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Abstract. In recent years, larger geophysical datasets and novel model4

parameterizations have dramatically increased both the data and model space5

dimensions of many inverse problems. Because of their relatively low com-6

putational expense, trade–off curve corner estimation for choosing regular-7

ized models and “checkerboard” tests for evaluating model resolution are com-8

monly applied, despite their limitations. We present and demonstrate a low–9

cost method for accurately estimating the diagonal elements of the model10

resolution matrix diagonal and for implementing generalized cross–validation11

(GCV) for optimal regularization parameter selection. The ability to esti-12

mate the diagonal of the resolution matrix and GCV function thus facilitates13

the introduction of additional tools for diagonal resolution analysis and reg-14

ularization evaluation, even for very large inverse problems, with storage and15

computational costs comparable to those required for obtaining model so-16
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lutions. We demonstrate the method using a Tikhonov regularized teleseis-17

mic body wave velocity inversion example with approximately 260,000 model18

parameters, where we validate randomly selected Rm diagonal elements against19

explicitly calculated values and compare GCV-estimated regularized model20

results to those obtained through traditional methods.21
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1. Introduction

Recent expansion of seismic data availability and innovations in model parameteriza-22

tion motivate the need for computationally tractable, unbiased, and easy to implement23

resolution estimators. In seismology, for example, continent-scale seismic networks, such24

as EarthScope USArray Transportable Array and increasingly large IRIS PASSCAL and25

other deployments, along with increasingly large global inversions are dramatically im-26

proving the resolution of tomographic studies of the crust, mantle, and whole Earth.27

Novel innovations in forward modeling and model parameterization are also emerging,28

such as using adaptive grids [Li et al., 2008], spherical wavelets [Chiao and Kuo, 2001],29

and finite-frequency kernels [Marquering et al., 1999; Dahlen et al., 2000].30

Regularized linear inversions are central to geophysics, due in part to their favorable31

statistical characteristics [Berryman, 2000; Aster et al., 2005], the availability of efficient32

iterative solvers for large systems, such as LSQR [Paige and Saunders , 1982], and the33

commonly ill–posed nature of inverse problems. Even as the size and complexity of lin-34

ear or linearized inverse problems grows, iterative solvers are able to produce solutions35

efficiently. Analyzing the balance between model resolution and regularization, however,36

becomes considerably more computationally intensive than producing solutions.37

For linear systems of equations that are sufficiently small to perform a singular value38

decomposition (SVD) of the forward operator matrix, resolution, a fundamental measure39

of solution bias, is quantified by the elements of the model resolution matrix. For larger40

problems, however, it can easily become memory and CPU prohibitive to estimate solution41

bias in this way. Consequently, it is a common practice to employ resolution spike,42
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checkerboard, or similar tests using synthetic data generated from canonical test models43

to estimate the effects of imperfect model parameter resolution. Such tests are efficient in44

that they only require equivalent effort to that necessary for inverting real data. However45

they can only recover an approximation to a single column of the resolution matrix, or46

a specified linear combination of such columns, and may thus provide ambiguous and/or47

incomplete model resolution characterizations under some circumstances.48

The choice of regularization parameters affect solution resolution, which generally de-49

grades as regularization constraints, such as solution bounds or smoothness, are added.50

An optimal degree of regularization is commonly estimated through the use of trade–off51

curves between a model norm (or seminorm) and the forward modeled misfit with ob-52

served data [Hansen and O’Leary , 1993]. When the statistical character of the data noise53

is unknown or only roughly estimated, as is commonly the case, this choice can be rather54

arbitrary. Generalized cross–validation (GCV) provides a well–characterized method of55

selecting a regularization parameter that minimizes the predictive data errors in a least56

squares solution [Craven and Wahba, 1979; Golub et al., 1979]. It is a useful selection57

criterion in cases where the variance of the data noise is unknown and data errors are un-58

correlated [Wahba, 1990; Golub and vonMatt , 1997], or when a trade–off curve is poorly59

defined, either through lack of smoothness or poor sampling [Hansen and O’Leary , 1993].60

However, GCV requires calculating the trace of a large matrix, which, when approached61

straightforwardly, is commonly computationally prohibitive for large inverse problems.62

