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 2 

Abstract 15 

 16 

This study investigated the spatial scaling behavior of root zone soil moisture obtained 17 

from optical/thermal remote sensing observations. The data for this study were obtained 18 

from Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellites 19 

on five different dates between early spring (April) and fall (September) in the years 20 

from 2000 to 2004 in the semi-arid middle Rio Grande Valley of New Mexico. Soil 21 

moisture data were obtained using the Surface Energy Balance Algorithm for Land 22 

(SEBAL) algorithm. The data were spatially aggregated and checked for power law 23 

behavior over a range of scales from 30 m to 15 km for Landsat and from 1 km to 28 24 

km for MODIS images. Results of this study demonstrate that power law scaling of soil 25 

moisture in the middle Rio Grande area holds up to 1 km2 pixel size, but is no longer 26 

valid beyond that scale. While previous studies have studied soil moisture in the top 5 27 

cm of the soil using radar and point measurements, our study uses SEBAL to estimate 28 

root-zone soil moisture.  Our study is consistent with these previous studies in showing 29 

that variation in root-zone soil follows an empirical power law for pixel sizes of up to 30 

about 106 m2 and that there is an apparent break in the scaling at larger scales. 31 
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1. Introduction 32 

 33 

Information on the spatio-temporal distribution of soil moisture on regional scales can 34 

improve the quality of predictions by hydrological, meteorological and general 35 

circulation models, including processes such as evapotranspiration and runoff, 36 

precipitation, and atmospheric variability (Houser et al. 1998; van de Hurk et al. 1997; 37 

Entekhabi, Nakamura, and Njoku 1994; Hendrickx et al. 2016). However, soil moisture 38 

observations of larger regions are extremely difficult because soils vary from location to 39 

location as a result of soil forming processes that depend on geological parent material, 40 

topography, climate, plant and animal life, and time (Engle et al. 2010; Engle et al. 41 

2014). As a result soil moisture exhibits a large spatial and temporal variability that has 42 

been documented in many studies. Since direct measurements on the ground are too 43 

expensive and time consuming for application on a watershed scale, only data from 44 

remote sensing can provide a cost-effective solution (Hendrickx et al. 2006; Ahmad and 45 

Bastiaanssen 2003; Rahimzadeh-Bajgiran et al. 2013; Bezerra et al. 2013; Fleming, 46 

Hendrickx, and Hong 2005). In this study, a remote sensing algorithm, Surface Energy 47 

Balance Algorithm for Land (SEBAL), was selected to estimate averaged soil moisture 48 

in the entire root zone. The root zone of most vegetation ranges from zero to about 500 49 

cm (Canadell et al. 1996; Schenk and Jackson 2002) and soil water in the root zone 50 

supports transpiration via root extraction. 51 

 52 

Few papers have examined sub-pixel variability in semi-arid regions and the effect of 53 

different up-scaling schemes on the relative accuracy of the aggregated data despite 54 

their practical importance; therefore, there is a need for more studies on the spatial 55 
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organization of soil moisture. The most complete studies on spatial correlation of 56 

environmental variables over different scales have dealt with ground measurements and 57 

remotely sensed radar observations of soil moisture in the top 0-5 cm of soils (Jackson, 58 

Schumgge, and Engman 1997; Jackson and O’Neill 1986). Rodriguez-Iturbe et al. (1995) 59 

analyzed Electronically Scanned Thinned Array Radiometer (ESTAR) microwave data 60 

and point measurements of soil moisture from the Washita '92 experiment.  The 61 

variance of soil moisture was plotted on a log-log plot versus the pixel size for a range 62 

of pixel sizes from 103 m2 (30 m by 30 m) to 108 m2 (10 km by 10 km). They found that 63 

the variance of the soil moisture followed an empirical power law 64 

     𝜎𝑠
2 = 𝑐 𝐴𝛼     (1) 65 

or 66 

    log10 𝜎𝑠
2 = 𝑐 + 𝛼 log10 𝐴    (2) 67 

where S is the relative degree of soil saturation (0-1), 𝜎𝑠
2 is the variance of S, c is a 68 

constant, A is the pixel area and  is an exponent. They also confirmed that, as theory 69 

dictates, the spatial correlation fell off at larger distances according to a power law. Kim 70 

and Barros (2002) analyzed the ESTAR radiometer data from the Southern Great Plains 71 

