CSDP 2.3 User’s Guide

Brian Borchers

April 22, 1998.

Introduction

CSDP is a software package for solving semidefinite programming problems.
CSDP is written in C for efficiency and portability. The code is designed to make
use of highly optimized linear algebra routines from the LINPACK or LAPACK
libraries. The package includes unoptimized versions of the LINPACK routines
that have been translated into C. If optimized versions of these routines are
available, they can be used in place of the routines supplied with CSDP for
better performance.

CSDP also has a number of features that make it very flexible. CSDP
is designed to handle constraint matrices with general sparse structure. The
code takes advantage of this structure in efficiently constructing the system of
equations that is solved at each iteration of the algorithm. CSDP can handle
linear inequality constraints as well as linear equality constraints. In addition
to its default termination criteria, CSDP includes a feature that allows the user
to terminate the solution process after any iteration. For example, this feature
can be used within a cutting plane scheme to terminate the solution process
as soon as cutting planes have been identified. In addition to its SDP solver,
the CSDP library contains routines for reading and writing SDP problems and
solutions from files. A stand alone solver program is included for solving SDP
problems that have been written in the SDPA sparse format.

This document describes how to install CSDP and how to use the stand
alone solver and library routines after CSDP has been installed. A companion
paper gives a detailed description of the algorithm used by CSDP, discusses its
computational complexity, and presents some computational results from a set
of test problems.

The SDP Problem

CSDP solves semidefinite programming problems of the form

max tr (CX)
A(X)
B(X)

X

Y IA
[
=

where
tr (A1 X)
tr (A2X)

tr (AkX)
and
tr (BlX)

B(x)=| " ('?fX) . (3)
tr (BlX)
Here X > 0 means that X is positive semidefinite. All of the matrices A;, B;,

X, and C are assumed to be symmetric.
The dual of this SDP is

min aTy + b7t
AT +BTt)-C = Z)
Z = 0
t > 0
where
k
AT(y) =Y yids (5)
i=1
and l
BT(t) =Y t:B;. (6)
i=1

Using the stand alone solver

CSDP includes a program which can be used to solve SDP’s that have been
written in the SDPA sparse format. Usage is

csdp <problem file> [<final solution>] [<initial solution>]

where <problem file> is the name of a file containing the SDP problem in
SDPA sparse format, final solution is the optional name of a file in which
to save the final solution, and initial solution is the optional name of a file
from which to take the initial solution.

The following example shows how csdp would be used to solve a test problem.

>csdp thetal.dat-s

Iter: O Ap: 1.000e+00 Pobj: 1.464466e+05 Ad: 1.000e+00 Dobj: 0.000000e+00
Iter: 1 Ap: 8.100e-01 Pobj: 2.777776e+04 Ad: 1.000e+00 Dobj: 1.805108e+03
Iter: 2 Ap: 8.100e-01 Pobj: 5.283552e+03 Ad: 1.000e+00 Dobj: 2.030492e+03
Iter: 3 Ap: 9.000e-01 Pobj: 5.297482e+02 Ad: 1.000e+00 Dobj: 2.283411e+03
Iter: 4 Ap: 9.000e-01 Pobj: 5.388389e+01 Ad: 1.000e+00 Dobj: 2.560102e+03
Iter: 5 Ap: 9.000e-01 Pobj: 6.303050e+00 Ad: 1.000e+00 Dobj: 2.785857e+03
Iter: 6 Ap: 1.000e+00 Pobj: 1.019541e+00 Ad: 1.000e+00 Dobj: 2.318478e+03
Iter: 7 Ap: 1.000e+00 Pobj: 1.057472e+00 Ad: 1.000e+00 Dobj: 2.907398e+02
Iter: 8 Ap: 1.000e+00 Pobj: 1.456330e+00 Ad: 8.100e-01 Dobj: 8.575052e+01
Iter: 9 Ap: 1.000e+00 Pobj: 4.878950e+00 Ad: 5.905e-01 Dobj: 4.421853e+01
Iter: 10 Ap: 8.100e-01 Pobj: 1.566597e+01 Ad: 8.100e-01 Dobj: 3.110675e+01
Iter: 11 Ap: 9.000e-01 Pobj: 1.992626e+01 Ad: 9.000e-01 Dobj: 2.494451e+01
Iter: 12 Ap: 8.100e-01 Pobj: 2.159309e+01 Ad: 9.000e-01 Dobj: 2.340923e+01
Iter: 13 Ap: 9.000e-01 Pobj: 2.254956e+01 Ad: 1.000e+00 Dobj: 2.310986e+01
Iter: 14 Ap: 9.000e-01 Pobj: 2.290146e+01 Ad: 9.000e-01 Dobj: 2.302053e+01
Iter: 15 Ap: 1.000e+00 Pobj: 2.297471e+01 Ad: 9.000e-01 Dobj: 2.300609e+01
Iter: 16 Ap: 1.000e+00 Pobj: 2.299664e+01 Ad: 9.000e-01 Dobj: 2.300111e+01
Iter: 17 Ap: 1.000e+00 Pobj: 2.299952e+01 Ad: 9.000e-01 Dobj: 2.300018e+01
Iter: 18 Ap: 1.000e+00 Pobj: 2.299993e+01 Ad: 9.000e-01 Dobj: 2.300003e+01
Iter: 19 Ap: 1.000e+00 Pobj: 2.299999e+01 Ad: 9.000e-01 Dobj: 2.300000e+01
Iter: 20 Ap: 1.000e+00 Pobj: 2.300000e+01 Ad: 9.000e-01 Dobj: 2.300000e+01
SDP Solved.