Recent work by Bekas et al. [2007] on the statistical estimation of the large matrix63

diagonals provides a notable new tool to facilitate both resolution analysis and imple-64

mentation of GCV for large geophysical inversions. Here, we illustrate the application of65
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this stochastic method to produce unbiased and accurate estimates of the GCV function66

and the diagonal elements of the model resolution matrix, apply this method to a moder-67

ately large teleseismic tomographic inverse problem, and provide associated self-contained68

MATLAB functions (supplementary materials).69

2. Resolution and regularization

Here we define the model resolution matrix for a Tikhonov regularized linear forward

problem of the form

Gm = d, (1)

where G is the forward operator matrix, m is an n–dimensional model vector, and d is70

an m–dimensional data vector. Each constraint equation in this system is assumed to be71

weighted by an estimate of the respective data error standard deviation.72

Because many geophysical inverse problems are ill–conditioned and/or rank deficient,

additional constraints are typically needed for solution stability and uniqueness e.g.,

[Menke, 1989; Parker , 1994; Aster et al., 2005]. We implement regularization here by

incorporating a roughening matrix, L, and its associated weighting parameter, α, into the

inverse problem corresponding to (1). The resulting Tikhonov regularized least squares

problem is

min

∣∣∣∣∣
∣∣∣∣∣
[

G
αL

]
m−

[
d
0

] ∣∣∣∣∣
∣∣∣∣∣
2

. (2)

It can be shown using the normal equations that the least squares solution to (2) can be

expressed by a linear matrix inverse operator acting on the data vector

mα = G]d , (3)
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where

G] = (GTG + α2LTL)−1GT (4)

[Aster et al., 2005]. The model resolution matrix characterizes the linear model space

mapping between a (typically unknown) true model and that recovered using (3), i.e., for

some true model m̂ with noise-free associated data d̂,

mα = G]d̂ = G]Gm̂ = Rmm̂ . (5)

Rm(α) = G]G is an n by n square matrix that characterizes the model bias inherent in73

the regularized inversion. Columns of Rm are resolution kernels corresponding to point74

spread (i.e. spike test) functions for each model parameter. Off-diagonal entries represent75

smearing/trade–off between parameters in the recovered solution, and diagonal entries76

characterize the independent resolvability of each parameter. The closer Rm is to the77

identity matrix, the less bias inherent in the inversion, and the higher the fidelity of the78

solution will be to the unknown true model that generated the observed data.79

3. Motivation for and implementation of stochastic estimation of a matrix

diagonal

A significant practical difficulty in calculating Rm directly is that, although G may be80

sparse (as in a typical seismic tomography problem), (GTG+α2LTL)−1 in (4) is typically81

an n by n dense matrix. For problems with n larger than a few tens of thousands of82

parameters, this can require in excess of many tens of gigabytes of storage and prohibitively83

time consuming calculations.84

Because of the central importance of this problem for large linear or linearized inverse85

problems, a number of methods have been proposed to estimate or calculate the full86
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resolution matrix (5). Approaches include iterative methods that complement the LSQR87

algorithm [Zhang and McMechan, 1995; Yao et al., 1999; Zhang and Thurber , 2007]. These88

methods, while taking advantage of the computational efficiencies of the LSQR algorithm,89

produce an “effective resolution matrix,” that may not fully represent the model resolution90

[Deal and Nolet , 1996; Berryman, 2000; Zhang and Thurber , 2007]. Nolet et al. [1999]91

formulated an explicit expression for an approximation to the resolution matrix using92

a one-step back–projection method. This method, however, makes special assumptions93

about the structure of the forward operator. Finally, a highly computationally intensive94

class of methods exploits Choleski factorization and parallel computation to evaluate95

model resolution [Boschi , 2003].96

Both the least squares solution and the model resolution in (3) and (5) are dependent

on the choice of regularization roughening matrix L and its weighting parameter, α.

