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ABSTRACT

Determining the release history of a source of groundwater contam�

ination is necessary to assign liability for remediation costs� Inverse methods

can be used to reconstruct the release history from spatially� or temporally�

distributed measurements of the concentration of the contaminant in the aqui�

fer� The independent application of several inverse methods to solve this prob�

lem has been discussed in recent literature� We compare the e�ectiveness of

two of those methods� Tikhonov regularization and minimum relative entropy

inversion� in reconstructing the source release history� We evaluate the meth�

ods assuming perfect data and perfect knowledge of the transport processes�

and then add complications that arise in �eld situations� Two di�erent source

history functions are evaluated�a smooth� Gaussian�shaped function� and a

step function� The results show that minimum relative entropy inversion repro�

duces the source history more e�ectively than Tikhonov regularization when

the step function is used� Also� when the data contain measurement error�

both methods perform equally well if the noise level is known exactly� however�

if the noise level is underestimated� Tikhonov regularization performs better

than minimum relative entropy inversion� In all other situations addressed in

this research� the results of the two methods are essentially indistinguishable�



Table of Contents

Acknowledgement ii

Abstract

Table of Contents iii

List of Tables vi

List of Figures viii

�� Introduction �

��� Problem Statement � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Objective � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 


��
 Scope � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Background on Contaminant Transport in Groundwater � � � � � 	

����� Forward Advection�Dispersion Problem � � � � � � � � � � �

����� Inverse Advection�Dispersion Problem � � � � � � � � � � �

��	 Literature Review on Source History Problems � � � � � � � � � � �

�� Inverse Methods ��

��� Regularization Methods � � � � � � � � � � � � � � � � � � � � � � �


����� Overview of Regularization Methods � � � � � � � � � � � ��

����� Tikhonov Regularization � � � � � � � � � � � � � � � � � � ��

��� Maximum Entropy Methods � � � � � � � � � � � � � � � � � � � � ��

iii



����� Overview of Maximum Entropy Methods � � � � � � � � � ��

����� Minimum Relative Entropy Inversion � � � � � � � � � � � 



��
 Comparison of Tikhonov Regularization and Minimum Relative

Entropy Inversion � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

�� Application of Inverse Methods to the Source History Recon�

struction Problem �	


�� Source History Reconstruction using Tikhonov Regularization � ��


���� Implementation of Tikhonov Regularization � � � � � � � ��


���� Veri�cation of Tikhonov Regularization Routine � � � � � ��


�� Source History Reconstruction using Minimum Relative Entropy

Inversion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	



���� Implementation of Minimum Relative Entropy Inversion 	



���� Veri�cation of Minimum Relative Entropy Routine � � � ��


�
 Summary of Implementation and Veri�cation � � � � � � � � � � � ��

�� Evaluation of Parameter Selection for the Inverse Methods 
�

��� Evaluation of Parameter Selection for Tikhonov Regularization � �


����� Evaluation of the Regularization Parameter Selection � � ��

����� Evaluation of the Order of Regularization � � � � � � � � ��

��� Evaluation of Parameter Selection for Minimum Relative En�

tropy Inversion � � � � � � � � � � � � � � � � � � � � � � � � � � � �


����� Evaluation of the Expected Value Function � � � � � � � � �


����� Evaluation of the Upper Bound � � � � � � � � � � � � � � ��

iv



�� Comparison of Tikhonov Regularization and Minimum Rela�

tive Entropy Inversion �	�

	�� Results of Simulations of the Ideal Scenario � � � � � � � � � � � �
�

	�� Evaluating the E�ects of Individual Factors � � � � � � � � � � � �
�

	���� Measurement Error � � � � � � � � � � � � � � � � � � � � � �
�

	���� Sampling Frequency � � � � � � � � � � � � � � � � � � � � ��


	���
 Errors in Transport Parameters � � � � � � � � � � � � � � ���

	���� Smoothness of the Input Function � � � � � � � � � � � � � ��


	�
 Evaluating the E�ects of Multiple Factors � � � � � � � � � � � � ��


	�� Summary of E�ects of Factors � � � � � � � � � � � � � � � � � � � ���

�� Conclusions ��


References ���

A� Determining Lagrange Multipliers for the Prior Distribution ���

B� Determining Lagrange Multipliers for the Posterior Distribu�

tion ���

C� Minimum Relative Entropy Inversion Program ���

C�� Program Overview � � � � � � � � � � � � � � � � � � � � � � � � � ���

C�� Source Code � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

C�
 Variable De�nitions � � � � � � � � � � � � � � � � � � � � � � � � � ���

v



List of Tables


�� Details of Tikhonov regularization veri�cation runs� � � � � � � � ��


�� Details of MRE veri�cation runs� � � � � � � � � � � � � � � � � � ��

��� Test scenarios for the analysis of the regularization parameter

selection methods� � � � � � � � � � � � � � � � � � � � � � � � � � �	

��� Results of the analysis of the regularization parameter selection

methods� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��
 Test scenarios for the analysis of the regularization order� � � � � �


��� Results of the analysis of the regularization order� � � � � � � � � ��

��	 Test scenarios for the analysis of the prior expected value functions� ��

��� Results of the analysis of the prior expected value functions� � � ��

��� Test scenarios for the analysis of the upper bounds� � � � � � � � ��

��� Results of the analysis of the upper bounds� � � � � � � � � � � � ��

	�� Coding chart for the fractional factorial design� � � � � � � � � � ��	

	�� Design matrix for the fractional factorial design� � � � � � � � � � ���

	�
 Results of multi�factor simulations� � � � � � � � � � � � � � � � � ���

	�� Average di�erence of residual norms for runs with ideal and non�

ideal values of each factor� � � � � � � � � � � � � � � � � � � � � � ��	

	�	 Main e�ects of the multi�factor simulations� � � � � � � � � � � � ���

vi



C�� Variable de�nitions for MATLAB program� � � � � � � � � � � � � ���

C�� Variable names and symbols for MATLAB program� � � � � � � � ���

vii



List of Figures

��� True source history function used by Skaggs and Kabala ������� ��

��� True plume at T � 


 and T � �

 used by Skaggs and Kabala

������� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Sample L�curve plot� � � � � � � � � � � � � � � � � � � � � � � � � ��


�� Results of Tikhonov regularization veri�cation Run TV��� � � � ��


�� Results of Tikhonov regularization veri�cation Run TV��� � � � �	


�
 Results of Tikhonov regularization veri�cation Run TV�
� � � � ��


�� Results of Tikhonov regularization veri�cation Run TV��� � � � ��


�	 Results of Tikhonov regularization veri�cation Run TV�	� � � � ��


�� Results of Tikhonov regularization veri�cation Run TV��� � � � ��


�� Results of Tikhonov regularization veri�cation Run TV��� � � � 	�


�� Results of Tikhonov regularization veri�cation Run TV��� � � � 	�


�� Results of Tikhonov regularization veri�cation Run TV��� � � � 	



��
 Results of Tikhonov regularization veri�cation Run TV��
� � � � 	�


��� Results of MRE veri�cation Run MV��� � � � � � � � � � � � � � � ��


��� Results of MRE veri�cation Run MV��� � � � � � � � � � � � � � � �	


��
 Results of MRE veri�cation Run MV�
� � � � � � � � � � � � � � � ��

viii




��� Results of MRE veri�cation Run MV��� � � � � � � � � � � � � � � ��


��	 Results of MRE veri�cation Run MV�	� � � � � � � � � � � � � � � ��


��� Results of MRE veri�cation Run MV��� � � � � � � � � � � � � � � �



��� Results of MRE veri�cation Run MV��� � � � � � � � � � � � � � � ��

��� True plume and exact and inexact sample measurements for

regularization parameter selection Runs RP�� and RP�
 with

a square input function� � � � � � � � � � � � � � � � � � � � � � � ��

��� True plume and exact and inexact sample measurements for

regularization parameter selection Runs RP�� and RP�� with

a smooth input function� � � � � � � � � � � � � � � � � � � � � � ��

��
 Results of generalized cross�validation for regularization param�

eter selection Run RP��� � � � � � � � � � � � � � � � � � � � � � � ��

��� Tikhonov regularization results for regularization parameter se�

lection Run RP��� � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	 Results of generalized cross�validation for regularization param�

eter selection Run RP��� � � � � � � � � � � � � � � � � � � � � � � ��

��� Tikhonov regularization results for regularization parameter se�

lection Run RP��� � � � � � � � � � � � � � � � � � � � � � � � � � � �


��� Results of generalized cross�validation for regularization param�

eter selection Run RP�
� � � � � � � � � � � � � � � � � � � � � � � ��

��� Tikhonov regularization results for regularization parameter se�

lection Run RP�
� � � � � � � � � � � � � � � � � � � � � � � � � � � ��

ix



��� Results of generalized cross�validation for regularization param�

eter selection Run RP��� � � � � � � � � � � � � � � � � � � � � � � �


���
 Tikhonov regularization results for regularization parameter se�

lection Run RP��� � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Tikhonov regularization results for regularization order Run RO��� �	

���� Tikhonov regularization results for regularization order Run RO��� ��

���
 Tikhonov regularization results for regularization order Run RO�
� ��

���� Tikhonov regularization results for regularization order Run RO��� ��

���	 MRE results for the expected value function analysis Run EV��� ��

���� MRE results for the expected value function analysis Run EV��� �


���� MRE results for the expected value function analysis Run EV�
� ��

���� MRE results for the expected value function analysis Run EV��� �	

���� MRE results for the upper bound analysis Run UB��� � � � � � � ��

���
 MRE results for the upper bound analysis Run UB��� � � � � � � ��

���� MRE results for the upper bound analysis Run UB�
� � � � � � � �



���� MRE results for the upper bound analysis Run UB��� � � � � � � �
�

	�� Tikhonov regularization and MRE results for the ideal scenario� �
	

	�� True plume at T � �

 and sampled data used in the ideal

scenario� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

	�
 Tikhonov regularization and MRE results for the ideal scenario

sampled at T � �

� � � � � � � � � � � � � � � � � � � � � � � � � �
�

x



	�� Uncertainty in the MRE results for the ideal scenario sampled

at T � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

	�	 True plume at T � 


 and sampled data used in the error

evaluation runs� � � � � � � � � � � � � � � � � � � � � � � � � � � ��


	�� Tikhonov regularization and MRE results using inexact data

�error model E��� � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	�� Tikhonov regularization and MRE results using inexact data

�error model E��� � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	�� True plume at T � 


 and sampling locations for Run SF��� � ��


	�� True plume at T � 


 and sampling locations for Run SF��� � ���

	��
 Tikhonov regularization and MRE results with an undersampled

plume �Run SF���� � � � � � � � � � � � � � � � � � � � � � � � � � ��	

	��� Tikhonov regularization and MRE results with an undersampled

plume �Run SF���� � � � � � � � � � � � � � � � � � � � � � � � � � ���

	��� Uncertainty in the MRE results with an undersampled plume

�Run SF���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	��
 Uncertainty in the MRE results with an undersampled plume

�Run SF���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	��� Tikhonov regularization and MRE results with an overestimated

velocity� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	��	 Tikhonov regularization and MRE results with an underesti�

mated velocity� � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


xi



	��� Tikhonov regularization and MRE results with an overestimated

dispersion coe�cient� � � � � � � � � � � � � � � � � � � � � � � � � ���

	��� Tikhonov regularization and MRE results with an underesti�

mated dispersion coe�cient� � � � � � � � � � � � � � � � � � � � � ���

	��� Tikhonov regularization and MRE results for the ideal scenario

with a non�smooth source history function� � � � � � � � � � � � � ���

	��� Tikhonov regularization and MRE results for multi�factor Run

MF��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	��
 Tikhonov regularization and MRE results for multi�factor Run

