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Abstract

The minimum relative entropy (MRE) method can be used to solve linear inverse

problems of the form Gm = d, where m is a vector of unknown model parameters and

d is a vector of measured data. The MRE method treats the elements of m as random

variables, and obtains a multivariate probability density function for m. The proba-

bility density function is constrained by prior information about the upper and lower

bounds of m, a prior expected value of m, and the measured data. The solution of the



inverse problem is the expected value of m, based on the derived probability density

function. We present a MATLAB implementation of the MRE method. Several nu-

merical issues arise in the implementation of the MRE method and are discussed here.

We present the source history reconstruction problem from groundwater hydrology as

an example of the MRE implementation.
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1 Introduction

In this paper, we present a MATLAB implementation of the minimum relative entropy

(MRE) method to solve linear inverse problems of the form

Gm = d, (1)

where G is a matrix of size N by M, m is a vector of length M containing unknown

model parameters, and d is a data vector oflength N. The vector (1 consists of

measured data, and typically includes measurement error. The matrix G is typically

very badly conditioned and often underdetermined, making a conventional least squares

approach impractical.

In the MRE method, the unknown model parameters, m, are treated as random

variables, and the solution to the inverse problem is obtained from the multivariate

probability density function (pdf) of m (Woodbury, Ulrych, 1993). The pdf is selected



in a two-step process. First, we generate a prior distribution whose entropy is rnaxi-

mized subject to constraints imposed by the lower and upper bounds of m (l and u,

respectively) and by an estimate, 5, of the expected value of m (Woodbury, Ulrych,

1993). This prior distribution ensures that the solution of the inverse problem is within

the specified bounds on m, but does not guarantee that Eq. (1) is satisfied.

In the second step, we select a posterior distribution for m, whose entropy is rnin-

imized relative to the prior distribution and subject to the constraint imposed by the

measured data (1. The mean of the posterior pdf, ril, can be used as a “solution” to

the inverse problem. The 5th and 95th percentiles of the posterior distribution define a

90% “Bayesian” probability interval, similar to the 90% confidence interval in classical

statistical methods. We can investigate the properties of the solution by using the

posterior distribution to randomly generate rnany realizations of m.

The goal of this paper is to present the MRE method in the context of a general

discrete linear inverse problem, to discuss some important issues in the implementation

of the method, and to describe our MATLAB implementation of the MRE method.

We also present an example taken from groundwater hydrology.

2 The MRE Method

In this section, we describe the generation of the prior distribution, p(m), and the

posterior distribution, q(m), of m. The elements of m are assumed to be independent,

so p(m) = HZJ-Zlmmi) and q(m) 2 Hill q(mi), where M is the number of model

parameters.



In this discussion, we assume that the lower bound is zero. As we show later,

non-zero lower bounds can easily be incorporated with a change of variables. For a

continuous random variable with finite upper bounds, zero lower bounds, and a finite

expected value within the bounds, it can be shown that the maximum entropy dis-

tribution is a multivariate truncated exponential distribution (Kapur, Kesavan, 1992;

Woodbury, Ulrych, 1993). Using this fact we can derive the prior distribution

52' 6XP(—flz‘mz‘)
“m” 2 1—exp<—6,Ui>f0rfli*0 (2)
pm) = germ-=0;

Z

M

i=1

where U,- is the upper bound of parameter mi, and fl,- is a Lagrange multiplier whose

value is determined by satisfying the expected value constraint, f mip(mi)dmi = 52',

where s,- is the prior expected value of m,- for i = 1, 2, . . . , M. By integrating Eq. (2),

we obtain the expected value equation that is used to evaluate fl,

_(/8iUz' + 1)eXP(—flz‘Uz‘) ‘1' 1

fiz' [1 — exp(—fiz~Uz-)] 2 5i ‘ (3)

 

Details of this derivation can be found in Neupauer (1999).

