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ABSTRACT

Ensuring safe drinking water is an issue of concern across the world. Con-
tamination events may be deliberate or accidental, of man-made or organic causes.
Once an event is detected, effective response strategies are needed. Source local-
ization and contamination impact have been previously studied under the as-
sumption of known hydraulics. Hydraulics and other parameters are subject to
uncertainty and the impact of this uncertainty on resulting contamination was
examined. Metrics that can be used to quantify uncertainty in impact were de-
veloped. Simulation studies were used to attempt to quantify the uncertainty;
Source code to perform the analyses on an arbitrary network was developed. The
location of the contaminant source overwhelmed all other sources of uncertainty
in both the extent of contamination and in the contaminant position within the
network. After location, the main parameter impacting total extent of contami-
nation is the reaction coefficient. The main parameter affecting the uncertainty
in plume position is network topology. Methods to incorporate this information
into existing source-inversion and manual sampling planning routines are pro-
posed.

Keywords: UNCERTAINTY QUANTIFICATION; WATER DISTRIBUTION NET-
WORKS; CONTAMINATION RECOVERY; SOURCE LOCALIZATION
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CHAPTER 1

INTRODUCTION

There are many reasons that water utilities may need to quantify the un-
certainty of chemical concentration within a water system. Understanding the
system’s dynamics can help calibrate treatment processes, optimize operations
and anticipate possible physical problems; these benefits can be implemented for
the everyday, normal operation of the system. However, it is the worst-case sce-
narios where uncertainty analysis will provide the greatest help. Cases of treat-
ment failures, such as in Flint, Michigan,[2] or source water contamination, like
in West Virginia,[14] occur more often than we would hope. Intentional contam-
ination is another possibility, one we hope never happens – but one we must
consider. In all these cases, water demand, network flow, and water quality re-
actions can change drastically, and determining the uncertainty in the real water
quality becomes very important.

The goal of the research presented here is to aid in response and recov-
ery from one of these abnormal events – it is not intended for real-time, rapid
source localization. However, because contamination events are rare, any tools
must also give utilities benefits during normal operations as well. Being able to
quantify uncertainty, not just identify it, will provide benefits in both realms.

Real-time modeling of network hydraulics is an emerging technology; re-
search and tool development for calibrating models in real-time using hydraulic
data is already being undertaken. However, most utilities do not yet have this
technology installed. This research examines how an average demand, extended
period model can be used to efficiently quantify uncertainty in water quality dur-
ing normal operations using limited water-quality sampling information. Once
uncertainty during normal operations has been quantified, the change in uncer-
tainty during abnormal events can be examined.

1.1 Background

This section, on water distribution system (WDS) network models, is ad-
dressed to a reader without a background in drinking water systems. The basics
of WDS networks and modeling will be given to help such a reader understand
the simulation studies and unique challenges in the drinking water domain.
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Drinking water utilities are unique among critical infrastructure systems.
Their product, potable water, has a direct health impact on their customers. Pro-
viding clean water is therefore of equal importance to satisfying demand. Drink-
ing water must be treated to kill or remove harmful organisms and impurities at
the upstream plant and must also stay clean as it travels through pipes, tanks,
and other machinery in the distribution system. This yields two separate, but
related models – the hydraulic model and the water quality model.

Water utilities frequently manage both the “upstream” water treatment fa-
cilities and the actual distribution network: the pipes, tanks, and other associated
physical mechanisms used to transport the clean water to the customer. Occa-
sionally, the “upstream” water may be purchased from a wholesaler who moves
pretreated water to the sources – tanks and reservoirs – used by the distribution
network. However, these upstream systems can be modeled as simple inputs in
the distribution network model. Water utilities may also handle “downstream”
water, i.e., storm drains, gray water and sewers. Again, these models can be
disconnected from the drinking water network, as they can be lumped in with
all other the consumption by customers (they should be physically disconnected
too, for safety’s sake).

Part of the reason model isolation is possible, and a critical difference from
other types of water systems, is the high pressure within distribution pipe net-
works. The American Water Works Association (AWWA) recommends a mini-
mum pressure of 20 pounds per square inch (PSI) at all points of the network un-
der any simulated conditions.[1] This pressure is much higher than the pressure
in attached drainage systems, which should make cross-contamination unlikely
(though it can occur). The pipe network of a drinking water system is also highly
branched. This creates situations where flow directions change rapidly, and the
actual upstream source of the water may be unknown. In-pipe hydraulic sensors
are expensive and hard to maintain – most pipes are buried under streets, after
all. Water quality sensors are possibly harder to maintain, as several types require
reagents or can only work under limited pressures. When compared to highly-
monitored process control systems such as chemical plants, the entire state of the
distribution network is essentially unknown (see discussion of real-time models
in section 1.2).

Another complicating factor is that the network model a utility possesses
is likely out-of-date. Some utilities only map the pipes above a certain diameter
– six-inch mains and larger, for example. Some utilities have been running for
well over one-hundred years, and it is possible that the existence of certain pipes
or connections may be unknown. Others may try to map all pipes, but with the
continuous construction most cities see, renovation or repair projects, or even
from simple human error, a network that is up-to-date one day will be at least
slightly out-of-date the next day.

Finally, most network models are based on ‘average demand.’ This means
that the water usage at each node within the network is based on the average
usage by customers living or working at that node. Real-time usage for every
service node is not generally available. Improvements in automatic meter read-
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ing (AMR) technology are bringing the water world closer to this point, and soft-
ware based on real-time hydraulic measurements is actively being developed, but
most water utilities do not have this technology available to them at this time.[16]
The primary source of uncertainty in water distribution models comes from the
unknown – and currently unknowable – real time water use.

1.1.1 Hydraulic model

The most widely used hydraulic solver for drinking water systems is the
EPANET[26] software. EPANET solves the hydraulics using the Todini method[27].
The topology of the network can be given as a directed graph, (N,E), where N
are the vertices (nodes), and E are the edges (links). The solver is demand driven,
which means that, if demand cannot be met due to insufficient pressure within
the network, the solver will fail.

The following physical and non-physical parameters are necessary to model
the water network hydraulics. Where appropriate, a comparison to electrical cir-
cuits is made to help describe relationships; hydraulic head can be loosely imag-
ined as voltage, water flow as current, usage demand as energy use, and pipes
as wires. However, these comparisons are only for illustrative purposes, as the
actual equations do not coincide. The description of the hydraulic and water
quality model, below, are paraphrased from the EPANET 2.0 User’s Manual[26].

Nodes Considering the water distribution network as a graph, a node is a ver-
tex on the graph. Junctions, tanks, and reservoirs are the physical elements of the
WDS that are also nodes within the EPANET model.

Junctions Junctions are points where two or more pipes meet. They are also
the points where water enters or leaves the system. Every junction has a base
demand, b(nJ), given in units of volume per time, describing a constant flux at
that node. Total demand, Q(nJ×npat) is calculated using the base demand and a
time-dependent scaling factor (see “Muliplier patterns,” below). In the electri-
cal conceptual model, energy is being used (or provided) at these points in the
circuit. Junction information is stored in the indexed set J such that J ⊆ N.

Population at a junction, π(nJ), is not stored or tracked in the EPANET
input files. Other researchers have used a linear relationship between the daily
demand and the population at the junction.[4] This study assumes a usage of 200
gallons per person per day. Thus, the population can be calculated as

π = Q~1
1

npat∆tpat

1
200

. (1.1)
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Reservoirs “Reservoirs are nodes that represent an infinite external source or
sink of water to the network. They are used to model such things as lakes, rivers,
groundwater aquifers, and tie-ins to other systems. Reservoirs can also serve
as water quality source points.”[26] Upstream water treatment plants are mod-
eled in these systems as reservoirs, and the hydraulic head of the aquifer can be
changed on a pattern to model output from the plants. In this case, most disin-
fectants, such as chlorine, will enter the system at the reservoirs. These can be
imagined as constant voltage sources with infinite current or as grounds.

Tanks Tanks are used within water distribution systems to store water for high-
demand situations and to provide additional water pressure – like the battery in
a hybrid car. Many utilities will fill tanks overnight – when electricity is cheaper
and demand for water is lower – and then allow the tank to drain during the day
to provide water to customers as demand goes up. Tanks are specified using a
volume curve to determine storage and elevations to determine hydraulic heads.
Tanks also are frequent sources for water quality changes.