Primal objective value: 2.2999998e+01

Dual objective value: 2.3000001e+01

Gap: 2.3148370e-06

Relative Gap: 9.6451546e-08

Relative primal infeasibility: 6.1071362e-16
Relative dual infeasibility: 6.2532081e-17

>

One line of output appears for each iteration of the algorithm, giving the
iteration number, primal stepsize (Ap), primal objective value (Pobj), dual step-

size (Ad), and dual objective value (Dobj). The last four lines of output show
the primal and dual optimal objective values and the relative primal and dual
infeasibility in the optimal solution.

Converting problems to/from SDPA format

The CSDP package includes two programs for converting problems from SDPA
sparse format to the format used by SDPpack, and from the SDPpack format
to SDPA sparse format. The sdpatosqlp program converts from SDPA sparse
format to SDPpack format. Usage is:

sdpatosqlp <sdpa file> <sqlp file>

The sqlptosdpa program converts from SDPpack format to SDPA sparse format.
Usage is:

sqlptosdpa <sqlp file> <sdpa file>

Note that sqlptosdpa converts the linear and quadratic cone constraints in the
SDPpack format into semidefinite programming constraints. This conversion
can be quite inefficient for problems with many variables involved in quadratic
cone constraints.

Using the subroutine interface to CSDP

Storage Conventions

All matrices are stored in column major order as in Fortran. The ijtok() macro
defined in index.h can be used to convert Fortran style indices into an index into
a C vector. For example, if A is stored as a Fortran array with leading dimension
ldan, element (i,j) of A can be accessed within a C program as A[ijtok(i,j,ldan)].

The following table demonstrates how a 3 by 2 matrix would be stored under
this system.

C index | Fortran index
A0 A(1,1)
All A(2,1)
A2 A(3,1)
A3 A(1,2)
Al4 A(2,2)
A[5] A(3,2)

All arrays in the SDP routine are either of size 1dan or 1dam. The parameter
1dan is used to specify the leading dimension of arrays such as X, C, and Z
which hold arrays of size n. The parameter 1dam is used to specify the leading
dimension of the array O, which holds the m by m system matrix.

Vectors are stored as conventional C vectors. However, indexing always
starts with 1, so the [0] element of every vector is wasted. Most arguments are
described as being of size 1dan or 1dam. Since the zeroth element of the vector
is wasted, these vectors must actually be of size 1dan+1 or 1dam+1.

It is important to initialize all arrays and vectors used by the SDP routine
to valid floating point numbers. This is typically done by using memset to
initialize the arrays and vectors to 0. See the source code for the csdp solver for
an example. If elements of these arrays are not properly initialized and happen
to be NaN’s, then the results of subsequent computations will also be NaN’s,
even though these NaN’s are multiplied by zero. This is particularly an issue
on Alpha machines, where the operating system initializes memory to NaN’s.