Generalized cross–validation (GCV) selects the regularization parameter that minimizes

the predictive error for all data points when left out one at a time. This is done by

minimizing the GCV function, V0(α),

V0(α) ≈ m ||Gmα − d||22
Tr(I−GG])2

, (6)

where Tr denotes the matrix trace and m is the data space dimension [Craven and Wahba,97

1979]. Implicit in (6) is the approximation that matrix diagonals (GG])k,k ≈ Tr(GG])/m,98

which is shown by Golub et al. [1979] to be reasonable for large m. It is favorable to99

use GCV to choose mα because, making certain assumptions about the smoothness and100

noise of the true model, m̂, it can be shown that E[‖m̂ − mα‖2] goes to 0 as m goes101

to infinity, for an mα chosen through GCV [Craven and Wahba, 1979; Wahba, 1990].102

Golub and vonMatt [1997] applied a stochastic trace estimator to estimate (6), but did103
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so by calculating upper and lower bounds through a more complex method than that104

presented here. The stochastic matrix diagonal estimator presented here is independent105

of the number of iterations used to find the model solution and makes no assumptions of106

the structure of the forward operator.107

The following stochastic algorithm comes largely from Bekas et al. [2007], who initially108

applied it to atomic density functional theory and noted its broad relevance, and is in109

turn based upon work by Hutchinson [1990] and Girard [1987]. Here, we apply the110

matrix diagonal estimator to the resolution matrix (5) and the calculation of the GCV111

function (6).112

Consider a sequence of s n-length random vectors, v1, . . . ,vs, with independent elements

drawn from a standard normal distribution. The sth estimate for the diagonal of an n by

n square matrix A is then

Ds =

[
s∑

k=1

vk �Avk

]
�
[

s∑
k=1

vk � vk

]
, (7)

where � signifies element-wise vector multiplication and � signifies element-wise vector113

division. The algorithm corresponding to (7) is the following:114

Stochastic matrix diagonal
estimator

1. t0,q0 = 0

2. for k = 1 . . . s

(i) Generate a random vector real-
ization vk

(ii) tk = tk−1 + (Avk � vk)

(iii) qk = qk−1 + (vk � vk)

(iv) Dk = tk � qk
3. end

115
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In practice, the choice of s will depend on the desired accuracy of the diagonal deter-

mination, which can be assessed by statistically examining repeated estimates generated

with independent random vectors and by the convergence of the estimates Ds. Equation

(7) contains the matrix-vector product Avk, which cannot be evaluated directly if A is

incalculable. When A is the resolution matrix, Rm, this product can be computed by

noting that a product y = Rmvk can be rewritten in terms of the known matrices G and

L by combining (5) and (4) as

y = (GTG + α2LTL)−1GTGvk , (8)

which is the normal equations solution for

min

∣∣∣∣∣
∣∣∣∣∣
[

G
αL

]
y −

[
Gvk

0

] ∣∣∣∣∣
∣∣∣∣∣
2

. (9)

In estimating the GCV function (6), let A be GG]. We first evaluate the product

y = G]vk as

y = (GTG + α2LTL)−1GTvk , (10)

which is the normal equations solution for

min

∣∣∣∣∣
∣∣∣∣∣
[

G
αL

]
y −

[
vk
0

] ∣∣∣∣∣
∣∣∣∣∣
2

. (11)

The least squares solution to (11) is subsequently left–multiplied by G to obtain the116

desired matrix–vector product GG]vk in (7). Once the diagonal of GG], and hence its117

trace, are estimated, calculating (6) is trivial. Both (9) and (11) can be readily solved118

with an iterative solver such as LSQR.119

The computational cost of using this algorithm to minimize the GCV function in terms120

of the number of LSQR calls required, is s · p, where p is the number of regularization121
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weighting parameters tested. Estimating the resolution matrix diagonal requires only s122

calls to LSQR.123

4. An example from teleseismic tomography

We apply the method to select the regularization parameter and estimate the resolution124

matrix diagonal for a moderately large seismic tomographic inversion. The CREST (Col-125

orado Rockies Experiment and Seismic Transects; [Aster et al., 2009; MacCarthy , 2010])126

teleseismic inversion data subset examined here consists of 19,608 mean-removed teleseis-127

mic P-wave travel time residuals and estimated data errors, measured at 167 broadband128

seismic stations in the region [MacCarthy , 2010] (Figure 1). The model space is pa-129

rameterized by 267,520 constant slowness blocks, each 0.25◦by 0.25◦by 25 km in size.130

The forward problem matrix was constructed via infinite frequency raytracing through131

a one–dimensional reference velocity model (ak135; [Kennett et al., 1995]) with crustal132

corrections, and solutions are expressed as percent velocity or slowness variation from this133

model.134

Forward problem constraint equations were scaled by respective standard deviations135

estimated from ensemble P arrival waveform crosscorrelation (using approximately one136

principal period of the first arrival) across the network [VanDecar and Crossen, 1990].137