To obtain the posterior distribution, q(m), we minimize its entropy relative to the

prior distribution, The entropy to be minimized is

 

mm = / q<m>1n [gm] dm, (4)
m

where p(m) is given in Eq. This minimization is subject to two constraintsithe



normalization requirement fm q(m)dm = 1, and the requirement that the posterior

mean solution fit thedata within a specified tolerance (Johnson, Shore, 1994; Wood-

bury, Ulrych, 1996)

1101 — Gfilll2 S 5262, (5)

where - denotes the L2 norm, til is the mean of the posterior distribution, 6 is the

measurement error, and 5 is a parameter that depends on the assumed error model.

This constrained optimization problem is solved by the method of Lagrange multipliers

by minimizing

2N Al
2 ( gjz'mz' — dj) — 5262} a (6)
j=1 i=1

¢=H(q,p)+u [/mq(m)dm_ 1] +7

 

where M and 7 are Lagrange multipliers. We have replaced the data inequality con-

straint in Eq. (5) with an equality constraint. If the initial guess of the solution does

not satisfy the data constraint, the estimate will be modified until the data constraint

is satisfied, which will first occur when Hd — Gth2 = 5262.

This objective function, ¢, is minimized relative to q(m) when the following equality

holds (Johnson, Shore, 1984):

 

N M

0=ln[q(m)]+1+M+Z/\j (Zgjimi—dJ), Rf)
j=1 i=1

where /\j = 27 gjimi — dj) are Lagrange multipliers on the individual measured

data points. In terms of the Lagrange multipliers, /\j, the data constraint in Eq. (5) can

be rewritten as HAW = 4725262, showing that 7 = HAM/(256). With this definition of7



and the definition of /\j above, the data constraint holds when A satisfies the nonlinear

system of equations

3:d—GmQ%F
NH

:0. (&

These Lagrange multipliers constrain the individual entries of model solution vector so

that the norm of the residuals between the measured and predicted data satisfies the

(equality) data constraint.

The resulting posterior distribution takes the form

a,- exp(—a,~m,~). _ — .q(mz) 1 ( for aZ 7£ 0 (9)

1
— form-=0;

2'
M

i=1

Q A § Q N

where a,- = 3,- + 2;); Ajgji. Details of the derivation are given in Woodbury, Ulrych

(1996) and Neupauer (1999). The solution to this inverse problem is ril, given by

 

A 1 — (aiUz’ + 1) eXP(—az'Uz')
m- = for a- 0

Z an [1 — exp(—aiUi)] Z #

A Uz‘
mi 2 3 for ai = 0 . (10)

The uncertainty in the MRE solution can be expressed with probability levels

of q(m). For example, the 90% probability interval has as its bounds the 5th and

95th percentile probability levels, which are given by the values of mi such that

mi q m’- dm‘ 2 0.05 and mi q m’- dm‘ 2 0.95, respectively.0 z z 0 z z



3 Implementation Issues

We wrote a MATLAB program to implement the MRE method, following the approach

of the previous section. Several numerical issues arose that may not be apparent from

the previous discussion, and are discussed here. The code is available at ftp.iamg.org.

3.1 Non-zero Lower Bounds

The code was written with lower bounds of zero. For non-zero lower bounds, the

problem can be re-scaled by defining m = rho +1, where m is the true solution, rho is

the corresponding model solution for a zero lower bound, and l is the vector of lower

bounds. We can solve for rho using the MATLAB routine, with the data modified as

dL 2 d — G1, where dL is the data vector used in the MRE program, (1 is the true data

vector, and G is the matrix of kernel values. The upper bounds and expected values

must be replaced by U, — Li and 52' — Li, respectively, where L, is the lower bound of

model parameter mi. After rho is computed with the MRE method, the true solution

is obtained from m = rho + l (Woodbury, Ulrych, 1996).

3.2 Error Models

The data constraint (Eq. 5) and the system of equations used to obtain the values of the

Lagrange multipliers /\j (Eq. 8) contain a parameter 5 that depends on the error model.

