi is FALSE; xi is 1, and 1� xi is 0. When vi is FALSE, vi is TRUE; xi is 0, and
1� xi is 1.

A clause is satis�ed if, and only if, at least one of its k literals is TRUE. For
the integer problem, we sum the corresponding k expressions. The clause is true if,
and only if, the sum is one or more. For example, the clause

v1 _ v3 _ v7 _ v9

is equivalent to

(1� x1) + x3 + x7 + (1 � x9) � 1

We must have some way of handling the maximization of satis�ed constraints.
We do this by adding variables to the problem. A clause is either satis�ed or it
isn't. But this just produces a new clause that is always satis�ed:

original clause _ original clause not satisfied

we can replace the 2nd term above with a new variable. There will be one such
variable per clause.

Maximizing the sum of the weights of satis�ed constraints is equivalent to
minimizing the sum of the weights of unsatis�ed constraints. This sum is simply
the sum of the weight of each clause times the variable indicating that the clause
is not satis�ed. Given the MAX-SAT problem:

v1 _ v2 weight 1
v1 _ v2 _ v3 weight 4
v1 _ v2 weight 3

we obtain the equivalent Integer Program (IP):
min w1 + 4w2 + 3w3

s:t: (1� x1) + (1 � x2) + w1 � 1
x1 + x2 + x3 + w2 � 1
x1 + (1 � x2) + w3 � 1

xi = 0 or 1; i = 1; : : : ; 3: wi = 0 or 1; i = 1; : : : ; 3
or

A BRANCH AND CUT ALGORITHM FOR MAX-SAT AND WEIGHTED MAX-SAT 3

min w1 + 4w2 + 3w3

s:t: � x1 � x2 + w1 � �1
x1 + x2 + x3 + w2 � 1
x1 � x2 + w3 � 0

xi = 0 or 1; i = 1; : : : ; 3: wi = 0 or 1; i = 1; : : : ; 3
These added variables are referred to as the weighted variables. The other

variables are the unweighted variables.

2. Description of Algorithm

2.1. Overview. The basic approach is branch and cut [7, 8, 17, 24]. At
each node of the tree we solve the linear programming (LP) relaxation obtained by
replacing the integrality requirements by the simple bounds:

0 � xi � 1; i = 1; : : : ; n; 0 � wi � 1; i = 1; : : : ;m
If the solution to the LP is integral, we compare it to the best integral solution so
far. If the solution has one or more fractional variables, we branch on one of the
fractional variables and repeat the procedure.

The algorithm has several interacting components. A primal heuristic is used
to obtain an upper bound on the binary solution. This allows us to fathom nodes in
the branch and cut tree. A bounds routine is used to determine if any variable of the
LP relaxation can be �xed at zero or one. Resolution cuts and odd cycle inequalities

are added to guide the LP toward a binary solution. Finally, a branching routine
is used to choose a variable on which to branch.

2.2. Primal Heuristic. The primal heuristic is run once at the beginning of
the algorithm. This routine is an e�cient randomized local search heuristic, similar
to other good heuristics in the literature [9, 10, 11, 12, 22, 29, 30]. Several
tries are attempted. For each try we randomly choose a binary assignment to the
variables. We then perform a series of ips. By ipping variables (choosing the
opposite assignment for a single variable), we attempt to move towards an optimal
solution.

There are two types of ips. Random ips randomly select a variable to ip.
Best-choice ips attempt to select the best variable to ip. We compute the e�ect
of a ip, that is the net increase or decrease in the sum of the weights of the satis�ed
clauses. We choose the variable with the best net increase in this sum. If several
variables produce the same net increase, we select one of these variables at random.

Seventy percent of the ips (chosen arbitrarily) are best-choice ips. The ran-
dom ips are used to assist in escaping from local minima.

2.3. Node Fathoming. The di�erence between the optimal value of the LP
relaxation and that of the incumbent solution is referred to as the gap. If the gap is
su�ciently small then we can fathom the node. That is, we know that any binary
solution along this branch is no better than the incumbent solution.

If the gap is strictly less than some threshold then we can fathom the nodes.
Normally this threshold is the greatest common divisor of the clause weights. In
the special case where the optimal incumbent solution has one unsatis�ed clause of
minimal weight, the threshold is this minimum weight.

4 STEVE JOY, JOHN MITCHELL, AND BRIAN BORCHERS

2.4. Variable bounds. In some cases we can �x variables, thus simplifying
the problem. When a variable is �xed, some clauses become satis�ed.

Let us sum the weighted variables that are �xed at one. This is the �xed

weighted variable sum, and it represents a lower bound on the LP objective function.
Suppose we have a non-satis�ed clause whose weight when added to this sum is
greater than or equal to the optimal value of the incumbent solution. Since we
are seeking a better solution, the weighted variable of the clause must be �xed at
zero (or equivalently the unweighted portion of the clause must be satis�ed). This
clause is a must satisfy clause.