(SGP) 1997 experiment.  This dataset covered a much larger region than the earlier 72 

Washita '92 data set. They found that there was a break in the scaling of the soil 73 

moisture variance in this data set at a pixel size of about 108 m2.  For scales above and 74 

below this break, the variance followed a power law, but the exponents were different in 75 

the two scale ranges.  Another analysis of the SGP '97 data using semi-variograms also 76 

found that there were two different scales of spatial correlation, with a break at roughly 77 

30 km or almost 109 m2 (Ryu and Famiglietti 2006). 78 

 79 
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The main goal of this study is to explore the spatial organization of soil moisture fields 80 

in a semi-arid environment, and especially to examine the power law behavior of the 81 

root zone soil moisture maps generated by the remote sensing algorithm SEBAL. This 82 

study is novel since previous multi-scaling studies on soil moisture dealt with soil 83 

moisture in the top 0-5 cm of the soil (Jackson, Schumgge, and Engman 1997; Jackson 84 

and O’Neill 1986) while our study deals with root zone soil moisture. Root zone soil 85 

moisture rather than surface soil moisture is often the critical parameter for weather 86 

prediction and global circulation models since it determines the partition of available 87 

energy at the earth’s surface between latent and sensible heat fluxes (e.g. Akuraju et al. 88 

2013; Seneviratne et al. 2010). 89 

  90 

2. Methods and Materials 91 

2.1 Study area 92 

The study area covers an entire Landsat image (path 38, row 36) in semi-arid central 93 

New Mexico. It includes the middle Rio Grande Valley and the Estancia Basin as well 94 

as the Manzano and Sandia Mountain ranges (Figure 1). The area can generally be 95 

characterized by a narrow strip of about 2 km to 10 km of riparian and irrigated 96 

agricultural land on either side of the Rio Grande, mountain ranges with a width varying 97 

from about 5 km to 20 km, and highland deserts and rangelands covering the remaining 98 

area. The average annual air temperature is 15 C. Daily summer temperatures range 99 

from 20 to 40 C, while daily winter temperatures range from -12 to 10 C. Mean 100 

annual precipitation is about 25 cm with more than half of the rainfall being monsoonal 101 

in summer and mean annual potential ET being approximately 150 cm. 102 

 103 
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2.2 Satellite Images 104 

In this study, root zone soil moisture in degree of saturation at the time of satellite pass-105 

over was estimated from five Landsat (30 m × 30 m resolution) and one Moderate 106 

Resolution Imaging Spectroradiometer (MODIS) (1000 m × 1000 m) image during 107 

2000 to 2004 (Figure 1 and Table 1). For the date of 16 June 2002 both Landsat and 108 

MODIS images are available; therefore we estimated soil moisture also from the 109 

MODIS image to compare it and its scaling behavior to the Landsat estimates. The path 110 

and row of all the Landsat images used in this study are 33 and 36. Since the MODIS 111 

image covers a much bigger area (swath: 2,330 km), we took a subset of the MODIS 112 

image covering the same area as the Landsat image (Figure 1).  113 

 114 

2.3  Surface Energy Balance Algorithm for Land (SEBAL)  115 

SEBAL and its descendant METRIC (Mapping EvapoTranspiration at high Resolution 116 

with Internalized Calibration) are remote sensing flux algorithms that compute the 117 

surface energy balance on an instantaneous time scale for every pixel of a satellite 118 

image (Allen, Tasumi, and Trezza 2007; Bastiaanssen et al. 2005; Hendrickx and Hong 119 

2005a). SEBAL and METRIC have demonstrated a high accuracy for evaporation 120 

mapping worldwide with typical accuracies of about 15% and 5% for, respectively, 121 

daily and seasonal evaporation estimates (Bastiaanssen et al. 2005; Hendrickx and Hong 122 