Analysis of data errors suggested that the crosscorrelation methodology underestimates138

the true measurement errors. We note that other authors have reached similar conclusions,139

suggesting that a factor of 2–10 typically brings crosscorrelation–derived error estimates140

in teleseismic inversion data sets closer to those estimated by data analysts [Waite et al.,141

2006; Pavlis and Vernon, 2010]. As error amplification factor increases, error values that142

are divided into rows of G and d will reduce the weight of the data equations relative to the143
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regularization equations for a given α (Equation 2), thus producing smoother solutions.144

At the same time, the value of ||Gm− d|| decreases with increasing error amplification145

for the same α, thus bring both branches of the regularization l-curve (Figure 2a) towards146

zero while maintaining shape and relative data variance reduction. We find that scaling147

crosscorrelation–determined error estimates by a factor of 4, producing a root mean square148

estimated error of 0.148, brings the model seminorm versus residual trade–off curve corner149

and GCV minimum into consistency with the noise level, per the discrepancy principle150

describing statistically expected data fit [Hansen and O’Leary , 1993; Aster et al., 2005]151

and have adopted this scaling factor in further work with this data set.152

Like most geophysical tomographic inversions, this example is rank–deficient. We thus153

regularize the inversion using superimposed zeroth–order and second–order (Laplacian)154

smoothing in equal proportion, scaled by the regularization parameter α, and by a con-155

stant level of edge–damping [MacCarthy , 2010]. Second–order smoothing is used in order156

to discourage spurious features in the resulting models, and zeroth–order damping is em-157

ployed to minimize model amplitudes and to aid in convergence. We examine the selection158

of the regularization parameter using trade–off curves and via GCV, and use the different159

recovered models to demonstrate the use of the diagonal resolution estimation algorithm160

in solution bias characterization.161

In trade–off curve analysis, α was selected visually from the corner vicinity of the plot162

of data residual versus model seminorm (Figure 2a). The corner provides a heuristic for163

estimating an optimal degree of regularization, but its character will be influenced by164

the plotting range and scale (e.g., linear, linear-log, or log-log plotting are variously used165

in practice). It is common for preferred models in such studies to be somewhat over–166
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regularized relative to the mathematically “best” solution in the interest of producing167

stable, conservative, or geologically reasonable models. We show a model that is slightly168

towards the smoother side of a linear-linear trade–off curve, corresponding to α = 0.7169

(Figure 3a–c). This particular model has maximum amplitudes of ±4.5% in Vp and170

corresponds to a data variance reduction of 78.7% (a root–mean–square data fit of 89%)171

compared to ak135.172

We next determined α to minimize the GCV function (6). The GCV–optimal α for173

the CREST inversion, selected from its broad minimum, is near 0.1 (Figure 2b, 3d–f).174

While structurally similar to the model with α = 0.7, maximum amplitudes in this model175

are ±6.8%, with a data variance reduction of 91.7%. Note that these high amplitude176

P-wave variations are believed to be petrologically infeasible, and the high roughness177

(large seminorm) of the GCV–optimal model likely indicates that this particular solution178

is unduly rough. This is likely due in part to the flat and broad minimum region in179

the GCV curve, and/or the presence of correlated data errors [Wahba, 1990; Hansen and180

O’Leary , 1993]. Insights into the inverse problem obtained through GCV, such as these,181

may not otherwise be obtained through traditional regularization methods.182

We show both a checkerboard resolution test and estimated model resolution diagonals183

for the two example regularized solutions discussed above to illustrate the effect of reg-184

ularization weighting on resolution and to highlight how the two methods of resolution185

analysis offer different insights. Alternating 33-block clusters of ±2% Vp were used to186

generate synthetic travel time data using the CREST forward problem, and the data were187

contaminated with noise at the same level as that estimated for the CREST data. The188

synthetic data were then inverted using the same α = 0.1 and 0.7 inversions as previously189
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discussed. The resulting checkerboard recovery models are a rough approximation of a190

spatial distribution of superimposed respective resolution kernels within the model space191