A simple form of variable �xing is su�cient weight �xing. If we have a must

satisfy clause then we �x the weighted variable at zero.
If we have a must satisfy clause with only a single un�xed unweighted variable

then we must �x this variable in such a way as to satisfy the clause. This is known
as unit clause �xing.

If a variable appears in only the positive sense in the non-satis�ed clauses then
we can �x the variable at one. Likewise, if the variable is always negated then we
can �x it at zero. This is known as monotone variable �xing.

First, we examine the clauses that are not satis�ed. We compute the number
of non-�xed variables in each clause. For each non-�xed variable, we count the
number of clauses in which it appears in the positive and negated senses. If a
variable appears in only the positive sense then �x it via monotone variable �xing.
If there is only a single non-�xed variable in a clause of su�cient weight then �x it
via unit clause �xing.

When a variable is �xed, this satis�es some constraints. We decrement the
counters for the other variables in this newly satis�ed constraint. This potentially
allows us to �x additional variables that may now have become monotone. As
we �x a variable, all constraints having the opposite sense of the variable are now
shorter. If a clause is now of length one and has su�cient weight then we can �x
the remaining variable via unit clause �xing.

If an original constraint is satis�ed, we set the clause's weighted variable to
zero. This is known as satis�ed clause �xing.

If all the unweighted variables of an original clause are �xed in such a way that
none of the unweighted literals satisfy the clause then we set the clause's weighted
variable to one. This is known as unsatis�ed clause �xing.

2.5. Cut generation. There are two types of cuts: resolution cuts and odd

cycle inequalities. The cuts are applied locally (at this node of the branch and
bound tree and its descendents) rather than to the whole tree. Resolution cuts are
discussed by Hooker and Fedjki [18, 19, 20]. Odd cycle inequalities are discussed
by Cheriyan et al. [3].

2.5.1. Resolution cuts. Resolution cuts arise by combining two clauses: one
with the positive sense of a variable, the other clause with the negative sense.
There must be exactly one such literal. The resolvent consists of literals (even
those arising from weighted variables) found in either clause except for the variable
of opposite sense. For example, given the clauses:

x1 _ x3 _ x7 _w9

x2 _ x3 _ x7 _ w11

A BRANCH AND CUT ALGORITHM FOR MAX-SAT AND WEIGHTED MAX-SAT 5

we can resolve to generate the following:

x1 _ x2 _ x7 _ w9 _w11

The resolution routine is activated once at each node of the tree. It consists of
a sequence of passes, each designed to generate resolvents matching certain criteria.
In each pass for each variable of each resolvable clause, the list of clauses with the
opposite sense of that variable is obtained. This clause is resolved (if possible) with
each of the other clauses on the list. If the resolvent matches the given criteria, it
is added to the list of resolvable clauses for the next pass. If this clause is of length
one or less (counting only the original unweighted variables) and is a su�ciently
deep separating cut (violated by 0.3 or more with the current LP solution) then it
is added to the list of separating cuts (the length and depth restrictions were deter-
mined by experimentation to yield the fastest algorithms). This process continues
until a su�cient number of resolvents have been generated or all such clauses have
been exhausted.

At the end of each pass, constraints that can not possibly be useful in future
passes are removed from consideration. The resolvents that are generated are re-
duced to a minimal set through absorption. In absorption if the unweighted literals
of clause A are a subset of the literals of clause B, then clause A implies clause B.
In this case, clause B is absorbed by clause A and B is removed from consideration.
The list of separating cuts is also reduced to a minimal set through absorption.

The �rst pass requires that the resolvents match the requirements for the sep-
arating cuts, that is, of length one or less and violated by 0.3 or more.

The second pass requires that the resolvents be of length three or less.
The third pass requires that the resolvents be of length two or less.
The fourth pass requires that the resolvents be of length one or less.
2.5.2. Odd cycle inequalities. The odd cycle inequalities combine clauses with

two un�xed unweighted variables. A clause is considered odd if both un�xed un-
weighted variables are negated, or if both are not negated; otherwise, the clause is
considered even. A cycle xi1

; : : : ; xik
in the un�xed unweighted variables is sought.

The �rst constraint involves variables xi1
and xi2

, the next xi2
and xi3

, the next
xi3 and xi4 , : : : the last clause involving xik and xi1 . The cycle is said to be odd if
when we \add up" these constraints, we obtain an odd total. By insuring that the
cycle is odd, we know that the right hand side will be odd, and will be rounded up
when we divide the coe�cients of the resulting constraint by two.