Calling The SDP Routine

int sdp(n,k,1l,ldam,ldan,bandwidth,nblocks,block_structure,C,a,b,

constant_offset,start_a,ai,aj,aent,start_b,bi,bj,bent,X,y,t,Z,
pobj,dobj,worknl,workn2,workn3,workvecl,Zi,0,rhs,dZ,dZ1,dX,dX1,

dy,dyl,dt,dt1,Fp,Fd,printlevel)

int n; /* Dimension of X */
int k; /* Number of equality constraints. */
int 1; /* Number of inequality constraints. (m=k+1) */
int ldam; /* leading dimension for arrays of size m. */
int ldan; /* leading dimension for arrays of size n. */
int bandwidth; /* Bandwidth of X, Z, C, and A matrices. */
int nblocks; /* Number of blocks in X, Z, C, and A matrices. */
int *block_structure; /* Sizes of blocks in X, Z, C, and A matrices.
double *C; /* C matrix (n by n), in column major order. */
double *a; /* The a vector. */
double *b; /* The b vector. */
double constant_offset; /* Constant added to objective value */
int *start_a; /* start_a[i] is the index in a,ai,aj of the

start of array A_i, */
int *ai; /* i indices of elements of the A_i’s. */
int *aj; /* j indices of elements of the A_i’s. */
double *aent; /* entries in the A_i’s. */

int *start_b; /* start_b[i] is the index in b,bi,bj of the
start of array B_i */

int *bi; /* i indices of elements of the B_i’s. */
int *bj; /* j indices of elements of the B_i’s. */
double *bent; /* entries in the B_i’s. */

double *X; /* X matrix, in column major order. */
double *y; /* y vector. x/

double *t; /* t vector. */

double *Z; /* Z matrix, in column major order. */

*/

double *pobj; /* primal objective. */

double *dobj; /* dual objective. */

double *worknl; /* first work array of size ldan */

double *workn2; /* second work array of size ldan */

double *workn3; /* third work array of size ldan */

double *workvecl; /* Work vector of size > max(ldam,ldan) */

double *Zi; /* Z inverse. of size ldan */

double *0; /* System matrix, of size ldam */

double *rhs; /* right hand side for the system equations. size ldam */
double *dZ; /* dZ matrix, size ldan */

double *dZ1; /* dZ1 matrix, size ldan */

double *dX; /* dX matrix, size ldan */

double *dX1; /* dX1 matrix, size ldan */

double *dy; /* dy vector, size ldam */

double *dy1l; /* dyl vector, size ldam */

double *dt; /* dt vector, size ldam */

double *dti; /* dtl vector, size ldam */

double *Fp; /* A(x)-a residual vector, of size ldam */
double *Fd; /* C-A’(y)-B’ (t)-Z residual matrix, size ldan */

int printlevel; /* O=print nothing, l=one line per iter, 2=debugging info */

Input Parameters
1. n. This parameter defines the dimensions of the matrices X, C, Z, etc.
2. k. This parameter defines the number of equality constraints.
3. 1. This parameter defines the number of inequality constraints.

4. 1dan. This parameter defines the leading dimension for the Fortran style
arrays of size n.

5. 1dam. This parameter defines the leading dimension for the Fortran style
array 0.

6. bandwidth. This parameter defines the size of the largest block in the A,
C, Z, and X matrices. If the matrices have no block structure, use n.

7. nblocks. This parameter defines the number of blocks in the block diag-
onal structure of A, C, Z, and X. If the matrices have no block structure,
simply use 1.

8. block_structure. This array gives the sizes of the individual blocks
in A, C, Z, and X. If the matrix has no block structure, simply let
block_structure[1]=n.