2005a; Allen et al. 2007; Karimi and Bastiaanssen 2015; Hong 2008). The most 123 

innovative component of SEBAL and METRIC is their use of a near-surface 124 

temperature gradient which is indexed to satellite radiometric surface temperature. Thus, 125 

there is no need for absolute surface temperature calibration and air temperature 126 

measurements at each pixel for estimating the sensible heat flux at the surface. Both 127 
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models require an internal calibration for each image using inverse modelling at 128 

extreme conditions such as a “hot” or “dry” and “cold” or “wet” pixel to derive 129 

estimations of the sensible heat flux and to counteract systematic biases in net radiation, 130 

soil heat flux, radiometric temperatures and aerodynamic estimates (Allen, Tasumi, and 131 

Trezza 2006). METRIC differs from SEBAL in its use of high quality hourly weather  132 

data for calculation of the reference evapotranspiration that is used for evaluation of 133 

energy balance conditions at “cold” pixels where most incoming energy is used for 134 

evapotranspiration (Allen et al. 2011). For lack of high quality meteorological data we 135 

used SEBAL for this study; its use is justified because SEBAL estimates of 136 

evapotranspiration for the environmental conditions in the Middle Rio Grande Valley 137 

compared well with eddy covariance latent heat measurements (Hong 2008; Hendrickx 138 

and Hong 2005b). Detailed descriptions of SEBAL have been presented in the literature 139 

(Bastiaanssen et al. 1998; Allen, Tasumi, and Trezza 2007; Allen et al. 2011; Hong 140 

2008).  141 

 142 

SEBAL and METRIC are operational models for evapotranspiration mapping at high 143 

spatial resolution in areas covering a few hundred km in scale and are quite different 144 

from some more generally based remote sensing models for routine applications at the 145 

subcontinent scale such as the Atmosphere-Land-Exchange Inverse (ALEXI) (Anderson 146 

et al. 2007; Anderson et al. 2004). However, due to the required internal calibration of 147 

SEBAL and METRIC their implementation cannot be accomplished without trained 148 

experts with strong backgrounds in energy balance and radiation physics and familiarity 149 

with vegetation characteristics and agricultural practices (Allen et al. 2011). Under ideal 150 

conditions with full vegetation cover in irrigated areas without antecedent precipitation 151 
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the internal calibration is clear-cut. Those were the conditions encountered in this study 152 

so that the SEBAL implementations by the senior author were straightforward. But 153 

challenging conditions do occur and require a more creative internal calibration analysis 154 

or sometimes may prohibit the use of SEBAL and METRIC altogether. For example, 155 

several investigators (French et al. 2005a, 2005b; Long and Singh 2013; Tang et al. 156 

2013; Timmermans et al. 2007; Long, Singh, and Li 2011)  discuss how SEBAL and 157 

METRIC cannot be used when no wet and/or dry pixel exists in the image under 158 

consideration. However, co-author Hendrickx after analysis of hundreds of images in 159 

hot arid (e.g. Hendrickx et al. 2011; Hendrickx, Hearer, et al. 2005; Hendrickx and 160 

Hong 2005b; Compaoré et al. 2008) as well as humid tropical and temperate regions 161 

(e.g. Hendrickx, Bastiaanssen, et al. 2005; Wohl et al. 2012; Hendrickx et al. 2016) 162 

almost never encountered an image without a wet and/or dry pixel. Under arid 163 

conditions Landsat images have occasionally been encountered without any wet pixel 164 

but –even then– extension of the analysis to include the image above or below the 165 

image of interest in the same Landsat path will typically yield a reasonable extreme wet 166 

condition. Under humid conditions the main issue is cloudiness (e.g. Ju and Roy 2008; 167 