Links Considering the water distribution network as a digraph, the edges of
the graph are called links in the EPANET model. The physical elements of the
WDS that can be links are the pipes, valves, and pumps.

Pipes Pipes transport water between junctions. They are links in the graph,
and are stored in the indexed set P, such that P ⊆ E. Pipes have roughness,
diameters, d, and lengths, `, specified as part of the network topology. These are
used to compute the headloss, flow rate, and velocity in a pipe. In the electrical
system analogy, pipes are wires with a resistance determined by the roughness
and flow rate, and the headloss is the voltage drop.

The roughness coefficient must be determined empirically, and can vary
with age and pipe material; however, it is not a parameter of variation in this
research. Each pipe can also be assigned a minor loss, which accounts for turbu-
lence at bends, fittings, and junctions. These losses are not varied in this thesis.

Most pipes are bidirectional edges within the graph, but pipes can also
have check valves that restrict flow to a single direction. Pipes can also set to
“closed,” stopping all flow. In the accompanying simulation studies, pipe status
will be set at the beginning of the simulation and remain constant.

Pumps Pumps increase the hydraulic head across a link. Pumps are used to in-
crease pressure in the system, fill tanks, or move water from one part of the sys-
tem to another. EPANET automatically shuts off a pump if the hydraulic solver
requires the pump to exceed its operational limits, or if the pump drains all the
water out of the adjacent pipe, or if water tries to flow backwards through the
pump. Unfortunately, the reality is that pumps will not automatically shut off
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in many cases, and would instead burn out their motor. EPANET gives only a
warning when the automatic shutoff occurs. The uncertainty quantification (UQ)
process will instead discard the scenario as infeasible. Pump links are directed
edges in the network graph.

Valves There are eight different kinds of valves, but most are not used in the
case studies. In general, valves are used to reduce pressure or reduce flow. Isola-
tion valves, used to isolate a section of a pipe or network during repairs or con-
struction, are not represented as valves in the network graph. Isolation valves are
modeled by setting a pipe status to open or closed.

Non-physical elements The non-physical elements in an EPANET model mod-
ify behavioral options of different nodes or links. Most of these characteristics
will not be modified during this study; however, many water distribution sys-
tems try to optimize these parameters when designing expansions or trying to
minimize energy usage.

Multiplier pattern Demand by customers varies in time. EPANET defines de-
mand multipliers, M, which scale the base demand at a junction based on a re-
peating pattern. Most EPANET model inputs define patterns on a 24-hour cycle,
but there is no requirement to do so, nor is there a requirement that any two pat-
terns contain the same number of steps; all patterns will repeat if the simulation
is longer than the patterns length. There is a requirement that the pattern step
size, Tpat, will be constant for all patterns.

Many EPANET network models use only a few patterns, applied to all
junctions; the usage is scaled for a specific hour, based on some monthly average.
In this thesis, the simulation studies will have a separate pattern for each junc-
tion. The patterns will be created with npat entries, one for each time within the
simulation, eliminating the need to repeat a pattern. An example of a multiplier
pattern, from the network used in the simulation study, is presented in Figure 1.1.

Volume curves Volume curves are used to model the storage capacity of a tank
as a function of water level. While it is easy to idealize a tank as a cylinder with
a radius that varies as a function of height, this is rarely the case in reality. An
empirical function V(h) is given as points on the volume curve instead, and linear
interpolation is used for heights not directly defined. In this study, all tanks were
defined as cylinders.

Pump curves Pump curves are used to describe the “relationship between the
head and flow rate that a pump can deliver at its nominal speed setting.”[26] In
electrical terms, the curve describes a non-linear, concave relationship between
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Figure 1.1: Example multiplier pattern. The pattern is constant for one-hour in-
crements and repeats itself after 24-hours.

current and voltage, like a transformer. The end of the pump curve, where the
head gain is zero, describes the maximum flow the pump is capable of handling.
To try to push more flow will burn out the pump, causing EPANET warnings and
errors described above. In this study, burning out a pump will be considered an
infeasible scenario.

The network used for the simulation study uses only three-point pump
curves. The EPANET model uses three points to fit a nonlinear model of the form
hG = A− BqC, where hG is hydraulic head and q is the flow through the pump.
An example curve from the network used in the simulation study is shown in
Figure 1.2 to illustrate this type of curve.

Items not used The following items are important to WDS modeling, but are
not present in the network used in the simulation study.

Headloss curves These are used to describe the loss in head as a function of flow
rate. These act like a variable resistor that changes resistance based on the current
applied. Headloss curves apply only to certain types of valves.

Emitters These elements are used to simulate pipe leaks, fire hydrants or sprinker
systems. These are generally added to the model manually for a specific fire flow
study.
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Figure 1.2: Example three-point pump curve.

Efficiency curves These curves relate pump efficiency (in terms of electrical en-
ergy) to flow rate, are used in energy consumption calculations. This feature is
used to minimize cost for filling tanks and moving water and has no impact on
the hydraulic or water quality models.

1.1.2 Water quality model

The water quality simulation models chemical species transport and reac-
tion within the network. There are several reaction models that describe different
chemicals. For example, chlorine has a well developed model that describes con-
centration as the water travels through the network; the model uses both time-
based decay as well as loss due to reaction with pipe walls and other elements.
This is in stark contrast to a biologic contaminant that will increase in concentra-
tion unless treated, or a completely non-reactive species such as fluoride.

Water quality is solved in EPANET using ‘packets’ of water. Each packet
has a single concentration value and volume, and will be split when flow splits,
and averaged when flow merges. The water quality step should be kept small
enough for realistic transport. Because a single link will contain a varying num-
ber of packets at any given period, the concentration of a link is not well defined.
It is frequently represented as the midpoint between the concentrations assigned
at the two endpoint nodes, though this does not account for a high-concentration
packet within the pipe. However, as concentration within pipes is not the concen-
tration of interest for this study, the midpoint value is sufficient for graphically
conveying information.

There is an alternative water quality model by Mann et al. [23], that is sig-
nificantly faster than the EPANET model because it is a reduced order, linearized
approximation. Despite being a reduced order model, it produces comparable re-
sults to the full model; however, for consistency with other studies, the EPANET
model will be used here. There is another alternative model, called the EPANET
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Multispecies Extension (EPANET-MSX). This extension allows multiple chemical
species and their interactions to be modeled within the EPANET water quality
model. This extension is significantly more computationally intensive, and will
not be used.

1.2 State of technology: real-time models and data availability

There is ongoing effort to integrate EPANET with on-line monitoring to
provide real-time updates to the hydraulic model. One such effort is the EPANET
Real-Time Extension (EPANET-RTX). The tool optimizes the internal hydraulic
model to best match the observed pressure conditions. In situ pressure sensors
are becoming more common, but are still generally limited to a small fraction
of nodes within a network. EPANET-RTX does not use water quality data in its
optimization, nor does it provide quantified uncertainty on the input demands
or the water quality results.

Real-time data acquisition is improving, but many utilities do not have
the infrastructure in place to take advantage of those improvements yet. AMR is
generally used only to gather monthly water usage for billing. AMR is capable
of providing more frequent measurements, but as a low powered system, data
communication requires the reader to be nearby. On a per-house basis, most
demand is of short duration, such as flushing a toilet or using a sink, and so usage
is still generally aggregated. Research by Yang and Boccelli [30], has shown that
the aggregation length can play a significant role in determining contaminant
flow direction and the time of arrival.

While real-time hydraulic measurements are becoming more common, real-
time concentration measurements are still very limited. Water “quality” is a
rather nebulous condition, and is typically described by surrogates such as chlo-
rine concentration, electrical conductivity, pH, as well as specific regulatory mea-
surements, such as total coliform counts or organic matter. The sensors to mea-
sure these values are sensitive, expensive, and generally don’t work at high pres-
sures, making them hard to install and maintain. Bypass lines can be used to
solve the pressure issue, but continuous sensors are still very uncommon outside
of the treatment plants or nearby tanks and reservoirs. Most utilities use manual
sampling to satisfy regulatory requirements.[11, 12, 13] This involves sampling
from specific points within the network over a month’s period of time, and an-
alyzing the samples in the lab. Rapid sensors and kits are available for field use
for certain surrogate parameters.