9. C. This Fortran style array contains the objective function coefficients.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

a. This vector contains the right hand side coefficients for the equality
constraints. Note that these are stored starting with a[1], not a[0].

b. This vector contains the right hand side coefficients for the inequality
constraints. Note that these are stored starting with b[1], not b[0].

constant_offset. This parameter is added to the primal and dual objec-
tive function values.

start_a. This vector specifies the location of array A; in ai, aj, and
aent vectors. In particular, the entries of array A; will be located in
aent[start_.alill, ..., aent[start_ali+1]-1].

ai, aj, aent. These vectors contain the entries in the constraint matri-
ces A;. Note that only the entries in the upper right triangle of the matrix
are included- the lower left entries are assumed to be symmetric. For ex-
ample, if A; contains the entries A;5 = 0.5, As3 = 0.6, then ail[1]=1,
ajl[1]=5, aent[1]1=0.5, ail[2]=2, aj[2]=3, aent[2]=0.6.

start b, bi, bj, bent. Entries of the B; matrices, stored in the same
fashion as the A; matrices.

X. Starting value for X, stored as a Fortran style array with leading di-
mension ldan. X must be positive definite, but it is not necessary that
A(X) =a.

y. Starting value for y.
t. Starting value for ¢. It is assumed that ¢ > 0.

Z. Starting value for Z, stored as a Fortran style array with leading di-
mension 1dan. Z must be positive definite.

printlevel. This parameter determines how much output is produced
by CSDP. Use printlevel=0 for no output, printlevel=1 for normal
output, and printlevel=2 for debugging output.

Output Parameters

1.
2.
3.
4.
3.
6.

pobj. Primal objective value.
dobj. Dual objective value.

X. The optimal primal solution, X.
y. The optimal dual multipliers y.
t. The optimal dual multipliers .

Z. The optimal dual slacks Z.

Return Codes

If CSDP succeeds in solving the problem, the sdp routine will return 0. If CSDP
fails for some reason, the sdp routine will return a nonzero return code. In many
cases, CSDP will have actually found a good solution that doesn’t quite satisfy
one of the termination criteria. In particular, return code 6 is usually indicative
of such a solution. The nonzero return codes are

1. Failure: || X||F is very large. This suggests the possibility of dual infeasi-
bility.

2. Failure: ||Z||F is very large. This suggests the possibility of primal infea-
sibility.

Failure: maximum iterations reached.
Failure: invalid parameters were supplied.
Failure: initial solution was infeasible.

Failure: X, Z, or O became singular.

N ot e w

Failure: primal or dual line search failed.

Work Arrays

1. worknl, workn2, workn3, Zi, dZ, dZ1, dX, dX1, Fd. Work arrays
of size 1dan by 1ldan.

2. 0. Work array of size 1dam by 1dam.

3. workvecl, rhs, dy, dyl, dt, dtl, Fp. Work vectors all should be of
size 1dam+1.

The User Exit Routine

By default, the sdp routine stops when it has obtained a solution in which the
relative primal and dual infeasibilities and the relative gap between the primal
and dual objective values is less than 1.0 x 10~7. There are situations in which
you might want to terminate the solution process before an optimal solution
has been found. For example, in a cutting plane routine, you might want to
terminate the solution process as soon as a cutting plane has been found. If you
would like to specify your own stopping criteria, you can implement these in a
user exit routine.

At each iteration of its algorithm, CSDP calls a routine named user_exit.
CSDP passes the problem data and current solution to this subroutine. If
user_exit returns 0, then CSDP continues. However, if user_exit returns 1,
then CSDP returns immediately to the calling program. The default routine

supplied in the CSDP library simply returns 0. You can write your own routine
and link it with your program in place of the default user exit routine.
The calling sequence for the user exit routine is

int user_exit(n,k,1,1ldan,C,a,b,dobj,pobj,constant_offset,
start_a,ai,aj,aent,start_b,bi,bj,bent,X,y,t,Z)

int n; /* Dimension of X x/

int k; /* Number of equality constraints. */

int 1; /* Number of inequality constraints. (m=k+1) */

int ldan; /* leading dimension for arrays of size n. */

double *C; /* C matrix (n by n), in column major order. */

double *a; /* The a vector. */

double *b; /* The b vector. */

double dobj; /* dual objective. */

double pobj; /* primal objective. */

double constant_offset; /* Constant added to objective value */

int *start_a; /* start_a[i] is the index in a,ai,aj of the
start of array A_i, */

int *ai; /* i indices of elements of the A_i’s. */

int *aj; /* j indices of elements of the A_i’s. */

double *aent; /* entries in the A_i’s. */

int *start_b; /* start_b[i] is the index in b,bi,bj of the
start of array B_i */

int *bi; /* i indices of elements of the B_i’s. */
int *bj; /* j indices of elements of the B_i’s. */
double *bent; /* entries in the B_i’s. */

double *X; /* X matrix, in column major order. */
double *y; /* y vector. x/

double *t; /* t vector. */

double *Z; /* Z matrix, in column major order. */

Customized Routines for the Operators A() and B()