Sano et al. 2007)  not finding a reasonable dry condition. Even where antecedent 168 

precipitation drives up the evaporation rate of the dry pixel, one often can estimate its 169 

sensible heat flux by using a simple soil water balance model (e.g. Allen 2011; Allen et 170 

al. 1998)  and proceed with the internal calibration (Allen et al. 2011).  171 

 172 

A more challenging issue is how pixel size affects the SEBAL estimated 173 

evapotranspiration rates (e.g. Tang et al. 2013). Finding a representative homogeneous 174 

wet or dry Landsat pixel of 30 m × 30 m in the reflectance bands or 60 × 60, 100 × 100 175 
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or 120 m × 120 m in, respectively, the thermal band of Landsat 7, 8 or 5 is 176 

straightforward under many environmental conditions, especially where relatively large 177 

irrigated fields are located in arid regions. However, finding a representative wet or dry 178 

pixel on a MODIS image with 1000 m × 1000 m pixels in the thermal band is quite 179 

challenging. Trezza, Allen, and Tasumi (2013) recommend using a cross-calibration 180 

between MODIS and Landsat applications of METRIC and successfully demonstrate 181 

their method using imagery of the Middle Rio Grande Valley. We have compared in-182 

depth the outcome of SEBAL applications on 16 June 2002 on a Landsat and MODIS 183 

image and found good agreement between their SEBAL estimated ET maps (Hong, 184 

Hendrickx, and Borchers 2009, 2011). Therefore, we are confident that the 16 June 185 

2002 soil moisture images of Landsat and MODIS have the quality needed for this study.  186 

 187 

2.4 Evaporative Fraction Method for Root zone Soil Moisture Retrieval  188 

 189 

The evaporative fraction () is defined as (Brutsaert and Sugita 1992; Crago 1996): 190 

𝛬 =
𝐿

𝐿+𝐻
≈

(ET)a

(ET)p
      (3) 191 

and can be calculated for each pixel using the output of SEBAL. Where L is the latent 192 

heat flux, H is the sensible heat flux, (ET)a is the actual evapotranspiration and (ET)p is 193 

the potential evapotranspiration. The relative degree of saturation in the root zone can 194 

be defined as the ratio of actual plant available water (W) over the soil water holding 195 

capacity (SWHC) or the ratio between the actual () and saturated  (s) volumetric soil 196 

water contents in the root zone 197 

  𝑆 =
𝑊

(SWHC)
≈

𝜃

𝜃s
= 𝑓 (

𝐿

𝐿+𝐻
) = 𝑓(𝛬).     (4) 198 
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The Evaporative Fraction Method for root zone soil moisture is based on the long-199 

known soil physical relationship between the relative degree of saturation in the root 200 

zone (S) and the evaporative fraction () that quantifies the partitioning of sensible (H) 201 

and latent heat (L) fluxes at the land surface (e.g. Davies and Allen 1973; De Bruin 202 

1983; Kustas and Norman 1999; Owe and van de Griend 1990; Budyko 1956; Manabe 203 

1969; Thornthwaite 1948; Boni, Entekhabi, and Castelli 2001). Eq. [4] is also called the 204 

water stress function and can be either derived from physical principles (e.g. Campbell 205 

and Norman 1998) or modelled empirically using latent heat flux and soil moisture 206 

measurements (e.g. Scott, Bastiaanssen, and Ahmad 2003; Stewart and Verma 1992). 207 

Many different forms have been used to capture the stress function, ranging from linear 208 

(e.g. Mahfouf and Noilhan 1991), piecewise linear or threshold models (e.g. Deardorff 209 

1977; Manabe 1969), to non-linear models (Anderson et al. 2007; Campbell and 210 

Norman 1998; Scott, Bastiaanssen, and Ahmad 2003). In addition, pixel size and sub-211 

pixel soil moisture variability may also affect the optimal form (Chen et al. 1996). 212 

However, despite these differences the functions all look very similar (Figure 2). The 213 

non-linear function by Anderson et al. (2007) does not allow for much change in ET 214 

until the available water fraction becomes 0.6 while the one by Scott, Bastiaanssen, and 215 