Because of these challenges, there is continuing research in the develop-
ment of tools to determine the source of a contaminant, plume size and location,
and sampling direction during a contamination incident. These tools must be
fast enough to run in real-time, or must have taken sufficient uncertainty into
account to be useful under abnormal conditions even though solutions were pre-
computed. This thesis is aimed at providing methods to quantify the uncertainty
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in plume position and identify the most significant contributing factors in reduc-
ing this uncertainty.

1.3 Literature review

Hatchett et al. [15] described the software tool EPANET-RTX [16] which
uses known information from a WDS supervisory control and data acquisition
(SCADA) to calibrate a hydraulic model based on real data. The software uses
real-time information regarding network inflows, tank levels, pumps and valve
settings to calculate the real-time system-wide demand. This is used as input to
a demand estimation model to estimate instantaneous nodal demands. Forward
predictions are compared to observations to calibrate the model. The software is
being used at multiple locations and development is ongoing.

Yang and Boccelli [30] described the impact of temporal demand aggre-
gation on water quality within a WDS. They examined three levels of demand
aggregation (1 hour, 10 minutes, and 1 minute) and the effect this had on arrival
time and time to maximum loading at all nodes. Demands were generated us-
ing the PRPsym[7] software, an implementation of the Poisson rectangular pulse
(PRP) model proposed by Buchberger and Wu [8] to simulate stochastic residen-
tial demands. Yang and Boccelli focused specifically on short-duration, deliberate
contamination incidents, which are more difficult to detect than a continuous in-
jection. They found that there were significant differences, of up to 1000 minutes,
in the arrival times of the one-hour and the one-minute demand simulations.
They concluded that traditional deteriministic demand modeling approaches can
be highly inaccurate in the predictions of contamination spread and arrivals.

Demand modeling has received significant attention in the water distribu-
tion system modeling literature, and is still an active research area. In addition to
the PRP model described by Buchberger and Wu, numerous other stochastic and
deterministic models for demand have been proposed. Davidson and Bouchart
[9] and Kang and Lansey [18] both discussed the need for stochastic demands to
accurately model water distribution system behavior.

Al-Jasser [3] examined the effects of service age on chlorine decay within
the pipe network. They found that reactions within cast iron, and to a lesser
extent steel pipes, were most significantly impacted by service age. The wall
decay constants were found to vary from -92% to +431% compared to new pipes.
This information helps provide bounds on parameter variation.

Blokker et al. [5] described a method of “bottom-up” demand estimation,
creating stochastic demands at the household, or service node level rather than
distributing the demands based on average system-level demands with a single,
average demand pattern for each node.

Jonkergouw et al. [17] described calibration of the hydraulic model using
chlorine measurements within the system. The calibration is performed on the
system-wide demand multiplier pattern values, the wall correlation coefficient

9



parameters, and the source chlorine parameters. Calibration was done using a
stochastic optimization algorithm followed by a derivative optimization algo-
rithm to minimize the difference between the observed and modeled chlorine.

Xie et al. [29] examined the optimal placement of chlorine sensors for the
calibration of chlorine decay model coefficients. A mixed integer programming
method was used to determine the best placement. Calibration was done on two
simulated case studies and one field data set from a small system. Calibration un-
der the ideal simulated scenario resulted in recovery of the true parameters with
error≤ 2.3%. They concluded that using water quality data is an effective way to
enhance hydraulic model calibration when combined with traditional hydraulic
observed data.

1.4 Uncertainty quantification problem

This thesis will approach quantifying the uncertainty in the final contami-
nant plume from a deliberate or accidental contamination event. The uncertainty
in the actual concentration values will not be quantified; rather, the binary con-
tamination status – whether the concentration exceeded a certain threshold – will
be used instead. Typical impact measures include the extent of contamination
and population impacted.

While these metrics describe the total impact on a system, they do not aid
in determining where the plume actually traveled. To this effect, two new im-
pact measures will be proposed and evaluated. These impact measures will be
used to quantify the uncertainty in the plume position by describing the size of
the “edge” of the plume, the parts of the network where contamination is uncer-
tain. These metrics will be computed from concentration results from a sample
EPANET water distribution network model. Several different hydraulic and wa-
ter quality parameters and injection scenarios will be considered.
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CHAPTER 2

METHODS

In this chapter I will describe the methods used to perform the analyses on
the WDS model. I will start with a discussion of the approach and the algorithms
developed to provide uncertainty within the input parameters. I will then present
the impact metrics that quantify the output of the EPANET model in a scalar or
vector form; this includes the development of two new metrics for quantifying
uncertainty in the position and system impact of a contamination event. Finally,
I will describe the specifics for the simulation studies and the analysis techniques
to be used.

2.1 Algorithm development

When demand and pipe status are per-node and per-pipe parameters,
the number of parameters is far larger than the possible set of observations. A
straightforward sensitivity analysis of all these individual parameters is compu-
tationally intractable, as there are simply too many parameters, all of which are
continuously variable. Instead of per-node and per-pipe variation, the hydraulic
parameters of demand and pipe closures will be varied as two sets of indepen-
dent identically distributed (i.i.d.) random values. The bulk reaction coefficient
has a logarithmic analytical solution which only needs three different values to
compute at each node, and the injection scenario is a reasonable sized discrete
parameter set. This reduces the parameter set to six factors, two hydraulic and
four water quality related.

2.1.1 Hydraulic uncertainty models

Using a stochastic demand model is consistent with current and existing
research [5, 18, 30]. However, there are many different views on how to gener-
ate such demands, and developing an exact model is likely system dependent.
Real-time hydraulic measurements and frequent AMR will help reduce the un-
certainty in actual demands in the system, but uncertainty will still remain. This
uncertainty comes from the fact that, even with AMR reporting hourly from ev-
ery house – a nearly unheard-of feat – it is still an hourly aggregation. The one
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measurement that can be counted on is total system demand, based on outflow
to the distribution system from reservoirs or pipelines.

Because developing an exact demand model is outside the scope of this
thesis, a simple model will be used in the simulation study. It will be assumed
that

• the system demand patterns were appropriately created based on average
use for a specific demand class (residential, industrial, etc.),

• the correct demand pattern and base demand were assigned to each node
to correctly represent the average demand at the node, and

• the total of junction demands accurately represents the total system demand
on an hourly basis.

Given these assumptions, the demand modification model was developed
as Algorithm 1. The demand at each node and time was adjusted by sampling
from a normal distribution, with mean 1.0 and standard deviation σd. Because
there is a chance that the random number will negative, especially for large σd
values, a truncation is needed at zero; negative demands in the model would
represent back-flow, which should be impossible. Once all the stochastic modifi-
cations are made, the demands are rescaled so that the total demand is equal to
the original demand.

Algorithm 1 Demand modification model.
1: function MODIFYDEMANDS(b, M, σd, Q)
2: Ψ := ZEROS(npat, npat)
3: Y := NORMAL(0, σd

2, [npat, nJ ]) . npat × nJ i.i.d. samples from normal
distribution

4: B := diag(b)
5: Q := M B
6: Q := Y�Q
7: Q := MAX(Q, 0)
8: for j = 1, 2, . . . , npat do
9: ψj,j := ‖B>M>ej‖1 / ‖Q>ej‖1

10: end for
11: Q := Ψ Q
12: return Q . total demand per node per pattern step
13: end function

The topology uncertainty model was limited to uncertainty in closures of
isolation valves, and is given in Algorithm 2. I did not find any research available
that provides an estimate of how many incorrectly marked valves there are in a
typical network model. It is unlikely, but not impossible, that major lines are in-
correctly noted, but the status for smaller isolation valves could easily be wrong,

12



which is the reason topology must be considered as a source of uncertainty. Anec-
dotal evidence gained through interviews with industry personnel indicate that
in a large city there could be thousands of valves in the network that are shut, or
partially shut, without anyone knowing. If any part of the network were to be
fully isolated, it would become known very quickly, so any modification to the
topology of the model must still satisfy demand to all nodes.