MF��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �



	��� Tikhonov regularization and MRE results for multi�factor Run

MF�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

	��� Tikhonov regularization and MRE results for multi�factor Run

MF��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

	��
 Tikhonov regularization and MRE results for multi�factor Run

MF�	� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �



	��� Tikhonov regularization and MRE results for multi�factor Run

MF��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

	��	 Tikhonov regularization and MRE results for multi�factor Run

MF��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
	

	��� Tikhonov regularization and MRE results for multi�factor Run

MF��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

xii



	��� Tikhonov regularization and MRE results for multi�factor Run

MF��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

	��� Tikhonov regularization and MRE results for multi�factor Run

MF��
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

	��� Tikhonov regularization and MRE results for multi�factor Run

MF���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

	�

 Tikhonov regularization and MRE results for multi�factor Run

MF���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


	�
� Tikhonov regularization and MRE results for multi�factor Run

MF��
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	�
� Tikhonov regularization and MRE results for multi�factor Run

MF���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	�

 Tikhonov regularization and MRE results for multi�factor Run

MF��	� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


	�
� Tikhonov regularization and MRE results for multi�factor Run

MF���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

xiii



Chapter �

Introduction

Environmental contamination is a widespread problem that may af�

fect the utility of an environmental resource such as a groundwater aquifer or

a surface water body� To minimize the hazardous e�ects of this contamination�

these media must be remediated to acceptable levels� A common problem en�

countered in environmental restoration is in allocating responsibility for reme�

diation costs� If the contaminant source location is known and only one party

was responsible for the contamination� that party should be held liable for the

entire cost of remediation� If multiple parties contributed to the contamina�

tion� an equitable approach to assigning liability is to allocate the remediation

costs among all responsible parties according to the proportion of the total

contamination that was contributed by each party� Thus� to allocate the reme�

diation costs in an equitable manner� the locations of all contaminant sources

and the amounts contributed from each of these sources must be identi�ed�

Furthermore� if a contaminant source is located at a facility that has changed

ownership� the release history of the source must be determined to correctly

distribute the remediation costs among the owners�

In practice� contamination is often unintentional and can go unde�

tected for many years� Therefore� the locations and release histories of the

contaminant sources are often unknown� In many cases� the only available in�

�
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formation concerning the contamination is the present spatial distribution of

the contaminant concentration� or a time history of contaminant concentra�

tion at one or more locations downgradient of the �possibly unknown� sources�

These concentration data can be used in an inverse model to reconstruct a

likely source history or to identify possible source locations�

In this research� we study a source history reconstruction problem�

with a point source of contamination at a known location in a one�dimensional

�ow �eld� The spatial distribution of the contaminant concentration is sampled

at an unknown time after the initial source release� These data are used with

inverse methods to reconstruct the temporal distribution of the contaminant

concentration at the source�

The source history reconstruction inverse problem is ill�posed� Con�

centration data are sampled only at discrete points� therefore� the unique con�

tinuous concentration distribution is unknown� An in�nite number of functions

can �t the measured data� and therefore an in�nite number of source histories

can produce the measured discrete concentration distribution� The problem

becomes more complicated in practice because of measurement error in the

data� unknown parameter values in the transport model� and the inability to

accurately model all of the transport processes�

��� Problem Statement

The source history reconstruction problem that is evaluated in this

research has recently been addressed by several researchers� The problem in�

volves a point source of groundwater contamination at a known location in






a one�dimensional� saturated� homogeneous porous medium� A known source

history is input into a forward model to obtain the spatial concentration dis�

tribution of the contaminant at some later time� These data are sampled at

discrete locations� and used in the inverse problem to reconstruct a discrete

�in time� release history at the source� Skaggs and Kabala ������ ���	� solved

this problem with Tikhonov regularization �TR� and the method of quasi�

reversibility� respectively� Woodbury and Ulrych ������ solved the problem

using minimum relative entropy �MRE� inversion� and Snodgrass and Kitani�

dis ������ used a geostatistical approach to solve the same problem� These

studies are summarized in Section ��	�

Several controversial statements have been made recently regarding

the strengths and limitations of the TR and MRE methods to reconstruct the

source history of a contamination source �Woodbury and Ulrych� ����� Kabala

and Skaggs� ����� Woodbury and Ulrych� ����b�� Woodbury and Ulrych ������

state that the MRE approach appears �qualitatively superior� to the TR ap�

proach� However� as indicated by Kabala and Skaggs ������� the methods have

not been tested using the same data sets� The methods should be thoroughly

compared before any conclusions can be made concerning the superiority of

one of the methods�

��� Objective

The objective of this research is to provide a thorough and unbiased

comparison of the TR and MRE approaches for reconstructing the release his�

tory of a groundwater contaminant� The MRE method was implemented and
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tested against results Woodbury and Ulrych ������ to ensure that it was cor�

rectly implemented� For the TR method� we used the code and input �les used

by Skaggs and Kabala ������� and we veri�ed that we could reproduce their

results� The methods were then evaluated and compared to determine their

relative e�ectiveness in handling complications that are intrinsic to or may be

encountered in �eld situations�

��� Scope

To allocate remediation costs of a contaminated aquifer� the loca�

tions of all contamination sources and the time�varying release rates from these

sources must be identi�ed� If concentration data are available� inverse methods

can be used to identify contamination sources and release histories� Data can

include samples taken at one location over a period of time� samples taken at

many locations at one time� or a combination of the two� Due to the recent

interest of the source history reconstruction problem �Skaggs and Kabala� �����

����� Woodbury and Ulrych� ����� ����� Snodgrass and Kitanidis� ������ the

scope of this research is limited to reconstructing the release history from a

known contamination source� using data sampled at many locations at a single

time� We address transport of a conservative solute in a one�dimensional� sat�

urated �ow system� Although many methods are available for solving inverse

problems� only two �Tikhonov regularization and minimum relative entropy�

are addressed due to the recent interest in these two methods in the hydrology

literature�



	

��� Background on Contaminant Transport in Groundwater

Groundwater contamination broadly de�nes any constituent that re�

duces the quality of groundwater� Contamination can be chemical� physical

�particulate matter�� or biological �viruses� bacteria�� Chemical contamination

can be broken down further into soluble components and non�aqueous phase

liquid components� Soluble components are dissolved in the groundwater and

are transported with the groundwater as it moves� Non�aqueous phase liquids

are bodies of liquid that are separate from the water and are generally not

transported with bulk groundwater movement� This work addresses transport

of dissolved chemicals in water�saturated porous media�

Transport of soluble chemicals in groundwater is controlled by four

main processes� advection� dispersion� transformation� and sorption� Advec�

tion describes the movement of a contaminant along with the bulk movement of

groundwater� Dispersion describes the spreading of a contaminant as it moves

through the porous media� Transformation includes any process which con�

verts the contaminant into another chemical� examples of such processes are

radioactive decay and biodegradation� Sorption describes the interaction of a

contaminant with the porous media� and tends to retard the movement of the

plume� The processes are described thoroughly in Fetter ����
�� Contaminant

transport may also be a�ected by other processes� such as colloidal transport�

that are not described here�

All soluble contaminants are subject to advection and dispersion� The

extent to which a contaminant is sorbed or transformed depends on the chem�

ical nature of the contaminant and the porous media� Therefore� only the
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processes of advection and dispersion are considered here� Other processes can

be added if necessary� however� if the processes are not modeled accurately� the

uncertainty in the solution to the inverse problem increases� Since our goal is

to compare the results of two inverse methods� and not to evaluate the ability

of an inverse method to handle all naturally�occurring transport phenomena�

we limit our evaluation to only the processes of advection and dispersion�

The governing equation for contaminant transport in groundwater is

the advection�dispersion equation �ADE�� which� for a one�dimensional semi�

in�nite domain� is�

�C

�t
� D

��C

�x�
� v

�C

�x
�����

C�
� t� � Cin�t�

C�x� t�� 
 as x��

C�x� 
� � Co�x�

where C is the contaminant concentration as a function of space �x� and time

�t�� D is the dispersion coe�cient� v is the average groundwater velocity� Cin

is the source history for a source located at x � 
� and Co is the initial spatial

distribution of the contaminant concentration� This form of the ADE is valid

if D and v are constant in space�

The term on the left�hand side of Equation ��� describes the mass

accumulation over time� The �rst term on the right�hand side describes dis�

persion� Dispersion is modeled as a Fickian process� with the dispersive �ux

proportional to the concentration gradient� Physically� dispersion depends on

the spatial variation in local velocity �i�e� the deviation from the mean ground�

water velocity� v�� and therefore is not strictly a function of the concentration
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gradient� However� dispersion is often modeled as a Fickian process because

it is a close approximation and no simple model of the true behavior has been

developed� The dispersion coe�cient is commonly modeled as D � �v� where

� is called the dispersivity� however� we assume that D is independent of v�

With v constant� this assumption seems unnecessary� however� it a�ects the

sensitivity analysis presented in Section 	���
� The dispersion coe�cient� D�

also accounts for molecular di�usion �which is a Fickian process�� however�

we neglect molecular di�usion� since it is generally small relative to dispersion�

The second term on the right�hand side of Equation ��� describes the advective

movement of the contaminant� Advective �ux is proportional to the product

of the mean groundwater velocity and the contaminant concentration�

����� Forward Advection�Dispersion Problem

If the contaminant source location and release history are known� the

advection�dispersion equation can be solved directly using analytical techniques

or numerical simulation to obtain an expression for C�x� t�� This problem is

the forward advection�dispersion problem�

In a forward model� information about the source location and release

history are speci�ed in the boundary conditions for Equation ���� Then� after

specifying the other boundary condition and the initial condition� the ADE is

solved to obtain an expression for C�x� t��

This problem has a unique solution� For simple source history func�

tions� the equation can be solved analytically� For problems involving more

complicated source history functions� Equation ��� can often be solved using
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convolution� because the equation is linear� Numerical solutions are necessary

if the convolution integral is complicated� In any case� a unique solution is

obtained �neglecting truncation and round�o� errors��

����� Inverse Advection�Dispersion Problem

In the source identi�cation problem� the source information is not

available� but measurements of the spatial or temporal distribution of contam�

ination are available� We assume that the source location is known� but the

release history is unknown� Therefore� our goal is to obtain a �discrete� function

for Cin�t�� We use the discrete concentration measurements� C�xj� T �� �where

xj is the jth sampling location� T is the sampling time� and j � �� �� � � � � N �

where N is the number of sampled data�� along with Equation ���� to estimate

the unknown source release history�

This inverse problem is ill�posed and inherently di�cult to solve for

many reasons� Even if the model parameters are known exactly and the sam�

pled data are error�free� the solution to the inverse problem is non�unique� A

more complete discussion is given in Chapter ��

The inverse problem is further complicated by inexact information�

In reality� the data contain measurement error� so the true solution will not �t

the data exactly� Also� the parameter values �v and D� are not known exactly�

In Equation ���� these values are assumed to be constant in space and time�

however� they generally vary in space�time and cannot be modeled accurately�

Furthermore� the Fickian model for dispersion is known to be incorrect� and

we have not accounted for all the processes that a�ect contaminant transport�
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An additional complication is that dispersion is a smoothing process�

therefore the structure in the source history will be smoothed out over time

and some information about these features will be lost� If data are sampled

after some structure of the input function �source� has been lost� it may not

be possible to reproduce the exact structure with an inverse model�

Inverse problems are more di�cult to solve than forward problems�

The inverse solution cannot be obtained directly� and the solution� if it exists� is