Ahmad (2003) produces a steeper decrease of ET when the fraction falls below 0.2. In 216 

addition, these non-linear functions often require detailed soil information such as field 217 

capacity and wilting point that is not readily available. When soil information is 218 

uncertain some authors prefer linear forms for large scale applications so that 219 

evapotranspiration has a constant sensitivity to soil moisture conditions in the root zone 220 

(Betts et al. 1997; Song et al. 2000). Although the different expressions of Eq. [4] 221 

shown in Figure 2 appear to be empirical functions, they are based in fact on sound 222 
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science and have been successfully used for over sixty years by hydrologists and 223 

climatologists. The maximum difference between the three functions in Figure 2 is 224 

about 20% at the high and low ends of the evaporative fraction. Even though the 225 

absolute values derived for the relative degree of saturation in the root zone depend on 226 

the specific function used, because these functions are monotone increasing, the ranking 227 

of relative degrees from wet to dry will be similar and does not depend on the function 228 

used.  229 

 230 

In this study we use an expression of Eq. [4] that is based on in situ root zone soil 231 

moisture measurements and validated evaporative fraction data from SEBAL (Ahmad 232 

and Bastiaanssen, 2003)  233 

   𝑆 = e
𝛬−1

0.42 ≅
𝑊

𝑊max
                            (5) 234 

where S is degree of saturation, W is the actual plant available water and Wmax is the 235 

maximum plant available water. The soil moisture measurements were obtained on 236 

grassland in Kansas on alluvial soils and loess (Smith et al. 1992) as well as in rainfed 237 

(vineyard, barley, wheat) and irrigated crops (maize, alfalfa) in Central Spain on sandy 238 

loams (Bastiaanssen et al. 1997; Bolle et al. 1993).  239 

 240 

Validation and testing of Eq. [5] was conducted using soil moisture data from irrigated 241 

fields in Pakistan and Mexico. In Pakistan, volumetric soil water content was measured 242 

in alluvial soils with cotton and wheat at four depths with 25 cm intervals to a maximum 243 

depth of 100 cm. In Mexico, soil moisture was measured at depth 45 cm in vertisols on 244 

irrigated plots of wheat and alfalfa with the majority of active roots in the first 100 cm 245 



 12 

below the surface. The comparison of Eq. [5] against these data yielded root mean 246 

square error of 0.05 cm3cm-3; and error was less than 0.07 cm3cm-3 in 90% of cases 247 

(Scott et al., 2003). Based on the good performance of Eq. [5] under a wide range of 248 

environmental conditions some researchers have concluded that it is minimally affected 249 

by vegetation type or soil type and may have general applicability (Scott et al., 2003). 250 

 251 

One qualitative validation was conducted in the swamps of the Upper Nile over an area 252 

of almost one million square kilometers using NOAA-AVHHR images (Mohamed, 253 

Bastiaanssen, and Savenije 2004). Another qualitative validation of Eq. [5] was 254 

conducted by co-author Hendrickx and his students (Fleming, Hendrickx, and Hong 255 

2005). A SEBAL soil moisture map with a spatial resolution of 30 m × 30 m was 256 

generated from a Landsat 7 image of the Middle Rio Grande Basin for 16 June 2002. 257 

Soil moisture values were plotted along three transects perpendicular to the Rio Grande. 258 

Approximate land use and ground conditions were determined from the Landsat image 259 

and field observations in March 2005. The observed conditions in the field confirmed 260 

quite well the soil moisture conditions obtained from the satellite image. The high 261 

resolution of the approach was demonstrated in the sharp changes observed in 262 

association with roads, buildings, and vegetation changes along these heterogeneous 263 

transects (Fleming, Hendrickx, and Hong 2005). 264 

 265 

The innovative elements of the evaporative fraction method are: (1) the derivation of 266 

soil moisture contents that are depth-averaged through the root zone of standing 267 

vegetation and with high spatial resolution (30 m × 30 m for Landsat to 250 m × 250 m 268 

to 1000 m × 1000 m MODIS) and broad coverage (for example, approximately 24,000 269 