This is best illustrated by an example. Suppose we have the constraints below.
Variables x1{x4 are un�xed unweighted variables, the other variables are un�xed
and weighted. The �rst constraint is a cut (generated at a previous branch and cut
node) since it involves multiple weighted variables.

x1 +x2 +w10 +w11 � 1
+x2 �x3 +w11 � 0

�x3 �x4 +w12 � �1
�x1 �x4 +w13 � �1

The �rst, third, and fourth constraints are odd; the second is even. Adding these
constraints together we obtain:

2x2 � 2x3 � 2x4 +w10 + 2w11 +w12 + w13 � �1

6 STEVE JOY, JOHN MITCHELL, AND BRIAN BORCHERS

Dividing by 2 and rounding coe�cients we obtain:

x2 � x3 � x4 + w10 + w11 + w12 + w13 � 0

We are again seeking only separating cuts. Odd cycles force this increase in the
right hand side thus potentially generating a separating cut. Even cycles do not
have this potential. If we �nd an odd cycle of accumulated weight (de�ned below)
1{2�, then we obtain a separating cut of depth �. We are seeking a cut of depth
0.3, so we are seeking an odd cycle of weight 0.4 or less. We also require that the
cut is of length two or less (the length and depth restrictions were determined by
experimentation to yield the fastest algorithms).

We use a modi�ed version of Dijkstra's shortest path algorithm to �nd the
separating cuts. Dijkstra's algorithm starts from a given start node of a tree and
uses edge weights to �nd the shortest path from this start node to any other.
Initially, the start node is assigned weight 0. All others are assigned in�nite weight.
All nodes are initially unmarked. The algorithm then picks the lowest weight
unmarked node. This node is now marked. For any unmarked neighbors of this
chosen node with

chosen weight +weight of edge from chosen to neighbor < weight of neighbor

we replace the neighbor's weight with this sum. This process continues until all
the shortest paths have been found (all nodes are marked). The algorithm can be
slightly modi�ed to record the actual shortest path to a node (in addition to its
length).

We use the algorithm once per variable. In each iteration this variable is the
start variable.

� The edges represent clauses with two un�xed unweighted literals. The weight
of an edge is the surplus of the constraint plus the sum of the weights of the
clause's weighted variables (as these are likely to appear in the sum exactly
once and so will have their coe�cient rounded up thus increasing the slack).

� The weight of a node is the accumulated edge weights on the path from the
start node.

� There are two nodes per variable. One node represents the length of the
shortest odd path to the node. The other that of the shortest even path.

� The start node corresponds to an even length path to the start variable.
This null path is considered even.

� The algorithm terminates when either:
1. The chosen node (most recently marked) has a weight exceeding 0.4

(indicating that any separating cut is no deeper than 0.3, a failure),
or has a length greater than 2 (a failure), or

2. The chosen node is the odd sense of the start variable. Thus, we have
an odd path from the start node to itself (a cycle).

The odd cycle cuts can only be applied if we start with a large number of two
variable clauses or after a signi�cant number of variables have been �xed. Hence,
these cuts tend to be applied only deep into the tree. We will investigate the e�ects
of a more robust approach in a future paper.

A BRANCH AND CUT ALGORITHM FOR MAX-SAT AND WEIGHTED MAX-SAT 7

2.6. Branching. After generating cuts and applying bounds, we branch if
there are still fractional variables in the LP solution.

The branching scheme we use is a modi�cation of the Jeroslow-Wang [21]
scheme.

We examine the probability of satisfying all the constraints if we randomly
assign values to the remaining un�xed variables. For simpli�cation, we assume that
the probabilities of such an assignment satisfying each constraint are independent,
and that each binary variable assignment has a probability of one half. We attempt
to pick a variable whose assignment will have the greatest change in this probability.

For each fractional variable, we �nd a weight for the positive and negative sense
as follows. We investigate all the clauses (original plus the resolvents) containing
the given sense of the variable. We consider the e�ect of picking the opposite sense
of the variable (making it harder to satisfy this constraint). By selecting the wrong
choice we have turned the k variable constraint into a k{1 variable constraint. The
probability of satisfying this constraint is:

1�

�
1

2

�k�1

We wish to minimize the product of such terms (hence to minimize the sum of
their logs). A similar approach is used for the opposite sense of the variable. We
sum these two values and branch on the variable with the greatest sum. Such a
variable will have a signi�cant e�ect along either of the two branches and should,
therefore, tend to generate a smaller branch and bound tree. For this variable, we
�rst explore the more heavily weighted branch.

This approach di�ers from Jeroslow-Wang in that:

1. We give greater weight to the shorter clauses.
2. We consider the e�ect on both branches.

3. Test Results

In this section we compare our branch and cut code (B+C) to a MAX-SAT
extension of the Davis-Putnam-Loveland (EDPL) algorithm [2]. Both are imple-
mented in C. The branch and cut code uses the MINTO package of Savelsbergh et
al. [27] (replacing default modules with those discussed in previous sections). All
tests are executed on an IBM RS6000/390 with 128 Megabytes of memory. The ab-
breviation \MEM" in the tables indicates that a test terminated due to insu�cient
memory.