In problems with special structure, the operators A(), AT(), B(), and BT()
may be considerably simplified. For example, if the constraints are X;; = 1,
i=1...n, then A(X) = diag(X) and AT (y) = diag(y). You can improve the
performance of CSDP on such problems by implementing your own routines to
compute these operators.

The calling sequence for the routine op_a is

void op_a(n,k,lda,X,start_a,ai,aj,aent,result)

int n; /* Dimension of X */

int k; /* Number of equality constraints. */

int 1da; /* leading dimension for arrays of size n. */
double *X; /* the argument of A(), in column major order. */

int *start_a; /*

int *aij; /%
int *aj; /*
double *aent; /*

double *result; /*

start_a[i] is the index in a,ai,aj of the
start of array A_i, */

i indices of elements of the A_i’s. x/

j indices of elements of the A_i’s. */
entries in the A_i’s. */

The result, A(X) x/

The input parameters are n, k, 1, 1da, X, start_a, ai, aj, and aent. The
result is returned in the vector result.
The calling sequence for the routine op_at is

void op_at(n,k,ldan,y,start_a,ai,aj,aent,result,nblocks,block_structure)

int n; /*
int k; /*
int ldan; /*
double *y; /*
int *start_a; /*
int *ai; /*
int *aj; /*

double *aent; /%
double *result; /*

Dimension of X */

Number of equality constraints. */
leading dimension for arrays of size n. */
The argument vector */

start_a[i] is the index in a,ai,aj of the
start of array A_i, */

i indices of elements of the A_i’s. */

j indices of elements of the A_i’s. */
entries in the A_i’s. */

The result, a matrix in column order */

int nblocks; /* Number of blocks in X, Z, C, and A matrices. */

int *block_structure; /* Sizes of blocks in X, Z, C, and A matrices.

The input parameters are n, k, 1, 1dan, y, start_a, ai, aj, aent, nblocks,
and block_structure. The result is returned in the matrix result.
The calling sequences for op_b and op_bt are identical to the calling se-

quences for op_a and op_at.

Reading and Writing Problem Data

The CSDP library contains routines for reading and writing SDP problems and
solutions in SDPA format. The routine write_prob is used to write out an SDP
problem in SDPA sparse format. The routine read_size is used to determine
the size of problem in SDPA format. After storage has been allocated, the
routine read_prob is used to read an SDP problem in from a file. The routine
write_sol is used to write an SDP solution to a file. The routine read_sol is
used to read a solution from a file.
The calling sequence for write_prob is

void write_prob(fname,n,k,l,lda,nblocks,block_structure,C,a,b,
start_a,ai,aj,aent,start_b,bi,bj,bent,worknl,workn2)

char *fname; /*
int n; /%

Name of the file to write to */
Dimension of X */

10

*/

int k;

int 1;

int lda;

int nblocks;

/%
/%
/*
/%

Number of equality constraints. */

Number of inequality constraints. (m=k+1) */
leading dimension for arrays of size n. */
Number of blocks in A, C, X, and Z. */

int *block_structure /* Block Structure of A, C, X, and Z. */

double *C;
double *a;
double *b;
int *start_a;

int *ai;
int *aj;
double *aent;
int *start_b;

int *bi;

int *bj;
double *bent;
int *workil;
int *work2;