 13 

km2 for a Landsat image); (2) multi-temporal coverage over vegetative or crop growth 270 

cycles; (3) the use of routinely available satellite images at no cost in the USA; and (4) 271 

relatively low costs of data processing. The method does have some interesting 272 

behavioral characteristics. The moisture that is evaporated and transpired originates in 273 

most cases throughout the entire vegetative root zone, typically one meter for many 274 

fully established irrigated crops (Allen et al., 1998b). However, the actual root zone 275 

depth at the time of retrieval will depend on the stage of vegetative or crop development 276 

and could be less than one meter. Mature forest systems may root much deeper and have 277 

rooting depths of several meters. Because there is no vegetation index specified as a 278 

baseline for Λ, the θ/θs predicted from Eq. [5] tends to increase with increase in 279 

vegetation mass and cover. Thus, as the vegetation index tends towards zero, θ/θs tends 280 

to represent the depth of the evaporative layer of soil (0-10 or 15 cm), which serves as 281 

the source depth for direct evaporation. As the vegetation index tends towards values 282 

representing full vegetation and soil cover, θ/θs tends toward representing the full depth 283 

of the effective rooting zone. Therefore, this method is optimal for the investigation of 284 

the available water storage in soils. It stands clearly apart from active and passive radar 285 

satellites that measure soil moisture to approximately constant penetration depths of a 286 

few cm (e.g. Miller, Hendrickx, and Borchers 2004; Wickel, Jackson, and Wood 2001; 287 

Hendrickx, Rabus, et al. 2009; Romero-Suarez 2010; McNairn, Pultz, and Boisvert 288 

2002; Jackson 2002). A limitation of soil moisture retrievals, using the evaporative 289 

fraction as derived from SEBAL or METRIC using optical and thermal imagery, is that 290 

the method can only be employed on clear days without clouds while radar systems 291 

operate under all weather conditions. However, soil surface evaporation process models 292 

or distributed hydrologic models (Downer and Ogden 2003; Downer and Ogden 2004; 293 
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Hendrickx, Pradhan, et al. 2009; Daniel B. Stephens & Associates 2010) can be 294 

operated in between satellite overpass dates to create continuous soil water records that 295 

are calibrated and targeted to the satellite retrievals (Hendrickx et al. 2016).  296 

 297 

3. Data description and procedure 298 

 299 

Once soil moisture maps were generated from SEBAL, 30 m × 30 m resolution of 300 

Landsat- and 1000 m × 1000 m of MODIS- based soil moisture data were aggregated to 301 

15,000 m and 28,000 m resolutions, respectively. Aggregation imagery was obtained by 302 

calculating the arithmetic mean over an n × n window. If any pixel in an n × n window 303 

was outside of the data set, the entire window was excluded. For the semi-variogram 304 

model, computing experimental semi-variograms using every pixel at the 30 m × 30 m 305 

scale proved infeasible, since the images used in this study were very large; instead, a 306 

random sampling strategy was used. Ten 2,500 pixel samples were randomly selected 307 

from the soil moisture image and experimental semi-variograms were calculated for 308 

each sample. These ten experimental semi-variograms were then averaged together. 309 

 310 

4. Spatial distribution and scaling behavior of root zone soil moisture 311 

 312 

Figure 1 presents the soil moisture map of the Landsat 5 image on 16 June 2002 as an 313 

example produced by SEBAL. Higher soil moisture is observed in the riparian areas and 314 

mountain forests while low to very low soil moisture occurs in the surrounding deserts. 315 

The city of Albuquerque has somewhat higher soil moisture than the surrounding desert 316 

areas due to grass and trees in the urban environment.  317 
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 318 

Table 1 shows temporal changes in soil moisture; it increases from 7 April (mean: 0.11), 319 

just after the start of the growing season, to 31 July (mean: 0.21) at the height of the 320 

growing as well as monsoon season. Then a decrease of soil moisture is observed on 14 321 