We tested both algorithms on a set of unweighted problems generated by the
MWFF package of Selman [28]. Both MAX-2-SAT and MAX-3-SAT problems were
examined. Various numbers of clauses were tried. This produced some problems
that were satis�able and others with several unsatis�able clauses. For MAX-3-
SAT, we also tried di�erent number of variables. The results were sorted on the
number of unsatis�ed clauses, as this gave a strong indication of the di�culty of
the problem.

For MAX-2-SAT problems, the branch and cut code appears superior. EDPL
only performs better on problems with a small number of clauses. Both algorithms
take more CPU time as the number of clauses grow; however, the execution time
of EDPL grew explosively. The branch and cut code tends to generate very small

8 STEVE JOY, JOHN MITCHELL, AND BRIAN BORCHERS

problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

p2180 5 180 0 0.84 1 0.1 1
p2180 8 180 1 5.20 1 0.7 2
p2180 2 180 2 5.44 1 0.7 10
p2180 3 180 2 5.25 1 0.7 40
p2180 6 180 2 5.03 1 0.7 47
p2180 9 180 2 5.39 1 0.7 34
p2180 1 180 3 5.09 1 0.7 162
p2180 7 180 4 5.41 1 0.8 964
p2180 4 180 4 5.43 1 0.9 1773
p2180 10 180 4 5.29 1 0.9 1933

p2200 8 200 4 5.23 1 0.8 1065
p2200 6 200 4 5.34 1 0.9 1304
p2200 3 200 4 5.43 1 0.9 2219
p2200 5 200 5 5.40 1 1.5 7982
p2200 1 200 5 5.62 1 2.3 12303
p2200 7 200 5 5.42 1 2.3 13549
p2200 2 200 6 5.57 1 4.2 32700
p2200 9 200 6 5.52 1 8.9 80824
p2200 10 200 6 5.95 3 8.2 73117
p2200 4 200 7 5.88 3 20.1 217362

Table 1. Computational results for 100 variable MAX-2-SAT
problems with a small number of clauses

trees while EDPL generates large ones. As a result, branch and cut performs
dramatically better.

Our algorithm does not perform nearly so well for MAX-3-SAT problems. The
search tree is generally smaller than that of EDPL. However, the evaluation at
each node is much more expensive thus resulting in much greater execution times.
EDPL's advantage diminishes with increasing numbers of unsatis�ed clauses (for
example the series of problems in Tables 5{7); however, even here, EDPL performs
better.

We also examine the Steiner \D" weighted tree problems [22] (see Table 13).
Our current implementation of the primal heuristic is too primitive to handle these
large variable problems well. So, for these problems, we run our code with the
primal heuristic disabled. The EDPL code takes in excess of 12 hours on all of
these problems. This is true even if the primal heuristic is disabled and the code
is provided with the correct incumbent value. Our branch and cut code handles
many of these problems with ease.

4. Conclusions and Future Directions

We compared two algorithms for solving MAX-SAT. Neither one was univer-
sally superior. The general trend was that branch and cut works best on MAX-
2-SAT and the Steiner \D" problems (where the average clause length is small).
Trends suggest that branch and cut may also be better if the system contains a large

A BRANCH AND CUT ALGORITHM FOR MAX-SAT AND WEIGHTED MAX-SAT 9

problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

p2220 5 220 4 5.73 1 0.8 1045
p2220 3 220 4 5.76 1 1.2 3699
p2220 9 220 4 5.83 1 1.0 2233
p2220 2 220 5 5.70 1 1.8 10039
p2220 7 220 6 5.81 1 5.7 48360
p2220 1 220 7 6.01 3 10.3 90586
p2220 10 220 7 6.23 3 9.8 91322
p2220 8 220 7 7.02 9 21.6 197734
p2220 4 220 8 6.19 3 17.4 172550
p2220 6 220 8 6.33 3 41.5 418421

p2240 1 240 6 5.91 1 5.0 12402
p2240 7 240 7 6.85 3 26.6 242434
p2240 9 240 9 6.82 3 33.9 337982
p2240 10 240 9 6.96 3 84.2 817004
p2240 2 240 9 6.94 3 115.4 1150960
p2240 4 240 9 6.81 3 163.9 1767247
p2240 5 240 9 8.04 5 150.4 1634963
p2240 6 240 9 6.87 3 181.4 1775023
p2240 8 240 9 6.61 3 126.4 1357751
p2240 3 240 11 9.27 7 1205.4 13050216

Table 2. Computational results for 100 variable MAX-2-SAT
problems with a somewhat small number of clauses

number of unsatis�ed clauses. EDPL appears to generally work best for MAX-3-
SAT. The EDPL code generates larger search trees, but spends much less time per
node.