EPANET models typically only explicitly contain valves that are operated
on a regular basis, and isolation valves do not fit that description. Because of this
fact, isolation valve closures are modeled by closing an entire pipe in EPANET.
The pipe closure model uses a random closure percentage from a uniform distri-
bution. A threshold parameter is used to convert the random numbers into 0/1
status values. If a pipe is closed, it is closed for the entire simulation.

This brute-force method of closing pipes generates infeasible scenarios –
network isolation and infeasible hydraulics occur with increasing frequency as
the threshold is increased. While it may seem faster to do a graph theory analysis
to find isolated parts of the network, the need to ensure that the hydraulics will
solve, even without isolated areas, makes it more efficient to simply run the hy-
draulic model first and see if it solves. If the model does not solve, EPANET will
return an error message and the hydraulic scenario is discarded and a replace-
ment is generated.

Algorithm 2 Pipe closure model.
1: function MODIFYTOPOLOGY(s, d, βf , δd)
2: for p = 1, 2, . . . , nP do
3: if dp ≤ dmax then
4: y := UNIFORM(0, 1) . sample from uniform distribution
5: if y ≤ βf then
6: sp := 0
7: end if
8: end if
9: end for

10: return s
11: end function

The hydraulic simulation combines the demand and topology uncertainty
models with the EPANET hydraulic model, and can be implemented using Algo-
rithm 3. The resulting system hydraulics are used as input to the water quality
simulation. The input parameters and their theoretical ranges are listed in Table
2.1.

2.1.2 Water quality uncertainty models

Water quality uncertainty that is not due to hydraulics comes from the
contamination profile. The contamination profile consists of the answers to the
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Algorithm 3 Hydraulic simulation with uncertainty.
Note that the while loop only exits after a successful EPANET hydraulic solu-
tion is obtained; unsuccessful EPANET execution results in both the modified
demands and topology being discarded.

1: function DOHYDRAULICS(G, σd, βf)
2: H := ∅
3: repeat . run until a hydraulic solution is found
4: Q := MODIFYDEMANDS(G.b, G.M, σd)
5: G.M← Q . assign new total demands as multipliers,
6: G.b← 1 . so need to set the new base demands to 1
7: s := MODIFYTOPOLOGY(G.s, G.d, βf , dmax = 12′′)
8: G.s← s
9: H :=EPANET2 7→RUNHYDRAULICS(G)

. EPANET returns null set if hydraulic simulator fails
10: until H 6= ∅
11: return H,G . return hydraulics and modified network;

. these will be used by EPANET water quality model
12: end function

questions “what?” “where?” “when?” “how?” The first question refers to the
water chemistry and reactions, the remaining refer to the injection profile.

Water chemistry uncertainty is limited in this thesis to the bulk reaction
coefficient, Kb. The bulk reaction coefficient varies according to the contaminant,
with a value of 0 indicating a non-reactive tracer, negative values indicating de-
cay, and positive values indicating organic growth (biologics). Biologic contami-
nants were not considered. Values for Kb are in units of inverse time for first-order
decay.

Complex reactions (such as with chlorine) and wall reaction coefficients
were not used. Chemical reaction models require a different version of EPANET,
the multispecies EPANET-MSX extension; such reactions are complex and must
be written for a specific contaminant – they are not conducive to a more general
study. Wall reactions depend on both the contaminant and the state of the pipe
surface. There are a number of studies in the literature which demonstrate meth-
ods to calibrate wall reaction coefficients for a specific system[22, 3]; in a simula-
tion study, assigning wall coefficients would require arbitrary assignment of pipe
qualities, limiting generality. Values for Kb are available for real contaminants,
allowing the simulation to sample from a realistic range of values.

The injection profile is composed of the injection strength, source location,
start time and duration. Because the reactions are first-order decay or no decay,
and are independent of all other parameters, the concentrations at every node
and time scale linearly with changes in the initial concentration. This simplifies
the model, allowing injection strength to be held constant instead of being set as
a model parameter; any evaluation of the effect of initial concentration can be
performed through post-model execution scaling.
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The first injection profile parameter that must be modified within the model
is the injection location, xinj. Injections can take place at any reservoir, tank, or
non-zero demand (NZD) junction in the network. A junction with no demand
consumes no water, and is considered to be buried and inaccessible as a point
of (deliberate) contamination. When considering accidental contamination from
pipe breaks or other disasters, this may not be a valid assumption; however, lim-
iting injections to NZD nodes is a reasonable, repeatable and clearly defined way
to limit the parameter space. The remaining two parameters are time-based. The
first is the injection start time, t0,inj, and the second is the injection duration, ∆tinj.
The start time is relative to the start of the simulation, and the duration is relative
to the start time.

The contamination uncertainty parameters are all variables with a defin-
able range of values of uniform likelihood. The values were selected to provide
reasonable coverage, rather than from random distributions, with a factorial de-
sign for these four independent parameters. The injection locations were selected
randomly from the NZD nodes and tanks one time, and this resulting set of loca-
tions used for all simulations. The input parameters and their theoretical ranges
are listed in Table 2.1. The algorithm for the water quality parameter modifica-
tions is presented in Algorithm 4.

Algorithm 4 Water quality simulation with uncertainty.
1: function DOQUALITY(G,H, Kb, xinj, t0,inj, ∆tinj)
2: G.Kb ← Kb

3: define an EPANET source, I
4: clear quality for all nodes
5: set I source type to “MASS”
6: set I source quantity to 1000.0 mg/min
7: set I source node to xinj
8: set I start time to t0,inj
9: set I duration to ∆tinj

10: EPANET2 7→RUNQUALITY(G,H, I)
11: C := READEPANETBINARY
12: return C
13: end function

2.2 Impact measures

To perform UQ, there must be both input parameters and output measures
that can be quantified. Looking first at the output measures, the concentration at
each node (and in each pipe) is the output of the EPANET water quality simula-
tion that is of import here. Any impact measure must combine concentration at
all locations and times to allow uncertainty to be quantified.
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Table 2.1: Input parameters, model method, and ranges of values.
Theoretical

Description Parameter Model Range
Demand modification σd Alg. 1 [0 , ∞)

Pipe closures βf Alg. 2 [0 , 1)
Bulk reaction Kb choice (−∞ , 0]

Injection location xinj choice x ∈ N

Injection start t0,inj choice [0 , ∞)
Injection duration ∆tinj choice [0 , ∞)

For a specific simulation run, ξ, there are two metrics that will be used
to describe the results of a specific simulation: extent of contamination (EC) and
population impacted (PI). These are typical impact measures previously used in
the literature to evaluate sensor placement (SP) design [28] and disaster effects
[19]. The extent of contamination is the total length of the pipes that have been
contaminated by a specific event. The population impacted is the total number of
people who may have been exposed to contaminated water or who will certainly
be affected by remediation efforts, for example, due to pipe replacement. The
EC and PI metrics are very useful in sensor placement, as the goal of SP is to
minimize impact prior to detection.

The EC and PI metrics are less useful in plume localization; the goal is not
to minimize the extent of the plume, it is to find the actual edges of the plume. As
noted by Yang and Boccelli [30], changes in flow path can impact not only the ar-
rival time and concentration levels, but can significantly change to location of the
plume. To account for this positional uncertainty, two new, but related metrics
are proposed here – unknown extent of contamination (uEC) and unknown pop-
ulation impacted (uPI). These metrics will encompass only those parts of the net-
work where the plume extent is uncertain, in other words, the “unknown edge”
of the contaminant plume. As this edge is reduced, the actual plume position
becomes more clear.

2.2.1 Simulation impact metrics

To calculate the metrics, the concentration matrix, C, must be computed
using EPANET. The output file from EPANET does not give the concentration
for the pipes, only nodes. Because extent of contamination is a measure of pipe
lengths, a heuristic must be used to estimate the actual length contaminated.
Other authors have defined EC using the average contamination across the pipe
taking flow direction into account. Given the quantity of data already being
recorded, flow direction was not saved, and a different method is required. A
length, λ, is assigned to each node equal to one half the sum of the length of all
adjacent pipes; this uses the conservative assumption that if a node has the con-
taminant present, at least part of all adjacent pipes will need decontamination.
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The plume extent is not the same as the extent of contamination. Plume
extent varies with time based on the current position of the contaminant; effec-
tively, pipes are removed from the plume as it passes by. The EC metric, however,
is based on the maximum concentration seen at a node across all times. To calcu-
late the maximum concentration seen, use the row selection vector ej to choose
the appropriate junction and compare the `∞-norm to a threshold of contami-
nation, τc. Any node that is contaminated gains membership in the plume, P,
which is a set of nodes.