(Figures 3b, 3f). The tests highlight regions with high shape and amplitude recovery, ver-192

sus poorly constrained regions dominated by smearing. A significant shortcoming of this193

approach, however, is that interpreting amplitude recovery for a given parameter is com-194

plicated by smearing/superposition from adjacent parameters. For example, maximum195

amplitude recovery for the α = 0.1 and 0.7 solutions is greater than the input amplitude196

for both checkerboard inversions. Because of this effect, the recovered models for both197

inversions look very similar and quantitative distinctions of amplitude recovery between198

different inversions is difficult. The model resolution matrix diagonal is a more quantita-199

tive measure of amplitude recovery that is independent of the geometry of synthetic input200

models.201

The stochastic method of Section 3 was used to estimate the model resolution matrix202

diagonal for the two regularized inversions, using s = 256 random vectors. Stable values203

were obtained by running N = 20 realizations of the diagonal estimation and calculat-204

ing median values. A random subset of 100 elements were validated against explicitly205

calculated elements for each of the N estimations. Figures 4a and 4c compare median206

stochastic estimates of Rm diagonal elements versus their true values, for α = 0.7 and207

α=0.1, respectively. Symmetric sample standard deviations for N = 20 realizations are208

shown as error bars. In all cases, true values are within the one standard deviation of209

the median estimated value. Figures 4b and 4d depict the frequency of absolute errors in210

median estimated Rm diagonal elements. The mean and maximum absolute errors of the211
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median estimates was 0.005 and 0.024 for the α = 0.1 inversion, and 0.002 and 0.011 for212

the α = 0.7 inversion.213

To further illustrate the accuracy of the stochastic method, the diagonal elements of214

the resolution matrix for a synthetic tomographic problem were estimated and compared215

to the explicitly calculated values. The problem consisted of an 8 × 8 × 8 = 512 element216

Cartesian block model of known slowness, through which straight rays were traced. The217

problem was regularized using smoothing and damping in equal proportion, with α = 0.5218

(Equation 2). Resolution matrix diagonal elements were estimated using the stochastic219

method, with N = 20 and s = 256, and median values were compared to those from the220

formal resolution matrix, Rm(α) = G]G (Figure 5). As in the larger example, median221

values are within one sample standard deviation from the true value. Mean and maximum222

absolute errors are 0.0003 and 0.022, respectively.223

Selection of appropriate values for s and N will vary from problem to problem. Es-224

timated elements across N realizations are derived from independently generated pseu-225

dorandom numbers. Estimated elements also appear to be approximately normally dis-226

tributed, with a mean about the true value. Thus, under the assumptions of independence227

and normality, the mean value of the N estimates converges to the true value at a rate228

proportional to
√
N , or O(1/

√
N). Under these assumptions, one can select N such that229

any estimated parameter’s standard error is below some threshold, δ. First, choose a230

small number of realizations, N1, compute the sample standard deviation for each diago-231

nal element, sN , and find the maximum value, smaxN . One can now select a larger number232

realizations, N2, such that smaxN /
√
N2 < δ. The mean of each estimated diagonal element233

over N2 realizations will then be less than δ from the true value. Selection of the number234
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of random vectors, s, is more complicated, as a mathematical description of estimate con-235

vergence with increasing s is not well characterized. In their application of the stochastic236

trace estimater, Bekas et al. [2007] noted the very few vectors are required to produce237

somewhat accurate estimates, with steady but slow convergence thereafter. Due to the238

speed of the calculation, however, we recommend that an s of 256–512 will be adequate239

for many large geophysical inversions.240

While the pattern of well-resolved regions is similar between the two CREST inver-241

sions, the amplitude bias due to regularization is notably different (Figures 3c, 3g). The242

resolution diagonal in the α = 0.7 model is nearly half that of the α = 0.1 model, with243

maximum Rm diagonal values of 0.375 and 0.618 respectively. This implies a much larger244

degree of smoothing inherent in the α = 0.7 inversion that is not apparent through the245

corresponding traditional multiblock checkerboard analysis. A drawback of looking only246

at the Rm diagonal, of course, is not being able to visualize smearing bias in the inversion.247

It has been suggested that ray–sampling density is a low–cost qualitative tool to evaluate248

spatial model resolution in tomographic inversions [e.g. Zhang and Thurber , 2007], as more249

highly sampled parameters tend to exhibit higher resolution. This formulation, however,250

does not take into account the angular sampling of rays as they traverse model parameters251

or the regularization employed in the inversion, both of which contribute to parameter252

resolution. In natural–source studies, such as in teleseismic tomography, the distribution253

of sources and stations commonly results in similar ray paths sampled multiple times, with254

little angular diversity across model parameters. Consequently, parameters may have both255

high ray–density and relatively low resolution. Conversely, in many active–source studies,256