There are a number of possible directions to explore:
One possibility is some kind of hybrid algorithm, perhaps using a limited EDPL

step for node fathoming and/or variable �xing. This should help reduce the tree
size with a relatively low cost per node.

Another possibility is the addition of deeper cuts such as max-clique [3] in-
equalities.

A third possibility is a branch step that takes into account the slacks on the LP
relaxation. It may also be worthwhile to investigate branching on several variables,
perhaps reducing the total number of LP evaluations.

A �nal possibility is to reduce or eliminate cuts in the �rst few levels of the
tree. Despite the addition of a large number of cuts here, the tree expanded in a
binary fashion for several levels (see table 14). These cuts increase the size of the
LP's and, therefore, the time to solve them.

10 STEVE JOY, JOHN MITCHELL, AND BRIAN BORCHERS

problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

p2260 10 260 6 6.49 1 4.1 29932
p2260 4 260 8 6.80 3 12.5 109971
p2260 7 260 8 6.10 1 36.4 340233
p2260 3 260 9 6.24 1 61.7 588508
p2260 2 260 9 6.54 3 66.2 631689
p2260 6 260 11 9.12 5 510.7 5214818
p2260 8 260 11 9.33 5 939.1 9722169
p2260 1 260 11 11.37 9 1543.1 15149775
p2260 9 260 12 12.36 9 2556.3 26165444
p2260 5 260 12 11.38 7 4293.8 46674569

p2280 10 280 10 7.49 3 227.2 2118261
p2280 5 280 11 7.98 3 1398.0 14876069
p2280 8 280 11 8.50 5 495.6 4770966
p2280 9 280 11 8.24 3 407.3 3853794
p2280 7 280 12 8.87 5 3437.0 35347297
p2280 1 280 13 12.29 7 2738.0 28997281
p2280 3 280 13 13.34 11 3151.6 32091970
p2280 6 280 14 19.82 15 29111.1 313402437
p2280 2 280 15 19.53 13 32085.0 332713465
p2280 4 280 15 20.81 15 45268.2 503462478

Table 3. Computational results for 100 variable MAX-2-SAT
problems with a medium number of clauses

A BRANCH AND CUT ALGORITHM FOR MAX-SAT AND WEIGHTED MAX-SAT 11

problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

p2300 2 300 13 8.27 3 2229.1 21334438
p2300 3 300 13 8.22 3 2497.9 23764177
p2300 4 300 14 10.96 5 4618.5 47629271
p2300 1 300 15 20.04 11 10564.3 104553113
p2300 5 300 15 17.63 11 29738.0 309999407
p2300 9 300 15 18.61 11 8746.0 85235320
p2300 10 300 15 19.16 11 12693.1 125325067
p2300 6 300 17 64.57 35 69325.3 704246333
p2300 8 300 17 37.23 19 Not Run Not Run
p2300 7 300 20 92.97 45 Not Run Not Run

p2400 3 400 25 80.08 27 Not Run Not Run
p2400 7 400 26 102.35 29 Not Run Not Run
p2400 6 400 27 117.51 35 Not Run Not Run
p2400 2 400 28 83.44 27 Not Run Not Run
p2400 4 400 28 115.30 29 Not Run Not Run
p2400 1 400 29 122.42 37 Not Run Not Run
p2400 5 400 29 226.72 57 Not Run Not Run
p2400 10 400 30 565.93 135 Not Run Not Run
p2400 8 400 33 518.31 103 Not Run Not Run
p2400 9 400 34 1518.91 281 Not Run Not Run

Table 4. Computational results for 100 variable MAX-2-SAT
problems with a large number of clauses

problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

test215 1 215 0 0.81 1 0.1 1
test215 3 215 1 5.29 15 0.5 23
test215 2 215 1 5.76 23 0.5 25
test215 5 215 1 6.52 33 0.5 31
test215 4 215 2 34.47 353 0.6 562

test250 3 250 0 2.63 1 0.2 1
test250 1 250 2 17.27 89 0.6 314
test250 4 250 2 21.52 123 0.6 306
test250 5 250 2 28.53 177 0.6 362
test250 2 250 4 253.76 1467 3.2 20001

Table 5. Computational results for 50 variable MAX-3-SAT
problems with a small number of clauses

12 STEVE JOY, JOHN MITCHELL, AND BRIAN BORCHERS

problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

test300 3 300 4 78.80 275 2.1 10116
test300 1 300 4 147.10 577 2.3 11073
test300 2 300 5 249.48 891 5.9 42151
test300 5 300 5 325.48 1107 8.4 59216
test300 4 300 6 493.78 1583 16.2 130802

test350 4 350 5 168.53 417 4.8 28409
test350 2 350 6 460.75 1195 15.1 112539
test350 1 350 8 1718.31 3867 103.3 915731
test350 3 350 8 1877.87 4363 97.8 864778
test350 5 350 8 2369.56 5659 118.0 1048876

test400 3 400 8 758.43 1349 62.8 482523
test400 2 400 8 1163.13 2101 68.9 521495
test400 5 400 8 1020.13 1895 76.1 594532
test400 4 400 11 4249.03 6341 519.8 4541184
test400 1 400 11 6501.42 9701 690.1 6196183