not necessarily unique� Several techniques have been developed to solve inverse

problems� A brief description of two classes of techniques �regularization and

maximum entropy� is given in Chapter ��

��� Literature Review on Source History Problems

Several researchers have used inverse methods to identify the location

and release history of a source of groundwater contamination� In all of the

studies� a hypothetical true source was generated� and the ability of the inverse

technique to reproduce the true solution was evaluated� No studies were found

that involved real data� The source history reconstruction problem studied in

this research follows the work of Skaggs and Kabala ������� who used Tikhonov

regularization to solve the inverse problem� and Woodbury and Ulrych �������

who used minimum relative entropy inversion� In other studies� di�erent meth�

ods have been used to solve the same inverse problem� For example� Skaggs

and Kabala ����	� used the method of quasi�reversibility� and Snodgrass and

Kitanidis ������ used a geostatistical approach� Later� Woodbury et al�� ������

extended the MRE approach to a three�dimensional plume� In addition� studies
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have been done on source history reconstruction for other groundwater contam�

ination problems �e�g� Gorelick et al�� ���
� Wagner� ������ These works are

described here�

Skaggs and Kabala ������ used Tikhonov regularization to recon�

struct the release history for a point source of contamination in a one�dimen�

sional �ow �eld� They solved the Fredholm integral equation

C�x� T � �
Z T

�
Cin�t�f�x� T � t� dt � �����

where C is concentration� x is the spatial location �dimensionless�� T is sam�

pling time �dimensionless�� Cin�t� is the input concentration at the source

�taken to be at x � 
�� t is the source release time �dimensionless�� f�x� t�

is the solution to Equation ��� with a pulse input at x � 
 and t � 
� and

Co�x� � 
� The true source history function was

Cin�t� � exp

�
�

�t� �

��

��	��

�
� 
�
 exp

�
�

�t� �	
��

���
��

�
� ���
�


�	 exp

�
�

�t� ��
��

�����

�
�

and is shown in Figure ���� Skaggs and Kabala reconstructed the source his�

tory using two di�erent spatial data sets�one sampled at T � 


 and one

sampled at T � �

� They used a discretized form of the integral equation

������ Twenty��ve discrete sampling locations were used� The complete plume

distribution and the sampling locations are shown in Figure ��� for v � ��


and D � ��
� The regularized source history function was discretized into �



points� uniformly�spaced in time �from t � 
�
� to t � �	
 for data sampled

at T � 


� and from t � 
�
� to t � 


 for data sampled at T � �

��
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Figure ���� True source history function used by Skaggs and Kabala �������

Note that at T � 


� only two of the three peaks in the source function are

distinguishable� and at T � �

� the plume appears to have only one peak�

Thus� dispersion results in the loss of information over time� Skaggs and Ka�

bala ������ obtained a reasonable reconstruction of the source history when

exact data �at either T � 


 or T � �

� and accurate parameter values were

used�

Skaggs and Kabala ������ also reconstructed the source history using

noisy data� The sampled data were calculated by Cmeas�xj� T � � Cexact�xj� T ��

��jCexact�xj� T �� where Cmeas�xj� T � is the measured concentration at location

xj at time T � xj is the spatial coordinate of the jth sample� Cexact�xj� T � is

the true concentration at xj at time T � � is the noise level� and �j is the

jth independent random deviate �standard normal�� They used a moderate

noise level of � � 
�
	� and a high noise level of � � 
��� With noisy data

�moderate or high noise� sampled at T � 


� the reconstructed source history

matches the temporal position of the peaks in the true source history� but

the magnitudes are less accurate� With noisy data �moderate or high noise�
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Figure ���� True plume at T � 


 and T � �

 used by Skaggs and Kabala
������� Solid line� true plume at T � 


� dashed line� true plume at T � �

�
circles� sample locations at T � 


� triangles� sample locations at T � �

�

sampled at T � �

� the combined e�ects of measurement error and loss of

information due to dispersion result in a poorly�reconstructed source history�

These results are presented in Section 
����� in which the examples of Skaggs

and Kabala ������ are reproduced�

Skaggs and Kabala ������ also tested the e�ects of inexact parameter

values by varying v and D by �	� from their true values� while using exact

data �� � 
�� Their results show that overestimating v resulted in a slightly

more disperse source function that is shifted to later times� while the opposite

occurred for an underestimation of v� Overestimating D resulted in a less

disperse source history function� while underestimating D resulted in a more

disperse source function�

Woodbury and Ulrych ������ used minimum relative entropy inver�

sion to reconstruct the release history for the problem shown in Equation ���

with the true source history function shown in Equation ��
� They discretized
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the equation using �
 discrete spatial sampling locations� For a sampling time

of T � 


 days� the data were uniformly spaced between x � 	 m and

x � 


 m� and the regularized source history function was discretized into

�

 points� uniformly�spaced in time� from t � 
 to t � 


 days� For sampling

at T � �

 days� sampled data were uniformly spaced between x � 


 m and

x � �

 m� and the source function was discretized into �

 uniformly�spaced

points between t � 
 and t � �

 days��

Woodbury and Ulrych ������ used MRE to reconstruct the source

history using sampled data at T � 


 days with three di�erent prior expected

value functions �boxcar� exponential� and Gaussian�� In all cases� the recon�

structed source functions matched well with the true function� They also used

sampled data from T � �

 days with a boxcar prior expected value function�

The reconstructed source history matched the �rst and third peaks in the true

history� however� the second peak was missed� Results from equivalent simu�

lations are presented in Section 
����� in which the code used in this research

is veri�ed by comparing the results to those of Woodbury and Ulrych �������

Note that the spatial and temporal discretizations of Woodbury and Ulrych

������ are di�erent from those of Skaggs and Kabala �������

Woodbury and Ulrych ������ also reconstructed the source history

using noisy data� They calculated the sampled data from Cmeas�xj� T � �

Cexact�xj� T � � ��j� Unlike Skaggs and Kabala� the magnitude of their noise

was independent of the true concentration� Woodbury and Ulrych ������ used

two di�erent methods to account for noisy data� The �rst method involved

�Personal communication with A�D� Woodbury� February �� �����
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modifying the MRE algorithm to account for noise� this approach is presented

in Appendix B of this thesis� The second method involved �ltering the data

with a Butterworth low�pass �lter to remove the high�frequency noise compo�

nents� Woodbury and Ulrych ������ used noise levels of � � 
�

	� 
�
�� and


�
	 with a Gaussian prior distribution and sampled data from T � 


 days

to reconstruct the release history using the �rst method for handling noisy

data� The results show that the three peaks of the distribution were captured�

however the magnitudes of the peaks were not preserved� Using a noise level

of � � 
�
� and the �ltering method to account for noisy data� they obtained a

source function that matched the timing of the �rst and third peaks� but not

the magnitudes�

Skaggs and Kabala ����	� used the method of quasi�reversibility to

solve the inverse problem studied by Skaggs and Kabala ������� using perfect

data sampled at T � 


� In its usual form� the advection�dispersion equation

is unstable for a negative time step because of the di�usion term� In the method

of quasi�reversibility� the di�usion operator is replaced by a similar operator

that is stable for a negative time step� Then� a forward problem is solved in

reversed time� yielding an approximation to the source release history� This

method was computationally more e�cient than Tikhonov regularization� but

it did not recover the source history as well �Skaggs and Kabala� ���	��

Snodgrass and Kitanidis ������ used a geostatistical approach to solve

the same inverse problem� They treated the source history as a random func�

tion� and solved for its expected value� This procedure is carried out by �rst

selecting a model covariance function� with a known functional form and un�

known parameter values� A covariance matrix is created from this function�
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and the values of the unknown parameters are estimated through maximum

likelihood estimation� Using these estimates the expected value and covariance

of the source history function are obtained� If the results are unconstrained� the

solution may contain negative values� however� the results can be constrained

to be positive� Other inversion techniques such as Tikhonov regularization are

special cases of this method� if the covariance function is chosen appropriately

�Snodgrass and Kitanidis� ������

Snodgrass and Kitanidis ������ solved the source history reconstruc�

tion problem using data sampled at T � 


� at the same sampling loca�

tions used by Skaggs and Kabala ������ ���	� �shown in Figure ����� The re�

constructed source history function was discretized into 


 uniformly�spaced

points between t � 
 and t � 


� With exact data� a Gaussian covariance�

and implementing the non�negativity constraint� they obtained a reasonable

reconstruction of the source history function� With sparse data and large mea�

surement error� they reproduced the early and late peaks of the true source

history function� however� the magnitudes of these peaks were underestimated�

Woodbury et al� ������ used minimum relative entropy inversion

to reconstruct the source history function shown in Equation ��� for a three�

dimensional plume� In one case� they used perfectly sampled data from one

location �directly downgradient from the source� at 
� uniformly�spaced time

intervals between t � 
 days and t � 
�
 days� They discretized the source

history function into 
�
 uniformly�spaced points between t � 
 days and

t � 
�
 days� The reconstructed source functions agreed well with the true

function� The authors also introduced the relative entropy measurement� which

is a measure of the resolution of the reconstructed source function� For this
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problem the resolution function showed that although the reconstructed solu�

tion agreed well with the true solution� the resolution was poor near the peaks�

In another case� they used noisy data �with the same formulation as Woodbury

and Ulrych� ����� with � � 
�
�� The solution showed three peaks of approxi�

mately the same magnitude as the true source function� however the positions

of the peaks were shifted slightly�

Gorelick et al� ����
� used linear programming to estimate the steady

state contaminant �ux from a leaking pipe system� They assumed that a

pipe could be divided into discrete sections� with pipe leakage de�ned by the

mass �ux rate out of each section of the pipe� Using known leakage rates�

they used a forward model to calculate concentration at a few hypothetical

sampling wells� then added noise to the data� Assuming perfect knowledge of

the system parameters� they used linear programming to attempt to determine

the leakage rate from each pipe section� When the number of leaky pipe sections

were known exactly� the model was fairly accurate� However� the results were

sensitive to measurement errors�

Gorelick et al� ����
� also used linear programming and multiple re�

gression to estimate time�dependent contaminant releases from �ve disposal

wells� The releases from the disposal wells were assumed to be constant over

discrete time intervals� and a known number of time intervals was used� They

created true release histories from the �ve wells� and generated temporal con�

centration distributions for three locations downstream of the disposal wells�

With noisy data and perfect knowledge of the system parameters� they repro�

duced the releases from the disposal well using linear programming and multiple

regression� Their solution matched the true releases well� however� they used a
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large quantity of time�dependent data� which is not generally available for real

situations�

Wagner ������ used maximum likelihood estimation to determine

�ow and transport parameter values� including source characteristics� The

author speci�ed parameter values and then solved a two�dimensional coupled

�ow �steady�state� and transport �transient� model to obtain hydraulic head

and concentration �elds for three di�erent times� Heads and concentrations

were sampled at �fteen locations at the three available times� and normally�

distributed random noise was added to the measurements� These data were

used in the maximum likelihood method to estimate values of six �ow and

transport parameters� and from zero to two source characteristics� In one case�

they estimated only the �ow and transport parameters� and assumed that the

source characteristics were known exactly� In a second case� they assumed that

the source location and release time were known� and estimated the values of

the �ow and transport parameters and the uniform �ux rate at the source� In

a third case� the source release time was discretized into two periods� and the

uniform �ux rate for each period was estimated� In a fourth case� two possi�

ble source locations were identi�ed� and the �ux rate from each location was

estimated� The results showed that the parameter uncertainty increases with

the number of unknown parameters �Wagner� ������ Using this method to re�

produce the source history function shown in Equation ��� would require many

discrete time periods� Although the parameter uncertainty would increase with

the additional unknown parameters� we cannot speculate as to the magnitude

of this increase� and this method would probably work poorly in practice�



Chapter �

Inverse Methods

The Fredholm integral equation of the �rst kind is a general equation

describing a linear system�

d�x� T � �
Z T

�
f�x� t�m�t�dt � �����

where d�x� T � is measured data as a function of location� x� at sampling time�

T � f�x� t� is the kernel function that describes the physics of the linear system�

and m�t� is the model of the system� as a function of time� t� In a forward

problem� the model and kernel are known� and the state of the system at a later

time� T � can be obtained by evaluating the integral� In an inverse problem� the

data and kernel are known� and the Fredholm integral equation must be used

to estimate the model� m�t��

To solve the inverse problem� the Fredholm integral equation can be

discretized into a matrix equation�

d � Gm � �����

where d is an N � � vector of measured data sampled at discrete locations�

N is the number of data points� G is an N � M matrix of values of the

kernel function scaled by the temporal discretization� m is an M � � vector

of unknown model parameters� and M is the number of model parameters�

��



��

In the source history reconstruction problem� the ith element of the vector m

represents the source concentration at time ti �i � �� �� � � � �M�� the jth element

of the vector d is the sampled concentration at location xj �j � �� �� � � � � N��

and the j� ith entry in the matrix G represents the kernel function evaluated

at time T � ti and location xj� The kernel function is the solution to the

advection�dispersion equation for a pulse input at the source location� scaled

by the temporal discretization�

Most inverse problems are ill�posed and therefore di�cult to solve�

For a problem to be well�posed� it must satisfy the requirements of existence

and uniqueness� and the solution must depend continuously on the data� In

most inverse problems� at least one of these three requirements is not satis�

�ed� Existence is satis�ed in an inverse problem with perfect data� because

the data must be from a physically plausible situation� However� if the data

contain measurement error� an accurate solution may not exist �Sun� ������ In

general� inverse problems are non�unique� Since the data are not exact� many

solution can match the data to within a reasonable tolerance� Also� because

the integral equation is discretized� the functions corresponding to the data and

kernel are only known at a discrete number of points� No information is avail�

able regarding the behavior of the system at locations that were not sampled�

Many alternative models exist that match the data at the sampled locations�

therefore� the solution to the discretized inverse problem in non�unique� A

problem is ill�posed if a small change in the data results in a corresponding

small change in the solution� i�e� if the solution does not depend continuously

on the data �Parker� ������ In general� solutions to inverse problems do not de�

pend continuously on the data� therefore� the unavoidable measurement errors
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and numerical errors often lead to inaccurate results�

Many methods have been developed to solve inverse problems� Some

methods solve for one possible solution to the inverse problem that matches

the data to within a reasonable tolerance� other methods solve for a probability

density function of possible solutions� Because of measurement error� the true

model will produce results that do not match the measurements exactly� If

the solution does match the data� then the model is reproducing some of the

measurement error�

The two inverse methods that we use in this research are Tikhonov

regularization and minimum relative entropy �MRE� inversion� Tikhonov reg�

ularization is a classical inverse method based on the least squares solution�

with regularization to improve the stability of the equation� Minimum rela�

tive entropy inversion belongs to the class of Bayesian methods in which the

solution parameters are treated as random variables with a joint probability

density function� In this remaining sections in this chapter� a brief� general

discussion of inverse methods are presented� and Tikhonov regularization and

MRE inversion are described in more detail�

��� Regularization Methods

In regularization methods� the ill�posed inverse problem is replaced

with a family of similar well�posed problems through the introduction of a

regularization operator and a regularization parameter� The goal is to �nd the

model that best approximates the solution of the ill�posed problem by �nding

an exact solution to a similar well�posed problem�



��

In this section� we de�ne the necessary properties of the regulariza�

tion operator and parameter for any regularization method� Then� we discuss

the selection of the regularization operator and parameter for the method of

Tikhonov regularization� which is the regularization method used in this re�

search�

����� Overview of Regularization Methods

The exact solution of Equation ��� cannot be obtained directly be�

cause the measured data are noisy� and the data vector� d� is not known exactly�

The actual data vector can be expressed as d�� where � is the noise level given

by jjd��djj � �� The solution to the actual problem is my� where my � Gyd��

and Gy is the generalized inverse of G� The operator� Gy� is unstable� therefore

jjm�Gyd�jj may be large� even if jjd� � djj is small�

The regularized solution of Equation ��� can be expressed as m�
� �

R�d
�� where � is the regularization parameter� R is the family of regularization

operators� and R� is a particular regularization operator from the family� R�

that is used to obtain the regularized solution� The regularization operator is

a non�negative stabilizer that controls the sensitivity of m�
� to perturbations in

the true data� d �Lukas� ���
�� The regularization operator must satisfy the

following properties�

� The operator must be stable�

� The operator must depend on G�

� The regularized solution must approach the true solution as �� 
�



��

The �rst property ensures that the solution depends continuously on

the noisy data� d�� The second and third properties ensure that the behavior of

the regularized solution is similar to that of the true solution� The particular

member �R�� of the family of operators �R� is de�ned through the selection of

the regularization parameter� �� which must be chosen in such a way that the

third property is met� Therefore� the regularization parameter must have some

dependence on the noise level� �� or on the noisy data� d�� or both �Engl et al��

������

Several regularization methods have been developed �cf� Dimri� �����

Engl et al�� ����� Lukas� ���
�� The methods di�er in their formulation of the

regularization operator and selection of the regularization parameter� Tikhonov

regularization was used in this research� and is described in detail in the fol�

lowing discussion�

����� Tikhonov Regularization

Regularization Operator

With Tikhonov regularization �Tikhonov and Arsenin� ������ the dis�

cretized form of the ill�posed Fredholm integral equation �Equation ���� is re�

placed by a well�posed minimization problem� The expression to be minimized

is

R��d�� � jjGm� d�jj� � �� jjL mjj� � ���
�

where � is the regularization parameter� L is an operator matrix� and jj � jj

denotes the L� �Euclidian� norm� The �rst term on the right�hand side of



�


Equation ��
 is the discrepancy term and represents the square of the norm

of the di�erence between the measured data and the model�predicted system

state� The second term on the right�hand side of Equation ��
 is the regular�

ization term and represents the square of the norm of a speci�c property of the

model that depends on the operator matrix� L�

Useful choices of the operator matrix� L� are the derivatives of the

discrete form of m�t� with respect to t� With L � IM �
th derivative�� where

IM is the M �M identity matrix� the norm of the model is minimized �zero�

order regularization�� To minimize the �rst derivative of the model ��rst�order

regularization�� we have

L �

�
�����
�� � 
 
 � � �

 �� � 
 � � �

 
 �� � � � �
���

���
���

���
� � �

�
����	 � �����

where L is an M � � �M matrix� To minimize the second derivative of the

model� or to maximize the smoothness of the model �second�order regulariza�

tion�� we use

L �

�
�����

� �� � 
 � � �

 � �� � � � �

 
 � �� � � �
���

���
���

���
� � �

�
����	 � ���	�

where L is an M � � �M matrix� The choice of L depends on the desired

properties of the regularized solution�

The regularization term stabilizes the problem� therefore� the mini�

mization of R� in Equation ��
 is a trade�o� between matching the data and

stabilizing the solution� A large value of � produces a stable solution� how�

ever it may not adequately satisfy the original problem� A small value of �



��

could be expected to minimize the discrepancy� however� the problem then is

approaching the original ill�posed problem� and is unstable �Lukas� ���
��

The Tikhonov regularization solution is found by minimizing R��d���

For zero�order regularization� this is a modi�ed least squares solution� m�
� �

�GTG � ��I���GTd� �Engl et al�� ������ In general terms� the minimum�

norm least squares solution to the regularized problem is m�
� � �GTG �

��LTL���GTd�� With this basic theory� no constraints are made on the solu�

tion� however� with some modi�ed approaches� the solution can be constrained

to physically reasonable ranges� For example� we know that concentration is

non�negative� therefore� we can constrain the solution so that each element of

m�
� is non�negative�

Selecting the Regularization Parameter

Several methods can be used to select the optimal value of the reg�

ularization parameter� �� These methods include the discrepancy principle�

generalized cross�validation� F�test� and L�curve�

The discrepancy principle states that the quality of the solution must

be comparable to the quality of the input data �Groetsch� ������ With this

method� the regularization parameter should be selected so that

jjGm�
�� d�jj � � � �����

There is a unique value of ���� that satis�es this equation �Groetsch� ������

In the generalized cross�validation approach �Wahba� ������ the reg�



�	

ularization parameter� �� is determined through the ratio

G��� �
jjGm�

�� d�jj�

�Tr�I�GG�� �
�����

where �Tr� denotes the trace and G� is the regularized pseudo�inverse of G�

such that m�
� � G�d�� The optimal choice of � is the value that minimizes

G��� �Wahba� ������

The F�test method �Provencher� ����a� Obenchain� ����� for select�

ing the regularization parameter� �� uses the F�distribution� with P ��� �

P �F ���� ��� ���� where P denotes probability� F is the ratio to be tested� ��

is the number of degrees of freedom associated with the numerator of F � �� is

the number of degrees of freedom associated with the denominator of F � and

F ��� �
�R� �R�o

��Mo

R�o
��N �Mo�

�����

where R� is shown in Equation ��
� �o is a small value of � such that R�o
	

R�� N is the number of data points� and Mo is the number of degrees of

freedom of R� �described below�� The numerator of F ��� characterizes the

bias from regularization� and the denominator characterizes the error associated

with the least squares solution �i�e� no regularization�� A good choice for the

regularization parameter is the value that balances the regularization error and

the least squares error� Thus� � is chosen such that P ��� � 
�	 �Provencher�

����a��

The parameter Mo� in Equation ���� is the number of degrees of free�

dom of R�� which can be expressed as the number of independent parameters

in m� The model vector m contains M parameters� however� the regulariza�

tion makes the model parameters correlated� so we have Mo 	 M �Provencher�



��

����a�� Provencher �����a� suggests using an estimate of the scaled sum of

squared errors of the data�

Mo �
KX
k��

�k � �����

where �k � s�k��s
�
k � ���� sk are the singular values of the regularized matrix

problem �which can be obtained with singular value decomposition�� and K is

min�M�N�� Other methods of calculating Mo yield similar results �Provencher�

����a��

In the L�curve method �Hansen� ������ the norm of the regularization

term jjLm�
�jj is plotted on a log�log plot against the residual norm jjGm�

��d
�jj�

for many values of the regularization parameter �� The resulting curve is called

the L�curve� and illustrates the trade�o� between minimizing the residual and

minimizing the regularization� A sample L�curve plot is shown in Figure ����

The L�curve has two distinct segments� one segment is nearly horizon�

tal� and the other is nearly vertical� In the �at segment� corresponding to large

values of �� the regularization error dominates and the e�ects of the residuals

are dampened� The steep segment of the L�curve corresponds to small values of

�� and the residuals dominate over the regularization� The point of maximum

curvature on the L�curve is near the intersection of the �at and steep segments�

and is called the �corner�� The value of the regularization parameter at the

corner is often the optimal parameter value� in that it balances the trade�o�

between the regularization and residual errors �Hansen� ������
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Uncertainty in the Tikhonov Regularization Solution

The Tikhonov regularization solution can be written as m�
� � G�d��

where m�
� is the solution� G� is the generalized pseudo�inverse of G� and d� is

the data vector� The uncertainty of the Tikhonov regularization solution can be

de�ned by the model covariance matrix� �m� is given by �m � G��d�G��T�

where �d is the covariance matrix of the data� Using the model covariance

matrix� we can de�ne the �

�� � ���� con�dence interval for the solution�

Assuming normally�distributed errors� the �

��� ���� con�dence interval is

mi � 
���ii� where ��ii is the i� ith entry in �m� 
� is a value such that P �Z �

�
�� � ���� and P �Z � 
�� � ������� and P �Z � z� de�nes the probability

that Z � z� and Z is a standard normal random variable� For example� the

�
� con�dence interval is mi � ����	�ii� and P �Z 	 ����	� � 
��	�

For regularized solutions� the covariance matrix tends to underesti�

mate the level of uncertainty� and depends on the value of the regularization

parameter �Provencher� ����a�� therefore� the error bounds are not absolute�

They can be used to compare the relative uncertainty in di�erent regions of

one solution� however� it is not valid to compare the error bounds with those of

other Tikhonov regularization solutions� or with those of solutions using other

inverse methods�

��� Maximum Entropy Methods

The Bayesian approach to solving inverse problems is to treat each un�

known parameter as a random variable that has a true but unknown probability

density function �pdf�� qy� Bayesian methods use available data to develop an



��

estimate� q� of the true pdf for each parameter value� Jaynes ���	�� proposed

the maximum entropy approach for selecting a pdf� The general procedure for

maximum entropy methods is described in the next section� The minimum rel�

ative entropy inversion method� which is a special case of maximum entropy� is

described in more detail in the subsequent section� Minimum relative entropy

is the Bayesian approach used in this research�

����� Overview of Maximum Entropy Methods

The basis of maximum entropy methods is to obtain a probability

density function that agrees with the available data and that avoids bias� To

avoid bias� the probability density function that maximizes the uncertainty

should be chosen �Jaynes� ��	��� According to Shannon ������� the measure

of uncertainty that should be maximized is

H � �
X
i

q�mi� ln q�mi� � ����
�

where q�mi� denotes the probability of occurrence of event mi and H is the

uncertainty� Since Equation ���
 has the same form as the expression for

entropy in statistical mechanics� the term �entropy� has been adopted for this

quantity �Jaynes� ��	���

If a prior estimate� p� of the true probability density function is avail�

able� one can use the prior estimate and the available data to obtain a posterior

estimate of the pdf� According to the principle of minimum relative entropy

�Kullback� ��	��� if a prior distribution is available� the posterior distribution

that avoids bias is the pdf that minimizes the relative entropy� which is ex�







pressed as

H �
X
i

q�mi� ln

�
q�mi�

p�mi�

�
� ������

For continuous distributions� the relative entropy is expressed as �Shore and

Johnson� ���
�

H�q� p� �
Z
q�m� ln

�
q�m�

p�m�

�
dm � ������

The minimum relative entropy �MRE� inversion approach has been

used in groundwater hydrology for parameter estimation �Woodbury and Ul�

rych� ���
� Woodbury et al�� ���	� and for the source history reconstruction

problem �Woodbury and Ulrych� ����� Woodbury et al�� ����� Woodbury and

Ulrych� ����a�� The MRE method is described in the following discussion�

based on the approach taken by Woodbury and Ulrych ����
� ������

����� Minimum Relative Entropy Inversion

With the minimum relative entropy �MRE� approach� the Fredholm

integral equation is discretized into matrix form� The MRE method treats

the elements of the model vector� mi� as random variables� A probability

density function �pdf� is generated for each mi using measured data and prior

information about the ranges and expected values� The solution to the inverse

problem is the best estimate of mi� based on this pdf� In the approach described

here� we use the expected value as the best estimate of mi� other possible choices

include the median and the mode of the distribution�

Since each mi is a random variable� the possible states of the vector

m can be characterized by a multivariate probability density function� Let




�

x denote the set of possible states of m� There exists a true� but unknown�

multivariate pdf� qy�x�� The goal of MRE is to obtain a reasonable estimate of

qy�x��

Woodbury and Ulrych ������ �rst speci�ed a range of possible values

and an expected value for each element of the model vector� m� Next� they

obtained a prior distribution� p�m�� based on the range and expected value�

Finally� they used the measured data� d� and the prior distribution to obtain

a posterior estimate� q�m�� of the true distribution�

Estimating the Prior Distribution

For many parameters� a reasonable upper and lower bound can be

obtained� With these bounds� the base level of information about the model�

m� is a multivariate uniform distribution between these bounds�

b�m� �
MY
i��

�

Ui � Li

for Li � mi � Ui ����
�

b�m� � 
 otherwise

where Ui is the upper bound of parameter mi� Li is the lower bound� and M

is the total number of model parameters�

The entropy of the prior distribution� p�m�� relative to b�m� is

H�p� b� �
Z
m

p�m� ln

�
p�m�

b�m�

�
dm � ������

The above integral is an M �fold integral� with each integrated from Li to Ui�

for i � �� �� � � � �M � The relative entropy� H�p� b�� is minimized� subject to two

constraints�the normalization requirement� which ensures that
R
m p�m�dm �




�

�� and an expected value constraint� For many parameters� an estimate of the

expected value of the parameter is known from prior knowledge� calibration�

or other means� When this estimate of the expected value is available� entropy

minimization is subject to the following expected value constraint�Z
m

mip�m�dm � si i � �� �� � � � �M ����	�

where si is the expected value of model parameter mi� With these constraints�

the objective function to be minimized is

� � H�p� b� � 


Z
m

p�m�dm� �
�

������

�
MX
i��


i


Z
m

mip�m�dm� si

�
�

where 
 and 
i are Lagrange multipliers� The objective function is minimized

with respect to p�m� when the following equality holds�


 � ln

�
p�m�

b�m�

�
� � � 
 �

MX
i��


imi � ������

Solving this equation for p�m� gives

p�m� � b�m� exp

�
��� 
�

MX
i��


imi

�
� ������

The values of the Lagrange multipliers are obtained from the two

constraints� The derivation is shown in Appendix A� The values for 
i must be

obtained numerically� Substituting the Lagrange multipliers into the previous

expression� we obtain the prior distribution� p�m��

p�mi� �

i exp��
imi�

exp��
iLi�� exp��
iUi�
for 
i 
� 
 ������

p�mi� �
�

Ui � Li

for 
i � 
 �

p�m� �
MY
i��

p�mi� �







Estimating the Posterior Distribution

To obtain the posterior estimate of the true distribution� we minimize

the entropy of the posterior distribution� q�m�� relative to the prior distribu�

tion� p�m�� The entropy to be minimized is

H�q� p� �
Z
m

q�m� ln

�
q�m�

p�m�

�
dm � ����
�

where p�m� is given in Equation ����� The entropy minimization is subject

to two constraints�the normalization requirement �
R
m q�m�dm � �� and the

measured data� The data constraint ensures that the model agrees with the

data�

According to the discretization of the Fredholm integral equation

�Equation ����� the relationship between the model and the data is

dj �
MX
i��

gjimi � ������

where gji is the j� ith element of the G matrix� and j � �� �� � � � � N � Since the

model parameters� mi� are random variables� the data elements� dj � are also

random variables� To ensure that the model agrees with the data� the expected

values of the data variables must be equal to the measured data� i�e�

!dj �
Z
m

djq�m�dm � ������

where !dj is the jth measured data point� Substituting Equation ���� into the

previous equation results in the data constraint to be used in the minimization

problem�

!dj �
Z
m

q�m�
MX
i��

gjimidm � ����
�




�

With these constraints� the objective function to be minimized is

� � H�q� p� � 


Z
m

q�m�dm� �
�

� ������

NX
j��

�j

�Z
m

q�m�
MX
i��

gjimidm� !dj

�
�

where 
 and �j are Lagrange multipliers� The objective function is minimized

with respect to q�m� when the following equality holds�


 � ln

�
q�m�

p�m�

�
� � � 
 �

NX
j��

�
�j

MX
i��

gjimi



� ����	�

Solving this equation for q�m� gives

q�m� � cp�m� exp

�
�� NX

j��

�
�j

MX
i��

gjimi


�	 � ������

where c � exp���� 
��

The values of the Lagrange multipliers are obtained from the two

constraints�the normalization constraint and the data constraint� Note that

the measured values are now implicitly contained in the Lagrange multipliers�

�j� The calculations for solving for the Lagrange multipliers are shown in

Appendix B� The values for �j must be obtained numerically� Substituting

the Lagrange multipliers into the previous expression� we obtain the posterior

distribution� q�m��

q�mi� �
ai exp��aimi�

exp��aiLi�� exp��aiUi�
for ai 
� 
 ������

q�mi� �
�

Ui � Li

for ai � 
 �

q�m� �
MY
i��

q�mi� �




	

where ai � 
i �
PN

j�� �jgji�

The solution to the inverse problem is a likely value of m� based on

the probability density function� q�m�� In this research� we use the expected

value of m as the solution� For the ith model parameter� the expected value

of mi is "mi �
R
mmiq�m�dm� Substituting Equation ���� into this expression

and integrating� we obtain

"mi �
�aiLi � �� exp��aiLi�� �aiUi � �� exp��aiUi�

ai �exp��aiLi�� exp��aiUi� 
for ai 
� 


"mi �
Ui � Li

�
for ai � 
 � ������

Note that the measured data invariably contain measurement error�

Therefore� the equalities in Equations ���� and ���
 are not strictly correct�

Equations ���� and ���� for the posterior distribution and "m� respectively�

are correct as written� whether or not the sampled data contain measurement

error �Johnson and Shore� ����� Woodbury and Ulrych� ������ However� the

measurement error is accounted for in the values of the Lagrange multipliers�

�j �See Appendix B��

Uncertainty in the Minimum Relative Entropy Method Solution

For each model parameter� the MRE algorithm calculates the proba�

bility density function� q�mi�� All values of mi for which mi 
� 
 are possible

solution� We take the expected value of m to be the solution� The expected

value is the 	
th percentile probability level� expressed as the value of mi such

that
Rmi

� q�m�
i� dm

�
i � 
�	� The uncertainty in the solution can be expressed

with other probability levels� We de�ne the �

�� � ���� probability interval




�

using the ���� percentile probability level and the � � ���� percentile proba�

bility level� Then� the true value lies within this interval �

�� � ���� of the

time� For example� the �
� probability interval has as its bounds the 	th and

�	th percentile probability levels� which are given by the values of mi such thatRmi