/%
/%
/%
/%

/%
/%
/%
/%

/%
/%
/%
/%
/%

C matrix (n by n), in column major order. */
The a vector. */

The b vector. */

start_a[i] is the index in a,ai,aj of the
start of array A_i, */

i indices of elements of the A_i’s. */

j indices of elements of the A_i’s. */
entries in the A_i’s. x/

start_b[i] is the index in b,bi,bj of the
start of array B_i */

i indices of elements of the B_i’s. */

j indices of elements of the B_i’s. */
entries in the B_i’s. x/

workvector of size at least n+2 *x/
workvector of size at least n+2 */

The calling sequence for read_size is

int read_size(fname,pn,pk,nonza,nblocks,block_structure,bandwidth)

char *fname;
int *pn;

int *pk;

int *nonza;
int *nblocks;

/* Name of file to read. */
/* n, the size of the A, C, X, Z matrices. */
/* k, the number of equality constraints. */

/* total number of nonzero entries in A_i matrices.
/* The number of blocks in the A, C, X, Z matrices.

int *block_structure; /* Sizes of indvidual blocks. */

int *bandwidth;

/* Size of the largest block. */

The calling sequence for read_prob is

void read_prob(fname,pn,pk,pl,lda,nblocks,block_structure,C,a,b,
start_a,ai,aj,aent,start_b,bi,bj,bent)

char *fname;
int *pn;
int *pk;
int *pl;
int lda;
int nblocks;

/%
/%
/%
/%
/%
/%

Name of the file to read from */

Dimension of X */

Number of equality constraints. */

Number of inequality comnstraints. (m=k+1l) */
leading dimension for arrays of size n. */
Number of blocks in A, C, X, and Z. */

int *block_structure /* Block Structure of A, C, X, and Z. */

double *C;
double *a;

/%
/%

C matrix (n by n), in column major order. */
The a vector. */

11

*/
*/

double *b; /* The b vector. */

int *start_a; /* start_a[i] is the index in a,ai,aj of the
start of array A_i, */

int *ai; /* i indices of elements of the A_i’s. */

int *aj; /* j indices of elements of the A_i’s. */

double *aent; /* entries in the A_i’s. */

int *start_b; /* start_b[i] is the index in b,bi,bj of the
start of array B_i */

int *bi; /* i indices of elements of the B_i’s. */

int *bj; /* j indices of elements of the B_i’s. */

double *bent; /* entries in the B_i’s. */
The calling sequence for write_sol is

void write_sol(fname,n,k,1,1da,nblocks,block_structure,X,y,t,Z)

char *fname; /* name of file to write solution to. */

int n; /* Dimension of X */

int k; /* Number of equality constraints. */

int 1; /* Number of inequality constraints. (m=k+1) */
int 1lda; /* leading dimension for arrays of size n. */
int nblocks; /* Number of blocks in A, C, X, and Z. */

int *block_structure /* Block Structure of A, C, X, and Z. */

double *X; /* X matrix, in column major order. */
double *y; /* y vector. x/
double *t; /* t vector. */
double *Z; /* Z matrix, in column major order. */

The calling sequence for read_sol is

void read_sol(fname,pn,pk,pl,lda,nblocks,block_structure,X,y,t,Z)

char *fname; /* name of file to read solution from. */

int *pn; /* Dimension of X */

int *pk; /* Number of equality constraints. */

int *pl; /* Number of inequality constraints. (m=k+1) */
int 1da; /* leading dimension for arrays of size n. */
int nblocks; /* Number of blocks in A, C, X, and Z. */

int *block_structure /* Block Structure of A, C, X, and Z. */
double *X; /* X matrix, in column major order. */

double xy; /* y vector. *x/

double *t; /* t vector. */

double *Z; /* Z matrix, in column major order. */

Installing CSDP 2.3 binaries

Precompiled binary versions of CSDP are available for a number of architectures.
The binaries can be found at http://www.nmt.edu/~borchers/csdp.html.

12

To install the binaries, simply copy the programs csdp, theta, rand_graph,
complement, and graphtoprob into a directory in your search path, such as
“/usr/local/bin” and copy the libraries libsdp.a, libblas.a, and liblinpack.a into a
directory where they will be found by your C compiler, such as “/usr/local/lib”.

Installing CSDP 2.3 from source

Follow these steps to install CSDP.

1.