Table 6. Computational results for 50 variable MAX-3-SAT
problems with a medium number of clauses

problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

test450 4 450 10 1522.54 2139 162.6 1237498
test450 5 450 11 2326.24 3003 357.9 2817502
test450 3 450 11 3676.28 4549 533.7 4268781
test450 1 450 12 5480.85 6197 868.9 7129533
test450 2 450 14 13440.50 14077 2752.4 24408217

test500 1 500 15 9324.21 7505 2465.1 19442201
test500 3 500 16 17271.87 13443 4081.6 32959363
test500 4 500 16 17460.65 13387 3923.8 31096996
test500 5 500 19 MEM MEM 15832.7 136515702

Table 7. Computational results for 50 variable MAX-3-SAT
problems with a large number of clauses

A BRANCH AND CUT ALGORITHM FOR MAX-SAT AND WEIGHTED MAX-SAT 13

problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

s323 1 323 0 1.37 1 0.2 1
s323 2 323 0 2.02 1 0.1 1
s323 3 323 0 1.75 1 0.1 1
s323 4 323 0 1.01 1 0.1 1
s323 5 323 1 18.39 77 0.8 94

s350 1 350 1 15.80 45 0.9 85
s350 2 350 1 20.68 79 0.9 76
s350 3 350 1 21.09 89 0.9 77
s350 4 350 1 21.05 87 0.9 73
s350 5 350 2 143.99 749 1.3 1176

s375 1 375 0 2.41 1 0.1 1
s375 2 375 2 139.37 557 1.5 1527
s375 3 375 2 199.87 907 1.5 1649
s375 5 375 3 437.32 1477 4.0 11649
s375 4 375 3 537.77 1917 4.7 14669

Table 8. Computational results for 75 variable MAX-3-SAT
problems with a small number of clauses

problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

s400 3 400 2 190.70 733 1.7 1894
s400 5 400 3 653.70 2049 4.1 11460
s400 2 400 4 1300.32 3463 20.3 90478
s400 4 400 4 1874.79 5369 25.9 118064
s400 1 400 5 4276.55 10353 104.1 554165

s425 1 425 4 1689.55 3869 20.4 83776
s425 3 425 4 1841.67 4439 21.8 88537
s425 4 425 5 3378.52 7815 84.6 442233
s425 2 425 5 5214.78 11643 110.0 559420
s425 5 425 6 MEM MEM 478.5 2799709

s450 4 450 5 3761.84 7149 97.9 481736
s450 5 450 6 7208.57 13225 295.9 1603476
s450 1 450 6 MEM MEM 466.4 2619212
s450 2 450 7 MEM MEM 1639.2 10218689
s450 3 450 7 MEM MEM 1212.7 7362249

Table 9. Computational results for 75 variable MAX-3-SAT
problems with a medium number of clauses

14 STEVE JOY, JOHN MITCHELL, AND BRIAN BORCHERS

problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

s475 2 475 6 6105.25 9767 345.5 1844920
s475 3 475 6 6258.74 9765 282.3 1500066
s475 5 475 7 7668.66 10287 678.2 3741527
s475 1 475 7 12541.21 18867 856.5 4841953
s475 4 475 8 MEM MEM 2651.3 15909584

s500 2 500 7 9331.30 12099 758.0 4205882
s500 4 500 7 MEM MEM 985.3 5693206
s500 3 500 8 MEM MEM 2652.9 15799725

Table 10. Computational results for 75 variable MAX-3-SAT
problems with a large number of clauses

problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

o430 4 430 0 1.66 1 0.1 1
o430 2 430 0 3.67 1 0.1 1
o430 3 430 0 1.75 1 0.2 1
o430 1 430 1 120.85 545 1.4 320
o430 5 430 2 1833.07 7991 5.2 8834

o450 5 450 0 1.50 1 0.1 1
o450 4 450 1 65.81 247 1.3 199
o450 3 450 1 87.50 347 1.4 312
o450 1 450 2 988.54 3589 3.5 5221
o450 2 450 2 1336.35 4667 3.9 5712

o475 3 475 1 72.03 251 4.1 6168
o475 4 475 1 72.81 253 1.4 230
o475 5 475 1 65.66 213 1.4 281
o475 1 475 2 593.13 2059 3.2 4212
o475 2 475 2 1028.67 3347 3.3 4265

o500 1 500 0 2.47 1 0.2 1
o500 3 500 2 1068.16 3389 2.9 3345
o500 2 500 3 4795.02 12683 31.3 87816
o500 4 500 4 MEM MEM 162.5 572489
o500 5 500 4 MEM MEM 203.1 735535