P(C, τc) =
{

j, ∀j ∈ N
∣∣∣ ∥∥Cej

∥∥
∞ ≥ τc

}
(2.1)

EC(P, τc) = ∑
j∈P

λidx(N,j) (2.2)

The specific results for a simulation are designated as follows. The super-
script notation, v(ξ), is used to indicate that variable v belongs to the parameters
and results of simulation ξ.

P̊
(ξ)
τc = P(C(ξ), τc) (2.3)

E̊C
(ξ)
τc = EC(P̊(ξ)

τc , τc) (2.4)

Similarly, the population impacted, PI, can be calculated by adding all peo-
ple who live at junctions that have seen contaminated water. Tanks and reservoirs
have zero population by definition, so the iteration can be limited to junctions.
This is different from the population exposed (PE) health metric. The PE metric
takes into account the actual mass of contaminant consumed by people and the
toxicity of the contaminant; the PI metric merely looks at the total population
that will be subject to any disruption, whether death or merely inconvenience.
The population at each junction is contained in the vector π.

PI(P, τc) = ∑
j∈P

πidx(J,j) (2.5)

2.2.2 Uncertainty metrics

There is no physical reason these two types of measures would be corre-
lated – people live in a three-dimensional world, best represented as a distribu-
tion across a continuous surface. The WDS network has numerous restrictions on
it, and is better represented as a graph.

The uEC and uPI metrics can only be calculated when results of multiple
simulations are present; let Ξ be the set of simulations to be used. Conceptually,
the contaminant plumes that result from each simulation can be laid over one
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another to see the most likely areas of contamination. This map can be divided
into three parts: the contaminated zone, ZC , where every node has a very high
probability of being contaminated, the uncontaminated zone, ZU , where every
node has a very low probability of being contaminated, and the unknown status
zone, ZS , where the probability of contamination is in the middle. The uEC and
uPI metrics describe the size of the unknown status zone.

All of the random variables used for the hydraulics are independent; the
simulation results are therefore also independent. The sample probability, P, can
be calculated as the number of simulations where a node is contaminated divided
by the total number of simulations. This is acceptable for determining the size of
the contaminated zone, and the threshold αc is used to determine a cutoff proba-
bility for membership.

ZC(Ξ, τc, αc) =
{

j, ∀j ∈ N
∣∣∣P (j ∈ P

(ξ)
τc

∣∣∣ξ ∈ Ξ
)
> (1− αc)

}
(2.6)

The membership of the uncontaminated zone is comprised of all nodes
that are contaminated in zero simulations.

ZU (Ξ, τc) =
{

j, ∀j ∈ N
∣∣∣@ ξ ∈ Ξ such that j ∈ P

(ξ)
τc

}
(2.7)

It is important to note that the probability of contamination for nodes in
this zone is always non-zero. An upper bound on the probability of contamina-
tion for nodes in this zone can be calculated using a binomial fit with p ≤ 0.5
and n = |Ξ|. Figure 2.1 shows the p̂ value for probability of contamination at
a node with one simulation showing contamination and the upper value of the
95% confidence interval for the p̂ when no simulation shows contamination. The
upper bound on the confidence interval for p̂ when no simulations show contam-
ination is higher than the estimated p̂ with a single simulation showing contami-
nation. By specifying a desired upper bound on the probability of contamination
for nodes in the uncontaminated zone, the number of stochastic trials needed can
be computed. In this case, a parameter like αc should be added to ZU and the
zone membership reformulated in a manner similar to ZC .

The unknown status zone is comprised of all nodes that are members of
neither the contaminated nor uncontaminated zone. While ZS is defined as set
operation in Equation 2.8, the algorithm used to create the set improves efficiency
by comparing the sample probability to zero rather than computing the otherwise
unused set ZU .

ZS(Ξ, τc, αc) = N−ZC(Ξ, τc, αc)−ZU (Ξ, τc) (2.8)

Where the EC and PI metrics operate on the set of nodes within a plume,
the uEC and uPI metrics perform the same operations on the set of nodes within
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Figure 2.1: Probability of contamination within ZU .

the unknown status zone defined by a set of simulations, Ξ; the parameters to ZS
are omitted in the summation for readability.

uEC(ZS , τc, αc) = ∑
j∈ZS

λidx(N,j) (2.9)

uPI(ZS , τc, αc) = ∑
j∈ZS

πidx(N,j) (2.10)

2.3 Simulation studies

Analysis will be completed using a partial-factorial experimental design
with stochastic simulation providing the independent trials. This approach was
taken after doing a full Monte Carlo analysis was determined to be too expensive
(computationally) with the full parameter space. Identification and quantifica-
tion of the most significant parameters to help limit the parameter space was
needed first, as it was discovered that the methods used by others did not work
as well applied to this problem.

For example, the UQ studies for water distribution networks, such as those
by Yang and Boccelli [30], Blokker et al. [6], Jonkergouw et al. [17], and Pasha
and Lansey [25], either are looking at calibration or a specific “injection” events
– usually involving chlorine. In both cases, the source location, time, and mass
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are known a priori, a very different scenario than with an unanticipated contam-
ination incident. While future work can address fully varying input parameter
space, it was too soon to do so here. Thus, a full Monte Carlo simulation or other
techniques such as latin-hypercube sampling will have to wait. The experimen-
tal design method will analyze correlation between different metrics, look for
parameters that can be eliminated or reduced in future work, and examine main
effect and interaction effects for the different parameters.

Simulations were run on “Net6,” a skeletonized network of a real city of
around 300-thousand occupants; the network was taken from Watson et al. [28].
The network is shown in Figure 2.2 with the selected injection locations indicated.
The network contains one reservoir, at a low elevation, and the majority of wa-
ter is pumped to tanks from where it is distributed to customers. Water age, a
measure of the turnover rate within the system, is generally less than 24 hours,
except at the furthest extents of the network. Pipe junctions without an assigned
demand are assumed to be buried pipe intersections, not accessible as points of
contamination; this is a common assumption (see [20]).

Prior to running the Monte Carlo simulations, test simulations were exe-
cuted to ensure that parameter values were reasonable. Several parameters that
were not studied in the UQ study were explored to ensure the model was config-
ured for sufficient accuracy or to ensure true independence of the parameter. A
large number of testing and preparatory runs (∼5 million forward model calls)
were completed during this exploration. The parameters chosen for the study
runs are presented in Table 2.2.

2.3.1 Physical parameters

There are five physical parameters that were discussed in Chapter 3 – node
demand standard deviation, pipe closure fraction, pipe closure limiting diame-
ter, injection strength and bulk reaction coefficient. As discussed previously, the
down-stream concentration is directly proportional to the input concentration.
Injecting at positive-demand nodes requires using the EPANET “MASS” injec-
tion model, which is a constant rate of injection defined in mg/min. A value of
1000.0 mg/min was used as the injection strength for all simulations to ensure
concentrations were sufficiently large to avoid mass-balance and tolerance errors
within EPANET.

After experimentation and discussion with other researchers, the limiting
pipe diameter, δd, was fixed at twelve inches. Anecdotal evidence from other
researchers is that several percent of the isolation valves in a system may be in-
correctly marked in the network model. In the Net6 model, however, it quickly
became apparent that randomly selecting pipes to close would isolate parts of
the network at target fractions, βf , of even a tenth of a percent; those that did not
isolate pieces of the network would frequently fail due to hydraulic errors, and
between these two issues less than one in 1000 produced a topology that would
converge.
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Limiting the pipes to those with a diameter of less than twelve inches al-
lowed for the increase of the useful target fraction range while simultaneously
decreasing the number of random iterates needed to find a valid topology. The
parameter for the pipe closure model, βf , was set to 0, 0.0025, and 0.005, repre-
senting 0, 0.25% and 0.5% of pipes less than 12” in diameter.