We consider two possible error modelsian additive error model with dj 2 d? + 6a (Sj and

a multiplicative error model with dj 2 d? + dgeméj, where Q; and 6m are the standard

deviations of the additive and multiplicative error, respectively, (Sj is a standard normal



random number, is the true value ofthe data, and dj is the measured value.

If the additive error model is used, then 52 = N; and with the multiplicative

error model, we use 52 = The MRE implementation allows both additive and

multiplicative components in the error model by replacing Eq. (8) with

A Ad—Gm(A)+W(Wea+HdHem) =0. (11)

3.3 Prior Distribution

The prior distribution is calculated from Eq. (2), which is written in terms of the

Lagrange multipliers, 32-. The values for each 3,- are determined individually from

Eq. (3) by using the bisection method (Gill et al., 1981). For certain values of 32', Eq. (3)

is subject to numerical error, which can be avoided with asymptotic approximations.

If = 0, Eq. (3) is indeterminate. In the limit as s,- —> Ui/Z, —> 0. Thus, if

s,- = Ui/Z, the MRE program assigns fl, = 0. If s,- z Ui/Z, @- is small but non-zero,

and Eq. (3) is subject to numerical error. To avoid this error, we solve for 3,- using an

asymptotic approximation to Eq. (3) for small < 10—4 in the MRE code):

N 1211,- — 8mm? + 333%?)

N 24 — 125m,- + 45,211,? — 5fo ‘

 

s,- (12)

If s,- z Ui, then 3,- —> —00, and Eq. (3) is subject to numerical error. To avoid

this error, we use the asymptotic approximation of 3,- = —1/ — 52-) for s,- z I],- in

our MRE algorithm. If s,- z 0, then 3,- —> 00. For this case, the MRE algorithm sets

3, to the upper limit of the starting interval of the bisection method, and no further

approximations are needed.



The prior distribution, p(m), is shown in Eq. (2) in terms of the Lagrange multi-

pliers, fli. If3,- << —1 (3,- < —102 in the MRE code), the expressions shown in Eq. (2)

cannot be evaluated numerically, and the prior distribution is approximated by

{ —2fl,~ [1 +18i (UZ- — mu] Uz- + 1/32- 3 mi < Ui,
MW) = 4

l 0 otherwise .

3.4 Posterior Distribution

3.4.1 Lagrange Multipliers

The posterior distribution is calculated from Eq. (9), which is written in terms of

ai = 32' + 2;); Ajgji, where /\j are Lagrange multipliers. The values of A (A =

[A1, /\2, . . . , AMT, where T denotes transpose) are calculated using the Newton-Raphson

method with a line search to solve Eq. (8), using F()\) = 0 where

/\M .

FWJ = dj — Zgjz'mzfl) + &W- (14)
i=1

Here dj is the jth measured data point, m, is the expected value of m,- (Eq. 10), and

£6 = \/ Nea—l—Hdllem. We begin with /\j = 1. If this satisfies the data constraint (Eq. 5),

we use /\j = 1 in Eq. (10) to obtain the solution to the inverse problem. Otherwise, we

use the Newton-Raphson method with a line search to iteratively solve for the zeroes

of Eq. (14) using

Ak : Ak—l _
—1

k—la F (15)

 



where the superscripts denote the iteration, and the terms of the Jacobian matrix,

   

8F/8A, are

6F,- M [am- ] 56 [ M; J
_ Z _ .. l. : 6.l ,

8A; g9” act-92 HAM J W2 ( )

where l = 1,2,... ,N, (SJ-1 is the Kronecker delta, and

377M : algUz? exp (_aiUi) — [1 — €XP(—aiUz‘)l2 (17)

8‘” @2211 — eXp(_aiUi)l2

Eq. (14) is sufficiently non-linear that the step size calculated in Eq. (15) is not

necessarily optimal. Therefore, we use the Newton-Raphson method to calculate the

optimal search direction; then, we use a univariate golden section search (Gill et al.,

1981) in that direction to calculate the optimal step length. The process is repeated

until + is less than a user-specified tolerance. We have found that the

condition number of the Jacobian matrix can be high when 6 = 0. To reduce the

condition number, we perform row-scaling on the Jacobian matrix. It is also possible

to substantially reduce the condition number by including a smallamount of noise, at

a level that is negligible compared to the true data values.