Table 11. Computational results for 100 variable MAX-3-SAT
problems with a small number of clauses

A BRANCH AND CUT ALGORITHM FOR MAX-SAT AND WEIGHTED MAX-SAT 15

problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

o525 1 525 2 493.49 1287 2.3 1910
o525 4 525 3 3640.80 8073 21.3 54483
o525 3 525 3 5379.72 12301 29.0 74311
o525 5 525 3 5596.78 11893 25.7 66390
o525 2 525 5 MEM MEM 1122.6 4525046

o550 2 550 3 2162.29 3969 11.2 24487
o550 1 550 3 3746.04 7367 30.0 78768
o550 5 550 4 16601.80 28423 147.9 479767
o550 3 550 5 MEM MEM 837.4 3304456
o550 4 550 6 MEM MEM 7526.6 33281390

o575 5 575 4 12477.14 19139 151.9 491192
o575 3 575 5 MEM MEM 602.2 2191647
o575 1 575 6 MEM MEM 4370.9 18334787
o575 2 575 7 MEM MEM 10488.5 47346157

Table 12. Computational results for 100 variable MAX-3-SAT
problems with a large number of clauses

problem variables clauses ave clause optimal B+C
name length value CPU nodes

steind2 1295 1765 1.31 220 4423.23 7599
steind3 1416 1885 1.25 1646 3.63 1
steind4 1499 2074 1.28 2044 5.08 1
steind5 1749 2646 1.34 3419 14.47 1
steind7 2045 2325 1.15 103 6.53 7
steind8 2166 2544 1.15 1180 3.46 1
steind9 2249 2797 1.20 1585 4.84 1
steind10 2499 3261 1.23 2219 12.68 1
steind11 5120 5882 1.17 29 2374.98 523
steind12 5009 5039 1.01 42 2.78 1
steind13 5166 5499 1.06 544 4.76 1
steind14 5249 5709 1.08 740 6.33 1
steind15 5499 6202 1.11 1193 13.49 1
steind16 25032 25133 1.01 13 208.37 4
steind18 25166 25412 1.01 262 13.32 1
steind19 25249 25585 1.01 359 15.59 1
steind20 25499 26041 1.02 558 21.45 1

Table 13. Computational results for Steiner \D" tree problems

16 STEVE JOY, JOHN MITCHELL, AND BRIAN BORCHERS

depth nodes resolution odd cycle
cuts/node cuts/node

0 1 0.000 0.000
1 2 1.500 0.000
2 4 6.250 0.500
3 8 19.000 1.250
4 16 12.875 2.625
5 32 13.344 3.875
6 64 11.594 6.719
7 128 8.438 7.781
8 256 7.516 8.609
9 512 7.227 9.416
10 971 7.270 9.747
11 1461 7.600 9.721
12 1674 7.224 9.648
13 1428 7.429 9.148
14 991 7.272 8.954
15 593 6.390 8.155
16 316 5.551 6.965
17 180 6.172 5.989
18 102 7.686 5.912
19 67 6.060 5.776
20 40 4.775 4.525
21 27 4.704 3.111
22 10 3.700 2.300
23 4 2.750 1.750
24 1 0.000 0.000

Table 14. Cuts per node in the branch and cut tree of problem
test500 4 in table 7

A BRANCH AND CUT ALGORITHM FOR MAX-SAT AND WEIGHTED MAX-SAT 17

References

[1] C. E. Blair, R. G. Jeroslow, and J. K. Lowe. Some results and experiments in programming
techniques for propositional logic. Computers and Operations Research, 13(5):633{645, 1986.

[2] B. Borchers and J. Furman. A two-phase exact algorithm for MAX-SAT and weighted MAX-
SAT problems. Technical report, Mathematics Department, New Mexico Tech, Socorro, NM
87801, October 1995.

[3] J. Cheriyan, W. H. Cunningham, L. Tun�cel, and Y. Wang. A linear programming and round-
ing approach to max 2-sat. Technical report, Departmentof Combinatorics and Optimization,
University of Waterloo, Waterloo, Canada N2L 3G1, 1996. To appear in: Cliques, Coloring,
and Satis�ability: Second DIMACS Implementation Challenge, D. S. Johnson and M. A.
Trick (eds), DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
AMS, 1995.

[4] M. Davis and H. Putnam. A computing procedure for quanti�cation theory. J. Assoc. Com-
put. Mach., 7:201{215, 1960.

[5] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[6] Michel X. Goemans and David P. Williamson. Improved Approximation Algorithms for Max-
imum Cut and Satis�ability Problems Using Semide�nite Programming. J. Assoc. Comput.
Mach., 42(6):1115{1145, 1995.