D R A F T May 26, 2011, 9:16am D R A F T



MACCARTHY ET AL.: STOCHASTIC ESTIMATION OF MODEL RESOLUTION X - 17

model elements may be traversed by fewer rays with higher angular diversity, resulting in257

parameters with relatively low ray density but high resolution.258

We compare ray–sampling to estimated model resolution diagonals to further illustrate259

the utility of the latter in quantitative resolution analysis. Figure 3d (and h) shows log260

total ray length across the model volume for the sources and stations shown in Figure 1.261

The large number of events with northwest back azimuths result in total ray length > 500262

km along northwest–directed rays, to ∼400 km depth beneath the CREST network. From263

this metric, one may infer a corresponding co–located region of moderately well–resolved264

model parameters. However, equivalent plots of estimated resolution diagonal for the α =265

0.7 inversion show a region of approximately equal (diagonal) resolution of 0.1–0.2 along266

northwest–directed rays to depths of 500–600 km (Figure 3c). The α = 0.1 inversion,267

because it employs less smoothing and damping, has ubiquitous higher resolution and268

shows diagonal resolution > 0.4 to depths exceeding 600 km along northwest–directed269

rays (Figure 3g). Because there is not a strict correlation between ray sampling and270

(diagonal) resolution, particularly in the presence of regularization, estimates of diagonal271

resolution may be a favorable low–cost alternative to ray–sampling density for resolution272

analysis.273

5. Conclusions

We present a general low–cost stochastic matrix diagonal method to estimate the model274

resolution matrix diagonal and the generalized cross–validation (GCV) function. The275

method is demonstrated using a moderately large teleseismic P velocity linear inversion276

example, and the results are compared against those from trade–off curves, checkerboard277

resolution tests, and ray–sampling density. The method presented here relies on LSQR278
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and is comparable in computational demand to the effort necessary for obtaining model279

solutions. The method thus provides easily implemented estimation and assessment of280

the complete resolution matrix diagonal as well as wider usage of GCV–determined reg-281

ularization parameter estimation, and is scalable to very large inverse problems.282
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Figure 1. a) Map of stations used in the CREST experiment over elevation. CREST

stations are triangles, and USArray stations are circles. b) Distribution of teleseismic

earthquake sources (black circles). The center of the CREST network is noted by a star.
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Figure 2. a) Example trade–off curve between model seminorm versus data residual

2-norms as a function of regularization weighting parameter, α (2) for regularization as de-

scribed in the text. b) Generalized cross–validation (GCV) curve, showing regularization

parameter (α) versus GCV function value (6).
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Figure 3. CREST regional model slices and resolution analysis of example P-wave

regularized inversions with α = 0.7 (a–d) and with α = 0.1 (e–h). (a,e): depth slice of

velocity model at 90 km depth (top). Seismic stations are small black triangles, and the

dashed line AA′ is the location of the paired cross section (bottom). Depths at 150 km

and 440 km are shown as dashed lines in cross section. Velocities are percent of Vp relative

to the ak135 reference model. (b,f): Checkerboard recovery at same depth and latitude as

previous. Input perturbations were ±2% P velocity relative to background across sets of

33 model blocks. (c,g): Stochastic estimate of diagonal elements of Rm. (d,h): Total ray

length for all used P rays through each model parameter. Plots d) and h) are identical,

repeated to aid visual comparison.
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Figure 4. a) Stochastic estimates of the resolution matrix diagonal (y-axis), versus true

values (x-axis) for 100 randomly selected values parameter values, α = 0.7 case. Points

are the median values of N=20 realizations using s=256 random vectors each. Bars are

the symmetric sample standard deviations for each parameter. b) Histogram of residuals

between median estimated and true Rm diagonal values for the same 100 parameters.

(c,d) Same previous plots, but for α=0.1 case. The same 100 parameters are investigated.
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Figure 5. a) Stochastic estimates of the resolution matrix diagonal (y-axis) versus true

values (x-axis) for all 512 parameters in a synthetic 3D tomography example, using α =

0.5. Points are the median values of N=20 realizations using s=256 random vectors each.

Bars are the symmetric sample standard deviations for each parameter. b) Histogram of

residuals between median estimated and true Rm diagonal values.
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