Obtain the latest CSDP source code. The CSDP source code and doc-
umentation can be found at http://www.nmt.edu/~borchers/csdp.html.
The source code for CSDP is available in two formats, a .tar archive
(for Unix) and a .zip archive (for Windows.) Under Unix, use “tar -
xvf csdp2.3.tar” to expand the tar archive. Under Windows, use “pkunzip
csdp23.zip” to expand the zip archive.

. Determine whether you’ll use LINPACK or LAPACK libraries, and where

these libraries can be found. Many manufacturers provide optimized li-
braries of these routines (essl for IBMs, perflib for Suns, etc.) If you have
one of these libraries, then you should probably use it. If not, then you can
use the linear algebra routines supplied with CSDP, although performance
may suffer.

. If you are using the linear algebra routines supplied with CSDP, then

simply issue the command “make generic” to build the system. This will
compile the C source code and produce the CSDP libraries and executable
programs.

. If you want to make use of preexisting LINPACK or LAPACK libraries,

then use “make syslinpack” or “make syslapack” to build the system. You
will probably have to modify the “LIBS=" line in the makefiles to specify
where the libraries are located.

. Once you have built the code, you can test that everything worked by

going to the theta/testprob directory and running “../theta g50” The file
g50.out contains correct output for this problem- if your output isn’t ex-
tremely close, then something is wrong. Similarly, you can test the stand
alone solver by going to the solver/testprob directory and running “../csdp
thetal.dat—s”. The file thetal.csdp.out contains correct output for this
problem.

. If you want to optimize the code, you can modify the “CFLAGS=" lines

in the Makefiles under blas, linpack, lib, solver, theta, and util. After
adding compiler flags to optimize the code, rebuild CSDP with “make
clean” followed by “make current”.

13

7. In order to use the SDP routine with your own code, you’ll need to copy
the files libsdp.a, libblas.a, and liblinpack.a from their respective direc-
tories and put them where the compiler will be able to find them when
you compile your code. You should also copy the programs csdp, sqlp-
tosdpa, sdpatosqlp, theta, rand_graph, complement, and graphtoprob to
a directory that is in your search path.

Likely Problems

1. Passing strings to Fortran subroutines. This is done in different ways on
different systems. If you make use of LINPACK or LAPACK library that
already exists on your system, you may have problems calling the Fortran
subroutines in these libraries. This is a known problem with AIX systems.
To activate code that passes arguments to LINPACK/LAPACK correctly
under AIX, add “-DAIX” to the “CFLAGS=" line in the make files. It is
also often necessary to include Fortran runtime libraries when linking to
the LINPACK or LAPACK library.

2. Performance. The default makefiles don’t include any compiler optimiza-
tions. Once you have tested the code, it would be a good idea to modify
the “CFLAGS=" lines in the makefile to include the maximum possible
optimization. Then use “make clean” to clean out the unoptimized object
code, and “make current” to rebuild the system.

14

Installation Experience

This software has been installed and tested on the following systems:

System

Make target

Notes

Sun Solaris 2.5.1

make generic

CFLAGS=-05 -xtarget=native -dalign -fnonstd

Sun SunOS 4.1.3

make generic

CFLAGS=-04

IBM AIX 4.x

make generic

CFLAGS=-03

Linux (RedHat 5.0)

make generic

CFLAGS=-03

MS Windows-95

make generic

Used MINGW32 gcc C compiler and utilities
make, ar, cp,rm. CFLAGS=-03

DEC Alpha OSF/1

make generic

CFLAGS=-04 -Olimit 750

IBM AIX 4.x make syslinpack | added -IxIf -1xIfutil -1xI1f90 to LIBS=
CFLAGS=-DAIX
IBM AIX 4.x make syslapack | added -IxIf -1xIfutil -1x1f90 to LIBS=

CFLAGS=-DAIX -DLAPACK

Sun Solaris 2.5.1

make syslinpack

added -lsunperf -IM77 -1F77 -lsunmath to LIBS=
CFLAGS=-05 -xtarget=native -dalign
Used SunSoft performance library

Sun Solaris 2.5.1

make syslapack

added -lsunperf -IM77 -1IF77 -lsunmath to LIBS=
CFLAGS=-05 -xtarget=native -dalign -DLAPACK
Used SunSoft performance library

15