3.4.2 Asymptotic Approximations

The posterior distribution, q(m), in Eq. (9), and the expressions for 77% (Eq. 10) and

anti/8a,- (Eq. 17) are all written in terms of a,- = 3,- + 291:1 Ajgji. For certain values

of 3, and d), these expressions are subject to numerical error. Several techniques, such

as asymptotic approximations or scaling, can be used to avoid numerical error. In our

10



implementation, we used asymptoticapproximations, which we present here.

We obtained Eq. (9) by minimizing the entropy of the posterior distribution relative

to the prior distribution shown in Eq. However, if 3,- << —1, an asymptotic ap-

proximation to the prior distribution is used (Eq. 13), and the resulting the asymptotic

approximation of the posterior distribution is

2

(Jig/3M1 + fldUz‘ — mi)]€bi(Ui_mi) Uz' + 1/52' S mi S Uz' a[
(Ami) = 4 (18)

l

 

0 otherwise ,

where I), = 291:1 Ajgji.

The expression for m, in Eq. (10) is subject to numerical error when 3,- << —1

(i.e., when Eq. (18) is used as an asymptotic approximation of and when 1a,) is

very small or very large. Using asymptotic approximations when necessary, the general

expression for 77% is

nil-z Ui—l/ai, ai<<—1 (ai< —102)

m, z 1/ai, a,- >> 1 (a,- > 102)

z (an << 1 (1a,) < 10—4)

mi” Ui+(bz'_/8i)/l/8i(bi_3/8i)la fli<<—1

m, = Ui/Z, a,- = 0

m,- = W otherwise. (19)
aill—eXM-az‘UUl ’

The expression for 87%, /8ai in Eq. (16) is also subject to numerical error when 32' <<

11



—1 and when 1a,) is very small or very large. When 32' << —1, the partial derivative,

am, /8aZ-, in Eq. (16) is replaced with am, /(9bZ-. Using asymptotic approximations when

necessary, the general expression for ami/aa, is

      

(97m 2 15—15a,U,--8a?U?
gal, N _Ui 180—180a,U,--105a§Uf’ lail << _1

am-
aal z —1/a22, lail>>1

Z

ami 2ab. z —2/(bz' — << —1
Z

a“ 22X_H__x—w2 -5:? = W e , (20>
Z Z Z Z

4 Example

The MRE inversion approach has been pioneered and used in groundwater hydrology

for parameter estimation (Woodbury, Ulrych, 1993; Woodbury et al., 1995) and for

the source history reconstruction problem (Woodbury, Ulrych, 1996; Woodbury et al.,

1998a; Woodbury, Ulrych, 1998b). We present a source history reconstruction example

from Woodbury, Ulrych (1996) as an illustration of our MRE algorithm. The data files

are available at ftp.iamg.org.

The source history reconstruction problem involves a point source of groundwa-

ter contamination at a known location in a one-dimensional, saturated, homogeneous

porous medium. The source concentration over time is unknown, but the present-day

spatial distribution of the contamination plume is measured at discrete locations. Us-

ing this data with the MRE method, we reconstruct the concentration history at the

contamination source.

12



For this example, the true source history function is

  

_ 2 _ 2

Cm(t) = exp l—% + 0.3 exp l—% + (21)

(t — 190)2

 

0.5 exp l—W

where t is in days, and Cm is dimensionless. This source history function is shown in

Fig. 1. The solution vector, In, is a discretized version of this curve. We discretized the

source history function into 100 evenly-spaced times, at three-day intervals between

t = 0 days and t = 297 days.