September (mean: 0.09) after the monsoon. Higher standard deviations are found in the 322 

images of June and July; that is due to the fact that the difference in soil moisture 323 

between riparian and mountain (high soil moisture) and desert and bare soils (low soil 324 

moisture) is greater during the summer monsoon growing season. The mean value of the 325 

soil moisture on 7 April (0.11) is greater than that of 9 May (0.06) (Table 1). This 326 

reflects some soil moisture accumulation during the winter period before 7 April when 327 

vegetation is dormant as well as the lack of precipitation between 1 April and 9 May 328 

when the vegetation starts transpiring at the start of the growing season.  329 

 330 

For the 16 June image, the disparate spatial resolutions of Landsat- and MODIS-based 331 

soil moisture images result in differences in soil moisture distribution (Figure 1). Many 332 

small areas (length scale on the order of 10 to 100 m) with high soil moisture along the 333 

river are captured well in the Landsat-based soil moisture map with a spatial resolution 334 

of 30 m; however, these peak soil moistures are averaged out in the MODIS-derived 335 

soil moisture map with a spatial resolution of 1000 m. Besides the difference in the 336 

spatial resolution, a difference in radiance measurements between the Landsat and 337 

MODIS and different satellite overpass times (the Landsat overpass time was 10:30 am 338 

Mountain Standard Time (MST) while the MODIS time was 11:00 am MST) also 339 

results in slightly different soil moisture estimates (Figure 1 and Table 1). However, the 340 

overall spatial distribution of soil moisture maps and basic statistics reveal that the 341 
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SEBAL algorithm produced very similar soil moisture estimates from either Landsat or 342 

MODIS imagery. 343 

 344 

In order to examine the power law behavior of soil moisture maps, soil moisture 345 

variances for different pixel sizes were calculated (Figure 3). In all cases except 7 April, 346 

log variances decrease and display a fairly linear trend until the pixel size reaches about 347 

106 m2, approximately a 1 km length scale. Furthermore, although the intercept varies 348 

with the overall moisture, the slope of each curve (the exponent alpha in the power law) 349 

is similar.  Some of the values of variance after 108 m2 pixel size waggle because there 350 

are few data points. Also, the log variances of the April image linearly decrease until 351 

108 m2 and the slope is steeper after 108 m2 pixel size. This is similar to the results of 352 

Ryu and Famiglietti (2006) who also reported a non-linear trend in their data. They 353 

concluded that smaller scale correlation (10 km to 30 km pixel length) is caused by land 354 

surface features like vegetation and soil texture, while larger scale correlation (60 km to 355 

100 km) is caused by regional precipitation. Changes in variances with pixel size 356 

between Landsat and MODIS-based soil moisture on 16 June 2002, follow a similar 357 

trend. 358 

 359 

Also note that the log variances of each starting point (30 m × 30 m pixel size) for all 360 

five dates are different from each other but the slope of the variances with pixel size are 361 

all similar except for the April imagery. The 7 April image is the only image prior to the 362 

growing season, when vegetation is not transpiring and thus the soil moisture conditions 363 

of the top 10 to 20 cm are captured by the SEBAL estimated root zone soil moisture 364 

algorithms. Therefore, the effect of vegetation is minimal in this image while the effect 365 



 17 

of precipitation on spatial variability of soil moisture dominates. This observation is 366 

supported by the larger correlation length in the semi-variogram of 7 April (Figure 4) 367 

and is similar to the result of Rye and Famiglietti (2006) discussed above. 368 

 369 

In order to examine the anisotropic variance, semi-variograms were calculated in four 370 

compass directions; N-S, E-W, NE-SW and NW-SE. There were no significant 371 

differences within the four directional experimental semi-variograms, and thus we 372 

assume an isotropic semi-variogram. The sampling technique was then repeated to 373 

produce an omni-directional experimental semi-variogram (Figure 4). In the semi-374 

variograms, sill (gamma) values are dependent upon the variance of the soil moisture 375 

maps. In addition to sill, the range of each semi-variogram also changes with the soil 376 

moisture conditions. Soil moisture maps during the summer have higher mean and 377 

standard deviation and have ranges around 30 km, but low soil moisture conditions 378 