The demand modification model was artificially constructed. While there
are some publications[21, 24] that have examined per-household hourly usage,
the Net6 model is a skeletonized model – households are aggregated into a sin-
gle node. The aggregation of commercial, residential, and other usage makes the
likelihood of the aggregated demand being zero very small. The number of times
the demand was truncated at zero was thus a useful measure of the realistic range
for the σd parameter. Experimentation showed that for σd = 0.5 there were gener-
ally around 3 000 node-time steps, ≈ 5% of the total node-time step pairs, where
demand was truncated for each stochastic simulation, so this was considered the
top of the realistic range for this network model. For non-skeletonized models
this value could be very different. The values selected were 0, 0.2, and 0.4; this
choice allowed for one case (σd = 0.2) where there were generally only one or
two time steps that were truncate and one case (σd = 0.4) where the number of
truncations occurred much less than 5% of the time.

The final physical parameter was the bulk reaction coefficient. A study by
Davis et al. [10] identified bulk reaction coefficients for a dozen contaminants of
interest. The decay coefficients ranged from 0/day to as high as 8000/day. Exper-
imentation with different values found that values of 100/day or higher would
decay too fast to be of use in simulation. Additionally, it was discovered that the
concentration could be calculated analytically based on a node-specific relation-
ship with concentrations from three Kb values. The coefficients for the equation
are different for every node and time step, but can be generalized according to
the following relationship,

c(j, t, Kb) = c(j, t, Kb0) +
c(j, t, Kb1)− c(j, t, Kb2)

log |Kb1| − log |Kb2|
log |Kb|, (2.11)

where Kb0 = 0.0 and Kb1, Kb2 are any other two negative bulk reaction parame-
ters. This relationship is only true for chemical parameters and would not be true
for biologic parameters (where growth would occur).

While a normal log-linear relationship would only need two values, the
round-off errors make the equation more accurate if the intercept and slope are
calculated using different data. Values for Kb of 0/day, -0.1/day, and -5.0/day
were chosen. This brackets the values for the most common contaminants and
provides the three points necessary to vary decay coefficients after the fact.

2.3.2 Temporal parameters

The two temporal parameters for the UQ are the injection start time and
the injection duration. There are other temporal parameters in the simulation:
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the pattern step size, ∆tpat, impacts the number of demand modifications needed;
the report step, ∆trpt, needs to be smaller than the patter step, but not so small
that the results become too large to process; the simulator step sizes, ∆thyd and
∆twq, affect the accuracy of the concentrations. Experimenting with the ∆thyd
and ∆twq parameters showed that while the accuracy of concentrations increased
slightly with decreasing step sizes, there was a limit on the improvements due to
EPANET’s internal tolerances and memory constraints. Additionally, decreasing
step sizes for the solvers did not impact the EC or uEC metrics unless the report
size was significantly decreased; because the report size was set to fifteen min-
utes to keep storage reasonable, keeping the solver step size in the minute range
instead of the seconds range was appropriate. The ∆thyd was set to 5 minutes and
the ∆twq was set to 1 minute. The patterns defined by the Net6 network input file
are one-hour patterns, so ∆tpat was kept at 1 hour.

The injection start time was limited to three values, in keeping with the
number of values that were chosen for the physical parameters and because the
factorial combination of values was increasing steadily. Start times of hour 0, 8
and 16 within the simulation were selected to provide good coverage of different
demand types (representing 8am, 4pm and 10pm simulated clock times within
the demand patterns). The injection durations were set to 1 hr, 12 hrs, and contin-
uous through the end of the simulation (24 to 40 hours depending on start time).
The continuous injection and one-hour injection are frequently used scenarios in
water quality research. The 12-hour injection provided a midpoint.

2.3.3 Positional parameter

The only positional parameter is also a discrete parameter – the injection
location. Because there are over 1 600 NZD nodes in the system, plus tanks and
the reservoir, time and size constraints were not conducive to running all possible
locations at this time. The factorial combination of the physical and temporal
parameters already provided 243 combinations – not including the number of
Monte Carlo runs. A subset of locations was chosen, instead.

A reservoir is always a likely target or source of contamination, so the
reservoir was chosen to be part of the subset. Ninety nine additional nodes were
chosen at random from the tanks and NZD nodes to be injection locations. The
random selection was then examined on a map to ensure that coverage of the
network looked appropriate. The chosen locations are presented in Figure 2.2.

One note should be made regarding the EPANET model and injections at
tanks. The model does not contaminate the tank directly; instead, an imaginary
point just outside the tank is used for injection, and contamination only flows
away from the tank, not into it. This is not true for contaminated water flowing
into the tank – such water does mix with water in the tank – but MASS injec-
tions at the tank while it is filling contaminate a single packet of water that stays
outside the tank until it starts draining, when it then moves downstream. This
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Figure 2.2: The network used for the simulation study. Injection locations are
highlighted.

is an unfortunate feature of EPANET, but for repeatability by others it was not
corrected in the software library that was used.

2.3.4 Threshold parameters

The output metrics require threshold parameters. The threshold for con-
centration, τc, was set to 10−6 mg/L. This was near the numerical limit for non-
zero concentrations, due to EPANET’s tolerances, and was three orders of mag-
nitude smaller than the lowest maximum concentration for a single simulation;
constant mass injections result in smaller concentrations based on the volume
of water flowing past the node where the injection takes place. The probability
threshold, αc, was set to 0.05.

2.4 Software and implementation

The methods described were implemented in a Python library which makes
use of the Water Network Tool for Resilience (WNTR)[19] Python library and the
EPANET 2.0 toolkit. The WNTR library was used to parse the EPANET input file
and create an object with the network and options. The WNTR EPANET simu-
lator (which calls the EPANET library) was used as a starting point, but the sim-
ulator was rewritten completely by the end of the project. The EPANET toolkit
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Table 2.2: Parameter values chosen for the simulation study. Values marked by ?
indicate the range is specifically for the Net6 model.

Realistic Physical Chosen
Description Parameter Range Values

Demand modification σd 0 ≤ σd < 0.5? 0, 0.2, 0.4
Pipe closures βf 0 ≤ βf ≪ 1 0, 0.0025, 0.005

Pipe closure diameter δd (0, max(d)] 12 in. (fixed?)
Bulk reaction Kb [−5/∆trpt , 0] 0, -0.1, -5.0 day−1

Injection location xinj x in NZD nodes 100 nodes
Injection start t0,inj [0 , ttotal) 0, 8, 16 hrs

Injection duration ∆tinj (0 , ttotal − t0,inj) 1 hr, 12 hrs, continuous
Concentration threshold τc [0, max(C)] 1× 10−6

Probability threshold αc [0, 0.1] 0.05

allows for programmatic access to the EPANET hydraulic and water quality sim-
ulator, ensuring consistency with other research efforts in the field.

The software was designed to use an input file that specifies the parameter
values or ranges, the number of Monte Carlo iterates, and parallelization options.
The main program parses these options and executes simulations in a subprocess
or using a message passing interface (MPI) library. The outline of the program is
presented in Algorithm 5.

Once all simulations have been completed, and the results saved, the un-
certainty metrics can be calculated. The maximum concentration seen at each
node was output in a matrix, one row per simulation. This data was processed
in MATLAB to collect data into scenario sets, Ξ, and then calculate the uEC and
uPI metrics. This process was coded into Python, but the visualization functions
were written in MATLAB and required the same basic information, so the metrics
were calculated in MATLAB directly.

The modified demands and pipe statuses are stored with the result con-
centration values in a compressed binary file. The file format is Hierarchical Data
Format version 5 (HDF5). The HDF5 format was developed for storing extremely
large datasets for astrophysics and climate modeling, but is convenient due to its
portability (binary compatibility between platforms is not common), the abun-
dance of libraries for different programming languages, and its efficiency. The
configuration file for the UQ main program is written in JavaScript Object Nota-
tion (JSON), a hierarchical text-formatted notation that is widely used and which
has libraries for most languages. It is also more human-readable than most other
configuration file formats.