[7] M. Gr�otschel and O. Holland. Solution of large-scale travelling salesman problems. Mathe-
matical Programming, 51(2):141{202, 1991.

[8] M. Gr�otschel, M. J�unger, and G. Reinelt. A cutting plane algorithm for the linear ordering
problem. Operations Research, 32:1195{1220, 1984.

[9] J. Gu. Parallel Algorithms and Architectures for Very Fast AI Search. PhD thesis, University
of Utah, 1989.

[10] J. Gu. E�cient local search for very large-scale satis�ability problem. SIGART Bulletin,
3(1):8{12, January 1992, ACM Press.

[11] J. Gu. Local search for satis�ability (SAT) problem. IEEE Trans. on Systems, Man, and
Cybernetics, 23(4):1108{1129, Jul. 1993, and 24(4):709, Apr. 1994.

[12] J. Gu. Global optimization for satis�ability (SAT) problem. IEEE Trans. on Knowledge and
Data Engineering, 6(3):361{381, Jun. 1994, and 7(1):192, Feb. 1995.

[13] J. Gu. Parallel algorithms for satis�ability (SAT) problem.DIMACS Series on Discrete Math-
ematics and Theoretical Computer Science { Parallel Processing on Discrete Optimization
Problems, 22:105{161, Jul. American Mathematical Society, 1995.

[14] J. Gu, P.W. Purdom, J. Franco, and B.W. Wah. Algorithms for satis�ability (SAT) prob-
lem: A survey. DIMACS Volume Series on Discrete Mathematics and Theoretical Computer
Science: The Satis�ability (SAT) Problem, American Mathematical Society, 1996.

[15] P. Hansen and B. Jaumard. Algorithms for the maximum satis�ability problem. Computing,
44:279{303, 1990.

[16] F. Harche and G. L. Thompson. The column subtraction algorithm: An exact method for
solving weighted set covering, packing and partitioning problems.Computers and Operations
Research, 21:689{705, 1994.

[17] K. L. Ho�man and M. Padberg. Solving airline crew scheduling problems by branch-and-cut.
Management Science, 39(6):657{682, 1993.

[18] J. N. Hooker. Resolution vs. cutting plane solution of inferenceproblems: some computational
experience. Operations Research Letters, 7(1):1{7, 1988.

[19] J. N. Hooker. Resolution and the integrality of satis�ability problems. Technical report,
Carnegie Mellon University, 1995. To appear in: Mathematical Programming.

[20] J. N. Hooker and C. Fedjki. Branch-and-cut solution of inference problems in propositional
logic. Annals of Mathematics and Arti�cial Intelligence, 1:123{139, 1990.

[21] R. G. Jeroslow and J. Wang. Solving propositional satis�ability problems. Annals of Mathe-
matics and AI, 1:167{187, 1990.

[22] Y. Jiang, H. Kautz, and B. Selman. Solving problems with hard and soft constraints using a
stochastic algorithm for MAX-SAT. Technical report, AT&T Bell Laboratories, Murray Hill,
NJ, 07974, 1995.

[23] D. Loveland.Automated Theorem-Proving: A Logical Basis. North-Holland, New York, 1978.
[24] M. W. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale

symmetric traveling salesman problems. SIAM Review, 33(1):60{100, 1991.

18 STEVE JOY, JOHN MITCHELL, AND BRIAN BORCHERS

[25] Mauricio G. C. Resende and Thomas A. Feo. A grasp for satis�ability. Technical report,
Department of Combinatorics and Optimization, University of Waterloo, 1995. To appear
in: Cliques, Coloring, and Satis�ability: Second DIMACS Implementation Challenge, D. S.
Johnson and M. A. Trick (eds), DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, AMS, 1995.

[26] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12:23{41, 1965.

[27] M. W. P. Savelsbergh, G. C. Sigismondi, and G. L. Nemhauser. MINTO: a Mixed INTeger
Optimizer. Technical Report Memorandum COSOR 91{18, Eindhoven University of Tech-
nology, 1991.

[28] B. Selman. Mw�: Program for generating random max k-sat instances. available from DI-
MACS.

[29] B. Selman and H. A. Kautz. An empirical study of greedy local search for satis�ability testing.
In Proceedings of the Eleventh National Conference on Arti�cial Intelligence (AAAI-92), San
Jose, CA, 1993.

[30] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satis�ability prob-
lems. In Proceedings of the Tenth National Conference on Arti�cial Intelligence (AAAI-92),
San Jose, CA, pages 440{446, July 1992.

Mathematics Department, Rensselaer Polytechnic Institute, Troy, NY 12180

E-mail address: joys@rpi.edu

Mathematics Department, Rensselaer Polytechnic Institute, Troy, NY 12180

E-mail address: mitchj@rpi.edu

Mathematics Department, New Mexico Tech, Socorro, NM 87801

E-mail address: borchers@nmt.edu