(May and September) have ranges around 10 km. Smaller ranges during a low soil 379 

moisture condition are revealed from the spatial distribution of soil moisture; high soil 380 

moisture is found only along the narrow strip of Rio Grande riparian areas and in 381 

mountain forests with lateral scales up to about 10 km while the surrounding areas are 382 

very dry. Although the sill of the Landsat semi-variogram on 16 June 2002 is slightly 383 

higher than MODIS semi-variogram, both semi-variograms have a similar shape. This is 384 

another validation that the SEBAL algorithm produces very similar soil moisture 385 

estimates from Landsat and MODIS images. The lower sill of the MODIS semi-386 

variogram is expected since MODIS pixels are about one order of magnitude larger than 387 

Landsat pixels which will temper extreme soil moisture values. 388 

 389 
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5. Conclusions 390 

 391 

The main goal of this study was to examine the power law behavior of SEBAL 392 

estimated root zone soil moisture from Landsat and MODIS imagery. In most cases, the 393 

slope of changes in variances with pixel size are similar, and power law scaling of soil 394 

moisture holds up to 106 m2 pixel size; a power law fit is no longer valid beyond that 395 

scale. Semi-variograms show an isotropic correlation structure and their sill and range 396 

are dependent upon the root zone soil moisture conditions. Results of this study also 397 

verify that the SEBAL algorithm produces very similar soil moisture maps from 398 

Landsat and MODIS images. 399 

 400 

Previous studies have studied soil moisture in the top 5 cm of the soil using radar and 401 

point measurements while our study uses SEBAL/METRIC to estimate root-zone soil 402 

moisture.  Our study is consistent with previous studies in showing that variation in 403 

root-zone soil follows an empirical power law for pixel sizes of up to about 106 m2 and 404 

that there is an apparent break in the scaling at larger scales. 405 

 406 
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Table 1. Data used in this study. Rainfall data were obtained from the New Mexico 690 

Climate Center (http://weather.nmsu.edu/data/data.htm) and mean and standard 691 

deviation (STD) are estimated from Landsat (30 m x 30 m) and MODIS (1000 m x 1000 692 

m) images. 693 
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 695 

 696 

Date Satellite 
Time since rain (days) 

Root-zone soil 

moisture (unitless) 

ACD1 BSE2  ATA3 Mean SD* 

7 April 2000 Landsat7 6 16 6 0.11 0.10 

9 May 2000 Landsat7 30+ 30+ 30+ 0.06 0.09 

16 June 2002 Landsat7 1 20 3 0.15 0.13 

16 June 2002 MODIS 1 20 3 0.15 0.11 

31 July 2004 Landsat5 3 5 4 0.21 0.15 

14 September 2000 Landsat7 5 16 14 0.09 0.10 

 697 
 698 
1Alcalde ASC weather station, 2Bosque RAWS weather station, 3Artesia ASC weather 699 

station, *standard deviation 700 
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Figure 1. Study area and root zone soil moisture maps on 16 June 2002. 734 
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 746 

Figure 2. Non-linear and linear forms of the relationship between relative 747 

evapotranspiration (actual/potential evapotranspiration) and available water fraction 748 

(Anderson et al. 2007; Manabe 1969; Scott, Bastiaanssen, and Ahmad 2003).  749 



 34 

 750 

 751 

 752 

 753 
 754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

Figure 3. Change in soil moisture variance with pixel size. 764 

 765 

 766 

 767 

 768 

 769 

 770 

 771 

 772 



 35 

 773 

 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 

 791 

 792 

 793 

 794 

 795 

 796 

 797 

 798 

 799 

 800 

 801 

 802 

 803 

 804 

 805 

 806 

 807 

 808 

 809 

 810 

Figure 4. Semi-variogram of root zone soil moisture derived by SEBAL from Landsat 811 

and MODIS images, where h is the distance between pairs of points. Since root zone 812 

soil moisture is given as an unitless percentage, the semivariance () is in units of %2.  813 
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