The Python library runs approximately 4 500 lines of original code; in ad-
dition, debugging and bug fixes were applied to the WNTR library.
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Algorithm 5 Main program
1: procedure MAIN MPI
2: if primary processor then . MPI designates a master processor
3: read config file and load parameter settings
4: calculate number of Monte Carlo iterates per processor, npp
5: start MPI processes . pass information the master read to child processes
6: end if
7: G := WNTR 7→WATERNETWORKMODEL( f ilename) . parse input file
8: for i = 0, 1, . . . , npp − 1 do

. Next, perform a factorial combination of parameter values from config file
9: for all σd, βf , Kb, xinj, t0,inj, ∆tinj in UQ ranges do

10: start subprocess . necessary to ensure Python/DLL memory clears
11: ξ i,cpu := DOSIMULATION(G, σd, βf , Kb, xinj, t0,inj, ∆tinj, τc)
12: end for
13: end for
14: save all ξ ·,cpu results
15: end procedure

16: function DOSIMULATION(G, σd, βf , Kb, xinj, t0,inj, ∆tinj, τc)
17: H,G? := DOHYDRAULICS(G, σd, βf)
18: C := DOQUALITY(G?,H, Kb, xinj, t0,inj, ∆tinj)
19: P̊ := P(C, τc)
20: E̊C := EC(P̊, τc)
21: P̊I := PI(P̊, τc)
22: ξ.params← 〈G?, σd, βf , Kbxinj, t0,inj, ∆tinj〉 . save modified network with param’s
23: ξ.results← 〈τc, P̊, E̊C, P̊I, C〉 . save concentrations and initial metric calculations
24: return ξ
25: end function
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CHAPTER 3

RESULTS AND DISCUSSION

In this chapter I will present the results of the analyses. First, an analysis
of the performance of the new impact measures, uEC and uPI, will be presented.
Following this, the results from the large-scale simulation study described in Sec-
tion 2.3 will be presented along with discussion.

3.1 Analysis of impact measures

As discussed in Chapter 2, there are two pairs of impact measures that
were used, one based on the length of pipe contaminated and one based on the
population impacted. Because of the number of simulations and the size of the
results, it would be convenient if the majority of the analysis could be performed
using only one of the pairs; this requires a very high degree of correlation between
the two measures and is contingent on the network configuration. To evaluate if
this simplification is possible on the network used, the correlation between all
pairs of metrics was examined.

Figure 3.1 shows the empirical cumulative distribution function (eCDF)
for each of the four metrics. The correlation coefficient, R, between the direct
contamination metrics, EC and PI, and the uncertainty metrics, uEC and uPI, are
both 0.998, as shown in Table 3.1. The correlation coefficient values of R ≈ 0.6
show a not-insignificant correlation between the direct and uncertainty metrics,
a relationship that also seems consistent with the eCDFs in Figure 3.1. The values
EC and uEC were plotted against each other in log-log space, and the result is
shown in Figure 3.2. The plot shows that there is some correlation between EC
and uEC, but this correlation does not support a direct transformation between
the direct and uncertainty metrics.

The network used, Net6, shows sufficient correlation between the pipe
length and population metrics that simplification to a single metric type is rea-
sonable. The remainder of the results will show only the EC and uEC results,
but it should be remembered that on a different network the same comparison
of metrics would be necessary and may indicate that the metrics will need to be
analyzed separately.
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Table 3.1: Correlation coefficient R for the four impact metrics; std(R) < 10−4 for
all cases where the stochastic simulations could be used to calculate R for each of
50 samples.

.
R PI uEC uPI

EC 0.998 0.580 0.592
PI 0.572 0.586

uEC 0.998
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Figure 3.1: Empirical cumulative distribution function (eCDF) for the EC and PI
of ξ i,j; the standard deviation in EC and PI across the stochastic simulations in a
set, Ξi; and the uEC and uPI for each Ξi. The impact measure axis is truncated
for readability, but no information is lost – all metrics have a single, small x value
where the eCDF jumps from 0 to the same F(x) value evaluated at x = 10
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Table 3.2: Parameters used for uEC vs M calculations.
Symbol σd βf Kb t0,inj ∆tinj xinj

R 0.2 0.0025 0/day 0 1 h Reservoir-3323
T 0.4 0.0025 0/day 16 end of sim. Tank-3331
J 0.4 0.0 0/day 0 1 h Junction-1451

3.2 Sensitivity to number of simulations

The uncertainty metrics are based on probabilities and take the thresh-
old parameter, αc. Because of this, the number of samples will play a role in
the results. A small study was performed to examine this relationship in more
depth. Five hundred stochastic simulations were run for specific injection nodes
(Reservoir-3323, Tank-3331, and Junction-1451) with the parameter values shown
in Table 3.2. The mean value for the uEC metric was calculated using a block-
averaging method,

uEC(M) =
M−1

∑
n=0

M−n−1

∑
j=0

uEC(Ξn:n+j(αc))

M− n
, (3.1)

where M = 500 is the number of simulations and Ξi:j represents the integer num-
bered simulations i through j. The results were calculated using three different
threshold values, αc = 0, 0.01, 0.05, with the physical meaning that a node is as-
signed to ZC if it is contaminated in 100%, 99%, or 95% of simulations, respec-
tively. Figure 3.3 shows results of uEC(M) for the three nodes as a function of
M.

When αc = 0, the value for uEC increases monotonically; changes oc-
cur when a new node is contaminated for the first time and when a node is un-
contaminated for the first time. In both cases, the node moves from its original
zone into ZS , increasing the uEC. When αc > 0, the number of permitted “non-
contaminated” simulations a node can have while staying in ZC , k, changes as
the rounding function k = bαcnc. The uEC as a function of n follows the un-
thresholded curve at first, but as k increases, the scenarios move back from ZS
into ZC , and a sawtooth pattern appears.

Though the uEC for sample tank and junction appear to approach some
maximum when αc = 0, the only bound on the limit for uEC is the total size of
the pressure zone – an area where the boundary conditions prevent exit. Such a
situation would represent the case when ZC = ZU = ∅. For values of αc > 0, this
is no longer true. By lowering k, there will always be some non-zero proportion
of the nodes in the network that will meet the criteria for membership in ZC . As
the number of simulations increases, the value for uEC will approach this value.
The largest uEC(M) occurs when M / αc

−1.
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Figure 3.3: Change in uEC based on the threshold, αc, and the number of stochas-
tic simulations, M. The sawtooth lines are due to junctions with M− k contami-
nated simulations moving from ZS to ZC as (M− k)/M becomes larger than αc.
R is the reservoir, T is Tank-3331, and J is Junction-1451.

3.3 Simulation study results

The total number of parameter values for a factorial experiment design
was 24 300, and each of the hydraulic parameter combinations was evaluated
with 50 stochastic hydraulic simulations; the only exception was the combination
of (σd = 0, βf = 0), where stochastic simulation would produce identical mod-
els every time. The result was 401 successful hydraulic simulations and 1 082 700
water quality simulations. For the large values of βf , it took up to twenty hy-
draulic simulation failures (with the typical value between three and eight) to
find a valid topology. Simulation took approximately fifty CPU-days (an average
of 4 seconds per water quality (WQ) simulation).

For each of the factorial parameter combinations 〈σd, βf , Kb, t0,inj, ∆tinj, xinj〉i,
i = 1, 2, . . . , 24 300, the simulation set Ξi = {ξ i,j|j = 1, 2, . . . , 50}. The EC and
PI for each simulation were calculated and are noted as ECi,j and PIi,j, respec-
tively. The uEC and uPI metrics were calculated for each Ξi, and are referenced
as uECi and uPIi. Calculations are also performed on sets of scenarios that have
a single parameter value in common; these sets are designated using the notation
Ξ〈p = v, . . . 〉, where p is a parameter and v is the associated value; any unspec-
ified parameter varies across all values. For example, the set of simulations where
demand and closure model parameters are zero is written Ξ〈σd = 0, βf = 0〉. Like-
wise, examples of vectors of results are PIi, EC〈p = v〉, and uEC〈p = v〉.

The distribution of values for EC and uEC were presented in Figure 3.1.
The distribution of the EC values for each of the parameter values taken individ-
ually is presented in Figure 3.4. For the hydraulic and WQ parameters – σd, βf ,
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Figure 3.4: (a) eCDF of EC for each of the five hydraulic and WQ parameters set
to a specific value while all other parameters are allowed to vary. (b) eCDF of EC
for each injection location, where all other parameters fully vary.