The governing equationof contaminant transport in groundwater is the advection

dispersion equation

(90 (92C (90
E = — 71$ ,

where C = C(ac,t) is concentration at time t at location :10, D is the dispersion co-

efficient, and v is the groundwater velocity. The initial and boundary conditions for

Eq. (22) are C(ac,0) = 0, C(0,t) C,- (t), and C(ac,t) —> 0 as an —> 00. For this

problem, we use '0 = 1 m/d and D 1 m2/d. Using Eqs. (21) and (22), the plume at

T = 300 days was calculated and is shown in Fig. 2. The plume was sampled at sixty

points, at five-meter intervals from 90 = 5 m to 90 = 300 m; we assumed an additive

noise with 6a 2 0.005. The sampled data are also shown in Fig. 2. These data comprise

the vector (1.

The elements of the matrix G are gjz- 2 Atf (acj, T — ti), where At is the temporal

discretization of the source history function (At = 3 days); T is the sample time

13



(T = 300 days), xj is the location of the jth measurement, ti is the time corresponding

to the ith element of m, and f(acj,T — ti) is the solution of Eq. (22) for a pulse input

at 90 = 0 and t = 0, given by

T t-) = mj ex [wj _ NT _ ti)? (23)
3’ Z 2x/7TD(T— m3 p 4D(T— ti) ’

For this problem, we assume an upper bound on m of U,- = 1.1, and a prior expected

value of s,- = exp{—(t,~ — 150)2/800}. We solved this inverse problem using the MRE

algorithm, and obtained the solution shown in Fig. 3. The results of MRE algorithm

match well with the true solution, although the small peak near t = 150 days is not

reproduced. The true solution falls within the 90% probability interval.

Using the posterior distribution, q(m), we generated 30 realizations of the model

solution vector In. An example of one realization is shown in Fig. 4. The realization

follows the same pattern as the true solution, but is less smooth. An individual real-

izations does not necessarily satisfy the data constraint; however, the expected value

of q(m) does. The results of the 30 realizations are plotted in Fig. 5, along with the

90% probability interval. The results show that the randomly-generated solutions fall

within the 90% probability interval most of the time.

5 Summary and Conclusions

A MATLAB program for solving linear inverse problems using the minimum relative

entropy method was presented. We discussed several implementation issues that may

not be apparent from the MRE theory. We solved the minimization problem using the

14



method of Lagrange multipliers. In evaluating the Lagrange multipliers, the system of

equations is sufficiently non-linear that the Newton-Raphson method fails to converge.

We used the Newton-Raphson method to compute a search direction and a univariate

golden section search to obtain the optimal step length. Other implementation issues

included asymptotic approximations as the values of the Lagrange multipliers approach

 

:00 or zero.

We demonstrated the MATLAB algorithm on a source history reconstruction prob-

lem from groundwater hydrology. The results show that the MRE method performs

well for this simple test case. The solution to the inverse problem (i.e., the expected

value of the posterior distribution) matches the true solution well, and the true solution

is contained within the 90% probability levels of the posterior distribution. We have

shown that individual realizations of the model solution do not necessarily satisfy the

data constraint; however the expected value of the posterior distribution does satisfy

the data constraint.
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Figure Captions

Figure 1: True source history function.

Figure 2: True plume at T = 300 days (solid line) and sampled data (circles).

Figure 3: Inverse problem solution for the example problem. (A) MRE solution

(solid line), true source history function (dashed line), prior expected value (dot-dashed

line). (B) MRE solution (solid line), 5th percentile probability level (dashed line), 95th

percentile probability level (dot-dashed line).

Figure 4: One realization of the model solution. solid line: realization; dashed line:

true source history.

Figure 5: Results of 30 realizations of the model solution (dots) and the 90% proba-

bility interval (solid lines).
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