Kb, t0,inj, and ∆tinj– there is a change in the EC distribution at large EC values,
but the shape of the distributions are very similar to the overall distribution. For
the t0,inj parameter, the shape and magnitude of the distributions change signifi-
cantly. The location has such an overwhelming effect that performing uncertainty
quantification on the plume extent if source location is unknown becomes unin-
formative; source localization must be the first step in reducing uncertainty.

3.3.1 Main effects by location

The results of the simulations are presented in this section as plots struc-
tured in the following manner:

31



• each row of plots corresponds to an impact metric, EC on top, uEC on the
bottom,

• each column of plots corresponds to an input parameter,

• for each value of the parameter, a box-and-whisker plot is drawn, with a
target, �, representing the median, notches indicating a confidence interval
around the median, and whiskers of length 1.05 times the full height of the
lower and upper quartile boxes,

• a red line connecting the mean impact metric value for each of the parame-
ter’s values; this mimics a traditional main-effects plot.

The number of samples per location parameter value is equal to ≈ 4 000 for EC
and ≈ 80 for uEC– the number for 〈σd = 0〉 and 〈βf = 0〉 being slightly less than
the rest – and 100 times larger in Figure 3.5, where all locations are combined.

In Figure 3.4 the distribution of EC was presented by parameter in the form
of an eCDF. Figure 3.5 shows the distributions for both EC and uEC for the sim-
ulations with all locations combined. The maximum and minimum y-axis range
is set to the full extent of the mean values if they were plotted by location. This
shows once again that the injection location dominates all other parameters. The
reaction coefficient, Kb, is the most significant non-location parameter influencing
EC, and pipe closure, βf , is the most significant influencing uEC. This provides a
good sanity check on the results, as faster decay should decrease extent of con-
tamination and topology changes should increase uncertainty. Further analysis
requires looking at each injection location individually.

Analysis was conducted on all hundred locations; only the results from a
representative sample of the locations will be presented. One of the critical points
is the entry point of water into the system, in this case at the reservoir. The main
effects plot is presented in Figure 3.6. Consistent with the preliminary network-
wide results, the Kb parameter show the greatest impact on the EC metric, with
a change of over 100 km of pipe in the average extent of contamination between
Kb = 0/day and Kb = −5/day. Likewise, the βf parameter is clearly the most
important parameter affecting uEC, and the distribution of uEC values is much
tighter around the mean for βf than it is for the other parameters. The Kb, t0,inj,
and ∆tinj parameters have the opposite influence on uEC that they have on EC.

The average uEC from the reservoir is much smaller than the average EC.
This is not true everywhere. Figure 3.7 shows the results for Junction 13, located
only a few pipe links away from the reservoir. It has a similar maximum EC of
nearly the entire network. However, its position in the network gives it a max-
imum uECthat is far larger than for the reservoir, with the ZS for some simula-
tions encompassing nearly the entire network. Figure 3.8 shows the extent of the
possible contamination scenarios for injections at these two nodes. For contrast,
the zones for injections from Junction 1451 (used in Figure 3.3) and Junction 1718
(discussed following) are shown in Figure
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3.3.2 Parameter interaction

The two-way interaction effects are, on average, small compared to the
main effects. More than the main effects, the interaction effects are highly location
dependent. The total EC for reservoir has an interaction effect for the Kb × ∆tinj
that is as large as the ∆tinj effect alone; there are no significant interactions which
affect uEC at the reservoir. By contrast, a few junctions, such as Junction 1718,
have no significant two-way interactions for EC, but show strong interaction be-
tween t0,inj × ∆tinj and σd × βf for uEC.
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Figure 3.8: Uncontaminated, contaminated, and unknown status zones for injec-
tions from the reservoir and from junction 13.
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Injection at JUNCTION-1451, α = 0.05, uEC = 313.5 km
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Figure 3.9: Uncontaminated, contaminated, and unknown status zones for injec-
tions from the junction 1451 and junction 1718.
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CHAPTER 4

CONCLUSIONS

4.1 Conclusions

Two new contamination incident impact metrics were developed that were
both shown to effectively describe the uncertainty in plume position. These met-
rics, uEC and uPI, can be used in minimization routines, as they measure the size
of the unknown status zone, where other metrics have a bias towards either un-
derestimating or overestimating contamination impacts, as they would minimize
the size of the contaminated or uncontaminated zone. A software tool to perform
an analysis of the uncertainty in contamination impact was developed. The tool
is modular and has the ability to plug in different parameter models, such as an
atypical demand model, to perform UQ.

The location of the source of contamination overwhelms all other param-
eters when trying to quantify uncertainty. The sensitivity of contaminant plume
to other parameters is location dependent, making network-wide quantification
of uncertainty misleading. Qualitative analysis of the most important remaining
factors is possible, however, and the results provide insight into the effects of
uncertainty on contamination incidents after location uncertainty is removed.

Demand variation did not play as large a role in the uncertainty of the
plume extent as anticipated, but due to the assumptions and limitations of the
demand model used in the simulations no generalizations can be made from this
result. Demands were simulated as independent identically distributed Gaus-
sian variation from the original demand; spatial correlation of demands is a very
important aspect that was not explored in this work.

For total EC, regardless of injection location, the reaction coefficient domi-
nates the extent of the network that will be effected. For long-duration injections
where usage patterns begin to repeat, the injection start time loses its importance
in evaluating total impact. When evaluating the uncertainty in plume position,
uEC, network topology takes over as the dominating parameter. Start time and
duration still play a role, but the reaction coefficient becomes less important.
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4.2 Recommendations for future work

4.2.1 Atypical demands and demand correlation

The development of realistic and justifiable models for abnormal demand
patterns is still needed. Once these are developed, UQ for plume extent and
position need to be reexamined. Parameters that may need examination include
the speed of change to abnormal demand patterns and the incorporation of real-
time hydraulics. Real-world examples of changes in the system demand due to
“do-not-use” and “boil-water” public safety alerts would be helpful in directing
this work, all of which would involve water utility cooperation and involvement.

Atypical demands could easily break the EPANET hydraulic simulator.
Analysis will be needed to determine if there is a level of skeletonization that is
needed to ensure numerical stability, and what effect this would have on demand
uncertainty models.

The impact from spatially correlated demands needs to be explored. In
many ways, such work would directly lead into atypical demands, as do-not-use
orders apply to spatially continuous regions. It is highly likely that correlated de-
mands could be as important, or more important, than topology changes. Analy-
sis from real-world demand records with their associated location is necessary to
develop good correlation models for use with simulations.

4.2.2 Contamination response tools

There are several major takeaways from this UQ work that directly apply
to contamination response. The first is that source localization is critical – all other
factors are eclipsed by the need to find the right location. Secondly, performing
sufficient Monte Carlo simulations of possible topology scenarios, and to a lesser
extent demand changes, is important when trying to decrease uncertainty in the
plume position within the network. Third, contamination start time and duration
play a large role in both extent of contamination and plume path, but simulations
can be split into sequential, non-overlapping short duration simulations. Finally,
starting concentration and bulk reaction coefficient uncertainty can be added in
post Monte Carlo simulation, which would then decrease computational costs.

All these elements influence how a sampling algorithm should be devel-
oped. Efficient sampling methods should decrease plume uncertainty while also
locating the source and identifying the start time and duration. The bulk reaction
coefficient should be assignable at the point the contaminant is identified to up-
date the sampling process. Bayesian methods used to update the probability of a
specific scenario – i.e., location, start time, duration, and plume location – should
take into account the bounds developed on probability of contamination for sim-
ulated non-contaminated nodes when evaluating samples taken in the field.
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Assuming normal demands for system state prior to public announcement
or do-not-use orders, the Monte Carlo runs can be performed off-line prior to
any incident, then kept in reserve. Once the scenario is sufficiently identified,
using real-time simulations with real-time hydraulics should be investigated, but
the uncertainties in topology would not be eliminated through use of real-time
hydraulics, even if such measurements truly existed for every service node in the
network; therefore, Monte Carlo topologies would still need be performed in real
time to ensure the best plume localization.
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