� q�m�
i� dm

�
i � 
�
	 and

Rmi

� q�m�
i� dm

�
i � 
��	� respectively�

��� Comparison of Tikhonov Regularization and MinimumRelative

Entropy Inversion

Tikhonov regularization and minimum relative entropy inversion are

two methods of solving an inverse problem de�ned by an ill�posed Fredholm

integral equation of the �rst kind� In both methods� the integral equation is

discretized into a matrix equation� The physics of the process is assumed to

be known and modeled exactly� Both methods use discrete measurements of

concentration� along with an expression describing the physics of the process�

to reproduce an input function that matches the data to within some de�ned

measurement error�

With Tikhonov regularization� the Fredholm integral equation is re�

placed by a well�posed minimization problem whose solution is close to that

of the original problem� The stabilizer has two components�a regularization

parameter and an operator matrix� The choice of operator matrix de�nes the

order of regularization� which speci�es the feature of the input function that

is minimized �e�g� zero�order regularization minimizes the norm of the input

function� second�order regularization minimizes the oscillatory nature of the

input function�� The choice of operator matrix is somewhat subjective� and




�

depends on the desired nature of the input function� The regularization pa�

rameter describes the relative contribution of the data and the regularizor to

the solution of the inverse problem� With a small value of the regularization

parameter� the solution is unstable but similar to the least squares solution�

With a large regularization parameter� the resulting minimization problem will

be stable� but might not adequately represent the true solution�

With minimum relative entropy inversion� the model parameters to

be estimated are treated as random variables� A probability density function

is obtained for each model parameter� and the expected value is selected as

the most likely value of the model parameter� The posterior distribution is

obtained by minimizing the entropy of the distribution relative to a prior dis�

tribution� while constraining the results to match the measured data� The prior

distribution can be developed so that the mean value and the known bounds

on the parameter values are included in the solution� however� the choice of

these bounds is subjective�

Both methods contain some subjectivity� With Tikhonov regulariza�

tion� the operator matrix and the value of the regularization parameter must be

selected� Methods have been developed to select the value of the regularization

parameter with some physical or mathematical justi�cation� however� it still

remains somewhat subjective� The solution depends heavily on the value of the

regularization parameter� therefore� the dependence of the solution on the sub�

jectivity of the parameter choice cannot be avoided� With minimum relative

entropy inversion� the selection of the prior distribution is subjective� Although

some information� such as the mean value or range of values� is available to

re�ne the prior distribution� the choice of distribution is still subjective�




�

Both methods provide a mechanism for re�ning the solution according

to prior knowledge of the result� With Tikhonov regularization� the choice of

operator matrix can a�ect the shape of the solution� If the solution is known

to be smooth� choosing second�order regularization will preserve the smooth

nature of the solution� With minimum relative entropy inversion� the prior

distribution can be chosen to include only those values that fall within the

known range of parameter values� Also� if the expected value of the parameter

is known� this information can be incorporated into the prior distribution�

One weakness of the basic Tikhonov regularization theory is that

the parameters cannot be constrained with upper or lower bounds� Although

we know that the concentration of a contaminant is always non�negative� the

Tikhonov regularization solution can produce negative results� Modi�ed ap�

proaches of Tikhonov regularization can account for non�negativity constraints�

and the code used in this research� CONTIN �Provencher� ����a� ����b� �����

can handle these constraints�

One potentially signi�cant di�erence between the two methods is in

the treatment of inexact data� With Tikhonov regularization� the noise level

need not be speci�ed� unless the discrepancy principle is used to select the

value of the regularization parameter� If the discrepancy principle is not used�

the inexact data are used directly in the procedure� With MRE� the noise level

must be speci�ed in the data constraint �Equations ���
 and B��� for exact

and inexact data� respectively�� therefore� a reasonable approximation of the

noise level must be speci�ed� Since the noise level is not known in practice�

an incorrect noise level is likely to be used� resulting in an inaccurate data

constraint� and possibly an inaccurate solution�




�

Both methods contain unavoidable subjectivity� and both methods

can incorporate prior knowledge of the model or its parameters� Based on

theory alone� we cannot determine which of the two methods better solves the

source history reconstruction problem�



Chapter �

Application of Inverse Methods to the Source History

Reconstruction Problem

Tikhonov regularization and minimum relative entropy inversion are

used to solve the source history reconstruction problem� described by the fol�

lowing integral equation�

C�x� T � �
Z T

�
Cin�t�f�x� T � t� dt � �
���

where C is concentration� x is the spatial location �dimensionless�� T is sam�

pling time �dimensionless�� Cin�t� is the input concentration at the source

�taken to be at x � 
�� t is the source release time �dimensionless�� and

f�x� T � t� is the solution to the advection�dispersion equation �Equation ����

with a pulse input at x � 
 and t � 
� given by

f�x� T � t� �
x

�
q
�D�T � t��

exp

�
�

�x� v�T � t� �

�D�T � t�

�
� �
���

where v is the groundwater velocity and D is the dispersion coe�cient� To

implement the inverse methods� the integral equation is discretized as �Equa�

tion ����

d � Gm � �
�
�

where d corresponds to the N �length vector of sampled concentrations �dj �

C�xj� T �� j � �� �� � � � � N�� m corresponds to the M �length vector of model

�




��

parameters �mi � Cin�ti�� i � �� �� � � � �M�� and G corresponds to the N �M

kernel matrix �gji � #tf�xj� T � ti��� xj are the sample locations� ti are the

input times� and #t � tk�� � tk�

In this chapter� we discuss the implementation and veri�cation of the

methods used to solve this inverse problem� For all of the veri�cation runs

described in this chapter� the true source history is

Cin�t� � exp

�
�

�t� �

��

��	��

�
� 
�
 exp

�
�

�t� �	
��

���
��

�
� �
���


�	 exp

�
�

�t� ��
��

�����

�
�

and is shown in Figure ���� The values of the transport parameters are v �

� m$d� and D � � m�$d�

��� Source History Reconstruction using Tikhonov Regularization

Skaggs and Kabala ������ used commercially�available software to

solve the inverse problem using the Tikhonov regularization method� In this

research� we used the same software package� including the input �les created

by Skaggs and Kabala� In this section� we discuss some details of the code and

the reproduction of the results of Skaggs and Kabala ������ using the code�

����� Implementation of Tikhonov Regularization

The Tikhonov regularization method was carried out using CONTIN

�Provencher� ����a� ����b� ������ a general purpose Fortran program for ob�

taining the regularized solution of linear integral equations of the �rst kind�

CONTIN can solve up to �fth�order regularization� and uses the F�test to



��

Table 
��� Details of Tikhonov regularization veri�cation runs�
Sample Time Noise Level Parameter Error

Run Number �T � ��� �v or D�

TV�� 


 
 none
TV�� �

 
 none
TV�
 


 
�
	 none
TV�� 


 
�� none
TV�	 �

 
�
	 none
TV�� �

 
�� none
TV�� 


 
 �	� v

TV�� 


 
 �	� v

TV�� 


 
 �	� D
TV��
 


 
 �	� D

choose the value of the regularization parameter� With CONTIN� the solution

can be constrained to be positive� CONTIN estimates the error in the solution

by calculating the covariance matrix of the solution� Skaggs and Kabala ������

used this code for their simulations� with second�order regularization� and with

a modi�cation to include a function to evaluate the kernel� �Equation 
����

����� Veri�cation of Tikhonov Regularization Routine

We obtained the input �les and source code that Skaggs and Kabala

������ used in their analysis� and we reproduced the results of their ten ex�

amples� The details of these examples are outlined in Table 
��� In all cases�

the non�negativity constraint was used� The sampling locations are shown in

�Personal communication with T�H� Skaggs� October ��� ���	�



�


Figure ���� For runs with measurement error� the data were generated using

Cmeas�xj� T � � Cexact�xj� T � � ��jCexact�xj� T �� where �j is a standard normal

random variable� For runs that used a sampling time of T � 


 �dimensionless

time�� the time domain was discretized into �

 uniformly�spaced intervals be�

tween t � 
�
� and t � �	
� For runs using data sampled at T � �

� the time

domain was discretized into �

 uniformly�spaced intervals between t � 
�
�

and t � 


� The results are presented in Figures 
���
��
� and are consistent

with the results presented by Skaggs and Kabala �their Figures �����

Runs TV�� and TV�� used perfect data sampled at T � 


 and

T � �

� respectively� The results show that the reconstructed source history

agrees well with the true source history� The only di�erences are that the

magnitude of the �rst peak is slightly underestimated and the shape of the

second peak is not quite accurate� The regularized solution using data sampled

at T � 


 shows better agreement with the true source history than does

the solution using data sampled at T � �

� This is expected because the

plume at T � �

 is more disperse� and therefore some of the features of the

true source history have been lost� In both cases� the reconstructed plume is

indistinguishable from the sampled data�

Runs TV�
�TV�� used inexact data� and the results show that the

measurement error a�ects the accuracy of the regularized solution� With data

sampled at T � 


 and either moderate �� � 
�
	� or high �� � 
��� noise levels

�Figures 
�
 and 
��� respectively�� the reconstructed source history has three

peaks that somewhat match the timing of the true peaks but do not match the

magnitudes� Using data sampled at T � �

 and moderate noise �Figure 
�	��

the reconstructed source history still has three peaks� although the magnitudes
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are much worse� With high noise �Figure 
���� the important features of the

source history cannot be reconstructed� The reconstructed plumes in all cases

are less accurate than in Runs TV�� and TV���

Runs TV���TV��
 used perfect data sampled at T � 


 to de�

termine the e�ects of using incorrect estimates of the parameter values �v or

D� in the inversion method� In these runs� either the velocity or the disper�

sion coe�cient was changed by 	� �increased in one run� decreased in another
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run�� while the value of the other parameter was unchanged �e�g� Run TV��

uses v � ��
	 and D � ��
�� If velocity is overestimated �Figure 
���� the

regularized solution is shifted later in time and is more disperse� the opposite

occurs if velocity is underestimated �Figure 
���� If the dispersion coe�cient

is overestimated �Figure 
���� the regularized solution is less disperse� and it

is more disperse if the dispersion coe�cient is underestimated �Figure 
��
��

For these simulations� the reconstructed plume is indistinguishable from the

measured data�

��� Source History Reconstruction using Minimum Relative En�

tropy Inversion

We wrote a new MRE program for this research� and we discuss its

implementation and veri�cation in this section� The implementation follows

the approach described in Section ������ however several numerical issues arose

that may not be apparent from the previous discussion� or from Woodbury

and Ulrych ������� Unless otherwise noted� the issues addressed here were not

documented in Woodbury and Ulrych �������

����� Implementation of Minimum Relative Entropy Inversion

We wrote a MATLAB program to implement the minimum relative

entropy inversion method� following the general approach described in Sec�

tion ������ The program is presented in Appendix C�The basic algorithm is�

�� Obtain the data� The data includes a vector of sampled concentrations�

a vector of sampling locations� and the sampling time� All data must be
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sampled at the same time�

�� Select the time discretization for the solution� and choose the upper and

lower bounds and the expected value for each element of the solution

vector� In the remaining discussion� the elements of the solution vector

will be called solution parameters�


� Calculate the prior distribution of each solution parameter �Equation

������

�� Calculate the posterior distribution of each solution parameter �Equa�

tion ������

	� Determine the expected value of the solution parameter from the posterior

distribution� This value is the best estimate of the true solution�

Many equations shown in Section ����� are written in terms of the

upper and lower bounds �Ui and Li� respectively� on the solution parameters�

The code was written with Li � 
� for all i� For Li 
� 
� the problem can be

re�scaled so that the MATLAB program can be used� Rescaling is done by

de�ning "m � "mo � L� where "m is the true solution� "mo is the corresponding

model solution for a zero lower bound and expected values of si � Li� L is the

vector of lower bounds� and si is the prior expected value of the ith solution

parameter� We can solve for "mo using the MATLAB routine� with the data

modi�ed as !dL � !d � GL� where !dL is the data vector used in the MRE

program� !d is the true data vector� and G is the matrix of kernel values� The

upper bounds and expected values must be replaced by Ui � Li and si � Li�



	�

respectively� After "mo is computed with the MRE algorithm� the true solution

is obtained from "m � "mo � L �Woodbury and Ulrych� ������

Items � and � in the MRE algorithm are done by the user prior to

calling the MRE program� and these data are passed into the program� The

prior distribution �Item 
� is calculated from Equation ����� which minimizes

the relative entropy between the prior distribution and the user�speci�ed ranges

and expected values of the solution parameters� Equation ���� is written in

terms of the Lagrange multipliers� 
i� The values for each 
i are determined

individually from Equation A���� which is rewritten here� with Li � 
�

si �
��
iUi � �� exp��
iUi� � �


i �� � exp��
iUi� 
� �
�	�

where Ui is the upper bound of solution parameter i� si is the expected value

of the ith solution parameter� and i � �� �� � � � �M � where M is the number of

solution parameters�

We use the bisection method �Gill et al�� ����� to solve for the values

of 
i is the previous equation� Woodbury and Ulrych ������ also used the

bisection method� The user speci�es the initial interval to be used in the bisec�

tion method� The bisection method is repeated until the size of the interval is

less than a user�speci�ed tolerance� or until the maximum number of iterations

�user�speci�ed value� is reached� The �nal value of 
i is the midpoint of the

�nal interval� Note that the right�hand side of Equation 
�	 is indeterminate

for 
i � 
� In the limit as 
i � 
� we have

lim
�i��

si �
Ui

�
� �
���

Thus� if si � Ui��� then the MRE program assigns 
i � 
� If 
i is small� but

non�zero �i�e� if si 	 Ui���� the left�hand side of Equation 
�	 is subject to



	�

numerical error� To avoid this error� we use an asymptotic approximation to

Equation 
�	 for j
ij 	 ���

si 	
��Ui � �
iU�

i � 

�i U
�
i

�� � ��
iUi � �
�i U
�
i � 
�i U

�
i

� �
���

In the MRE algorithm� we use �� � �
���

The left�hand side of Equation 
�	 is also subject to numerical error

when si 	 Ui� If si 	 Ui� then 
i � �� �
i 	 ��
� in our MRE algo�

rithm�� and we use the asymptotic approximation of 
i � ����Ui � si�� If si

is identically equal to Ui� the corresponding value of 
i would be ��� The

prior distribution� p�mi�� is de�ned such that si � E�mi � given that mi has the

probability distribution p�mi� over the range from mi � 
 to mi � Ui� Thus� if

si � Ui� p�mi� � ��mi�Ui� �where ��mi� is the Dirac delta function�� and the

true solution will always be equal to the upper bound� Therefore� we must have

si 	 Ui for all i� Note that if si 	 Li� then 
i ��� however� since Li � 
� this

situation does not cause numerical error and no asymptotic approximations are

necessary� With these approximations� the bisection method converges quickly

to a solution�

The prior distribution� p�m�� is shown in Equation ���� in terms of the

Lagrange parameters� 
i� If 
i ���� the expressions shown in Equation ����

cannot be evaluated numerically� and asymptotic approximations must be used

�Recall that if 
i � �� then si 	 
� and an asymptotic approximation is not

necessary�� For 
i � �� �
i 	 ��
��� the prior distribution is given by

p�mi� �

�
�
i �� � 
i �Ui �mi� Ui � ��
i � mi � Ui �

 otherwise �

�
���



	�

The posterior distribution �Item �� is calculated from Equation �����

which minimizes the relative entropy between the posterior distribution and the

prior distribution� Equation ���� is written in terms of ai � 
i �
PN

j�� �jgji�

where 
i were addressed in Item 
� �j are Lagrange parameters� gji is the j� ith

element in the discretized kernel matrix� and i � �� �� � � � �M �

Note that Equation ���� was obtained by minimizing the entropy of

the posterior distribution relative to the prior distribution shown in Equa�

tion ����� However� if 
i � ��� an asymptotic approximation to the prior

distribution is used �Equation 
���� For 
i � �� �
i 	 ��
��� the asymptotic

approximation of the posterior distribution is

q�mi� �

�����
����

�

�

i�� � �bi � 
i��Ui �mi��

bi�Ui �mi�
�� bi

�
� 
i� Ui � ��
i � mi � Ui �


 otherwise �

�
���

where bi �
PN

j�� �jgji�

The values of � �� � ���� ��� � � � � �N  T � where T denotes transpose�

are calculated from Equation B��� using the Newton�Raphson method� Equa�

tion B��� is restated here for completeness�

F ���j � !dj �
MX
i��

gji "mi��� � ��
�j
jj�jj

� �
��
�

where !dj is the jth measured data point� � is the standard deviation of the mea�

surement error� � is the scaling factor in the data constraint �see Equation B����

and "mi��� is the expected value of the ith solution parameter� Equation ����

shows the expression for "mi when the posterior distribution can be expressed as

Equation ����� However� when the asymptotic approximation shown in Equa�

tion 
�� is used for the posterior distribution� an asymptotic approximation of



	�

"mi must be used� For 
i � �� �
i 	 ��
��� we have

"mi �
�



Ui �

�� �bi � 
i�Ui



i
�

�

�
�i

�
Uibi

�
bi
�

� 
i



� bi � 
i

�
� �
����

When ai approaches zero� or ��� solving for "mi using Equation ����

is subject to numerical error� To avoid this error� we use asymptotic approx�

imations to these limiting values� For ai � 
 �jaij 	 �
���� an asymptotic

approximation to Equation ���� is

"mi 	
��Ui � �aiU�

i � 
a�iU
�
i

�� � ��aiUi � �a�iU
�
i � a�iU

�
i

� �
����

For ai � �� �ai 	 ��
��� the asymptotic approximation is "mi 	 Ui � ��ai�

and for ai � �� �ai � �
��� the asymptotic approximation is "mi 	 ��ai�

The Newton�Raphson method iteratively solves for the zeroes of E�

quation 
��
 using �Equation B����

�
k � �

k�� �

�
�F

��

�����
�

k��


��
Fk�� � �
��
�

where the superscripts denote the iteration� and the terms of the Jacobian

matrix� �F���� are shown in Equation B��
� The initial values of � are

�j � �� Equation 
��
 is su�ciently non�linear so that the step size calcu�

lated from the previous equation is not necessarily optimal� Therefore� we use

the Newton�Raphson method to calculate the optimal step direction� then� we

use a univariate golden section search �Gill et al�� ����� in that direction to

calculate the step length that minimizes jjF���jj� The process is repeated un�

til jjFjj��� � jj!djj� is less than a user�speci�ed tolerance� We have found that

the condition number of the Jacobian matrix can be high when � � 
� To

reduce the condition number� we perform row�scaling on the Jacobian matrix�



�


It is possible to substantially reduce the condition number by including a small

amount of noise� at a level that is negligible compared to the true data values�

The equation for the elements of the Jacobian matrix �Equation B��
�

contains the partial derivative � "mi��ai� which is given by Equation B��� and

repeated here �with Li � 
��

� "mi

�ai
�

a�iU
�
i exp ��aiUi�� �� � exp��aiUi� 

�

a�i ��� exp��aiUi� 
� for ai 
� 


� "mi

�ai
� �

U�
i

��
for ai � 
 � �
����

This equation is subject to numerical error when ai approaches zero� or ���

therefore� we use asymptotic approximations to these limiting values� For ai �


 �jaij 	 �
���� an asymptotic approximation to Equation 
��� is

� "mi

�ai
� �U�

i

�	 � �	aiUi � �a�iU
�
i

��
 � ��
aiUi � �
	a�iU
�
i

�
��	�

For ai ��� �jaij � �
��� an asymptotic approximation to Equation 
��� is

� "mi

�ai
� �

�

a�i
� �
����

When 
i � ��� the partial derivative� � "mi��ai� in Equation B��


is replaced with � "mi��bi� From Equation 
���� we see that as 
i � ��

�
i 	 ��
���

� "mi

�bi
�

	Ui

�
i
�

��� � �biUi�

�
�i
� �
����

After the optimal values of the Lagrange parameters� �� are obtained�

these values are used in Equation ���� or Equation 
��� to calculate the best

estimate of the solution parameters� "m� This step �Item 	� completes the basic

MRE algorithm�



��

Table 
��� Details of MRE veri�cation runs�
Expected Value Sample Time Noise Level

�si� �T � ���
Run Number �� �days �� �

MV�� boxcar 


 

MV�� exponential 


 

MV�
 Gaussian 


 

MV�� boxcar �

 

MV�	 Gaussian 


 
�

	
MV�� Gaussian 


 
�
�
MV�� Gaussian 


 
�
	

����� Veri�cation of Minimum Relative Entropy Routine

We veri�ed the MATLAB MRE program by running the same exam�

ples described in Woodbury and Ulrych ������� and comparing our results to

their reported results� Woodbury and Ulrych ������ presented results of seven

examples� The details of these examples are outlined in Table 
���

For runs using data sampled at T � 


 days� the sampling locations

are at 	 m�intervals between 	 m and 


 m� For sampling at T � �

 days� the

sampling locations were at 	 m�intervals between 


 m and �

 m �Woodbury

and Ulrych� ������ For runs with inexact data� random measurement error

was added using Cmeas�xj� T � � Cexact�xj� T � � ��j� Woodbury and Ulrych

������ used two methods for handling inexact data with the MRE� In the �rst

method� described in Section ����� and Appendix B� the data constraint in

the MRE method is modi�ed to account for the inexact data �the noise level

must be speci�ed�� In the second method� the raw data are pre��ltered using

a Butterworth low�pass �lter to remove the high�frequency noise components�



��

The �ltered data are then treated as noise�free in the MRE method� In this

research� we used the �rst method for handling inexact data� we were unable

to reproduce the results of the �ltering method�

For sampling at T � 


 days� the time domain was discretized into

�

 uniformly�spaced intervals between t � 
 days and t � 


 days �Woodbury

and Ulrych� ������ For sampling at T � �

 days� the time domain was

discretized into �

 uniformly�spaced intervals between t � 
 days and t �

�

 days�� The expected value functions were discretized to correspond to these

discretized times� The equation used for the boxcar expected value function

was

si �

�
� �

 � ti � ��	 �

 otherwise �

�
����

where � � 
�� for Run MV�� �Woodbury and Ulrych� ������ � � 
��� for

Run MV��� � and ti is in units of days� The equation used for the exponential

expected value function was �

si � exp


�


���ti
	


�
� �
����

where ti is in units of days� The equation used for the Gaussian expected value

function was 	

si � exp

�
�

�ti � �	
��

���
��

�
� �
��
�

�Personal communication with A�D� Woodbury� February �� �����
�Ibid�
�Ibid�
�Ibid�



�


where ti is in units of days� The lower and upper bounds on all model param�

eters were 
 and ���� respectively� 
 For all runs� the stopping tolerance was

�
�� for the 
 calculations� and �
�� for the � calculations�

The results of the seven veri�cation examples shown in Table 
��

were compared to those of Woodbury and Ulrych ������� For each simulation�

we present plots showing the true and �tted source history functions� along

with the expected value function used in the simulation� and the 	th and �	th

percentile probability levels� which corresponds to the �
� probability interval�

For each simulation� we also present the true plume� sampled data� and �tted

plume�

In Runs MV���MV�
� we used perfect data sampled at T � 


 days

and three di�erent expected value functions �boxcar� exponential� and Gaus�

sian� respectively�� The results are shown in Figures 
����
��
� for Runs MV�

� through MV�
� respectively� In all cases� the reconstructed source history

agrees well with the true source history� the only di�erence is that the magni�

tude of the �rst peak is slightly increased� These results are similar to those

of Woodbury and Ulrych �their Figures �� �� and 	�� The 	th and �	th per�

centile probability levels bracket the true source history function at all times�

although the results of Woodbury and Ulrych show a narrower spread in the

probability levels� The sampled and �tted spatial plume concentrations are

nearly identical�

In Run MV��� we used perfect data sampled at T � �

 days� and a

�Ibid�
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boxcar expected value function� The results are shown in Figure 
���� The re�

constructed source history has a similar structure as the true solution� however�

the timing of the �rst peak is shifted slightly� and the magnitudes of the �rst

and third peaks are slightly inaccurate� The results presented by Woodbury

and Ulrych �their Figure �� for this case are smoother� with the �rst and sec�

ond peaks indistinguishable� The di�erence may be caused by using di�erent

stopping criteria� di�erent expressions for the asymptotic approximations� or

by using di�erent solution methods for computing the optimal values of �� As

with Runs MV���MV�
� the 	th and �	th percentile probability levels bracket

the true source history functions at all times� but those of Woodbury and Ul�

rych have a narrower spread� Again� the sampled and �tted spatial plume

concentration are nearly identical�

In Runs MV�	�MV��� we used inexact data sampled at T � 


 days

and a Gaussian expected value function� The noise levels were 
�

	� 
�
�� and


�
	� respectively� The results are shown in Figures 
��	�
���� for Runs MV�	

through MV��� respectively� In all cases� the middle peak is essentially indistin�

guishable from the �rst peak� The only exception is the reconstructed source

history for Run MV��� which shows the middle peak� however� this peak is

likely a result of the overestimated value of the concentration sampled near

x � ��
 �See Figure 
���c�� In general� the timing of the �rst and third peaks

in Runs MV�	�MV�� agree well with the true source history� however the

magnitudes of these peaks are less accurate� The reconstruction of the magni�

tudes of the peaks becomes worse as the noise level increases� The 	th and �	th

percentile probability levels bracket the true source at all times� and the �tted

spatial plume concentrations match the data to within the noise level� These
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�

results are similar to those of Woodbury and Ulrych �their Figures �
� ��� and

���� however they were able to recapture to some degree the middle peak in

the true source history function�

We cannot directly compare our results to those of Woodbury and

Ulrych ������ because the random noise is di�erent in each case� Each set of

random noise produces a di�erent set of inexact data� and therefore produces

a di�erent solution to the source history reconstruction problem� Therefore�
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the shape of the reconstructed release history and its agreement with the true

source history will be di�erent for each set of random noise� and we cannot

compare the results�

��� Summary of Implementation and Veri�cation

The results presented here verify that we can reproduce the results of

Skaggs and Kabala ������ using their input �les and the CONTIN code� The

results also verify that the MRE algorithm has been implemented correctly�

since our results are similar to those of Woodbury and Ulrych ������ for the

same cases� Also� the results are consistent with the expected results�i�e�

the reconstructed source history is very close to the true source history when

perfect data are used� and becomes less accurate as the noise level of the data

increases�



Chapter �

Evaluation of Parameter Selection for the Inverse

Methods

The purpose of this research is to provide a thorough and unbiased

comparison of two methods �Tikhonov regularization and minimum relative

entropy inversion� for reconstructing the release history of a groundwater con�

tamination source� As discussed in Section ��
� each of the methods contain

some subjectivity� With Tikhonov regularization� the choice of the regulariza�

tion parameter and the order of regularization is subjective� and with MRE�

the upper and lower bounds and expected values for the solution parameters

are subjective� In this chapter� we present results of several analyses regarding

the sensitivity of the inverse solution to these subjective parameters�

��� Evaluation of Parameter Selection for Tikhonov Regularization

The solution to the source history reconstruction problem using Tik�

honov regularization depends on the value selected for the regularization pa�

rameter� �� and on the regularization order� In this section� we evaluate the

e�ects of these two parameters on the solution to the inverse problem�

�




��

����� Evaluation of the Regularization Parameter Selection

The regularization parameter� �� determines the trade�o� between

matching the data and regularizing the problem� A high value of the regular�

ization parameter results in a smooth solution� while a low value results in a

solution that matches the data more closely� Several methods of selecting the

optimal regularization parameter were discussed in Section ������ In general�

for a given problem� each method will de�ne a di�erent optimal value of the

regularization parameter� To analyze the sensitivity of the reconstructed source

history to the regularization parameter selection method� we used two di�erent

selection methods�the F�test method and generalized cross�validation �GCV��

In CONTIN� the regularization parameter is selected using the F�test

method� CONTIN systematically chooses �n� di�erent values of �� where n� is

user�speci�ed �the default value is n� � ��� and obtains the regularized solution

for each of these values� For each �� the value of the F ratio �Equation ����

is calculated� and the regularized solution is printed in the output �le� The

optimal solution is the one for which P ��� � P �F ���� ��� ��� is closest to 
�	

�parameters are de�ned in Section �������

To implement the generalized cross�validation method� we used each

of the �n� values of the regularization parameter selected by CONTIN and

the corresponding regularized solutions� to evaluate the ratio� G���� shown in

Equation ���� The chosen value of � was the value of these that minimized

G����

We tested four di�erent scenarios to determine the e�ect of the regu�

larization parameter selection method on the solution to the inverse problem�



�	

Table ���� Test scenarios for the analysis of the regularization parameter selec�
tion methods�

True Source Noise Level
Run Number History Function ���

RP�� Square 

RP�� Smooth 

RP�
 Square 
�
	
RP�� Smooth 
�
	

The four scenarios are shown in Table ���� In all cases� twenty��ve data points

were sampled at T � 


 �x � �
�
�� �	� 	
� �
� �
� � � � � ��
� �	
� ��	� 


 �� and

the transport parameters were v���
 and D���
� The �square� input function

was

Cin�ti� �

�
��
 ��	 � ti � ��	 �

 otherwise �

�����

The �smooth� input function was used in the veri�cation runs in Chapter 
�

and is shown in Equation 
�� and Figure ���� The source history function

was discretized into �

 uniformly�spaced intervals between t � 
�
� and t �

�	
� The inexact data were generated using Cmeas�xj� T � � Cexact�xj� T � �

��jCexact�xj� T �� The true plumes and sampled data are shown in Figures ���

and ���� for the square input and smooth input� respectively�

The results were evaluated by comparing the L� norm of the dif�

ferences between the true input function and the regularized solution� These

norms were normalized by the total number of discretized intervals in the source

history function ��

��

Run RP�� used perfect data and a square input function� The optimal
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Figure ��
� Results of generalized cross�validation for regularization parameter
selection Run RP��� The �lled square corresponds to the optimal value of ��

value of � using the F�test method from CONTIN was � � ���� � �
�	� and

P ��� � 
��
�� The results of the generalized cross�validation method are shown

in Figure ��
� with the optimal value of � � ���
 � �
��� The results of the

simulations with each of these parameter values are shown in Figure ��� and

in Table ���� The solution using the GCV�selected � is smoother �because � is

larger� and the solution is more regularized�� but it does not match the sharp

increase and decrease as well� The residual norms in both cases are similar�

therefore both parameter selection methods perform equally well�

Run RP�� used perfect data and a smooth input function� The opti�

mal value of � using the F�test method from CONTIN was � � 
�	� � �
�	�

and P ��� � 
����� The results of the generalized cross�validation method are

shown in Figure ��	� with the optimal value of � � ���
 � �
��� The results

of the simulations with each of these parameter values are shown in Figure ���

and in Table ���� The solution using the GCV�selected � is smoother� and

does not match the true source history as well as the solution using the F�test�



��

Table ���� Results of the analysis of the regularization parameter selection
methods�

Regularization Parameter ��� Residual Norm
Run Number F�test GCV F�test GCV

RP�� ���� � �
�	 ���
� �
�� ��
	 � �
�� ���� � �
��

RP�� 
�	� � �
�	 ���
� �
�� ���
 � �
�� ���� � �
��

RP�
 ���� � �
�� ����� �
�� ��
� � �
�� ��
� � �
��

RP�� ���� � �
�� ����� �
�� ���	 � �
�� ���	 � �
��

0 50 100 150 200 250 300 350
0

0.5

1

1.5

time

S
ou

rc
e 

C
on

ce
nt

ra
tio

n

Residual norm:

F−test: 1.05e−02

GCV: 1.11e−02

True solution
Regularized with F−test
Regularized with GCV

Figure ���� Tikhonov regularization results for regularization parameter selec�
tion Run RP��� Parameters are� square input function and � � 
�
�



��

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

α

G
(α

)

G(α) has minimum at α = 1.70e−03

Figure ��	� Results of generalized cross�validation for regularization parameter
selection Run RP��� The �lled square corresponds to the optimal value of ��

selected �� The residual norm from the F�test method is lower than that from

the GCV method� therefore� for this scenario� the F�test method of selecting

the regularization parameter performs better�

Run RP�
 used inexact data and a square input function� The optimal

value of � using the F�test method from CONTIN was � � ���� � �
��� and

P ��� � 
�
	�� The results of the generalized cross�validation method are shown

in Figure ���� with the optimal value of � � ���� � �
�� also� Both methods

selected the same value as the optimal value of �� therefore� the results of the

simulations are equivalent �see Figure ��� and Table ����� and both methods of

selecting the regularization parameter perform equally well�

Run RP�� used inexact data and a smooth input function� The opti�

mal value of � using the F�test method from CONTIN was � � ���� � �
���

and P ��� � 
����� The results of the generalized cross�validation method are

shown in Figure ���� also with an optimal value of � � ������
��� Both meth�

ods selected the same value as the optimal value of �� therefore� the results
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Figure ���� Results of generalized cross�validation for regularization parameter
selection Run RP�
� The �lled square corresponds to the optimal value of ��

of the simulations are equivalent �see Figure ���
 and Table ����� and both

methods of selecting the regularization parameter perform equally well�

These results show that the value of the regularization parameter does

a�ect the solution to the inverse problem� and that the chosen value depends

on the method of selection that was used� These results also show that the

values of � chosen by the F�test and GCV methods result in similar solutions

to the inverse problem� Therefore� either method would be a satisfactory choice

in practice�

����� Evaluation of the Order of Regularization

The order of regularization controls some properties of the regularized

solution� With zero�order regularization� the norm of the model is minimized�

with �rst�order regularization� the �rst derivative of the model is minimized�

and with second order regularization� the second derivative of the model is

minimized� or� in other words� the smoothness of the model is maximized�
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Table ��
� Test scenarios for the analysis of the regularization order�
True Source Noise Level

Run Number History Function ���

RO�� Square 

RO�� Smooth 

RO�
 Square 
�
	
RO�� Smooth 
�
	

To analyze the e�ects of the regularization order on the regularized solution�

we tested four di�erent scenarios� shown in Table ��
� using zero�� �rst� and

second�order regularization� The parameters used in the runs described in

Section ����� were also used here� The regularization parameter was selected

using the F�test method� The results were evaluated by comparing the L� norm

of the di�erences between the true input function and the regularized solution�

normalized by the total number of discretization intervals in the source history

function ��

��
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Figure ����� Tikhonov regularization results for regularization order Run RO���
�a� Zero�order regularization� �b� First�order regularization� �c� Second�order
regularization� Parameters are� square input function and � � 
�
�

Run RO�� used perfect data and a square input function� The results

are shown in Figure ���� and Table ���� The results of �rst� and second�

order regularization are nearly indistinguishable� and much smoother than

the regularized solution from zero�order regularization� Obviously� �rst� or

second�order regularization produces a more accurate result than zero�order

regularization�

Run RO�� used perfect data and a smooth input function� The results
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Table ���� Results of the analysis of the regularization order�
Residual Norm

Run Number Zero�order First�order Second�order

RO�� ���
� �
�� ��

 � �
�� ��
	 � �
��

RO�� ��
�� �
�� 
��
 � �
�� ���
 � �
��

RO�
 ��
�� �
�� ��
� � �
�� ��
� � �
��

RO�� ���
� �
�� ���� � �
�� ���	 � �
��

are shown in Figure ���� and Table ���� Again� the solutions from �rst� and

second�order regularization are much smoother and more accurate than the

solution from zero�order regularization� Although the �rst�order and second�

order results appear similar� the residual norm is slightly lower when second�

order regularization is used�

Run RO�
 used inexact data and a square input function� The results

are shown in Figure ���
 and Table ���� The solutions from �rst� and second�

order regularization are nearly indistinguishable� and they are much smoother

and more accurate than the solution from zero�order regularization�

Run RO�� used inexact data and a smooth input function� The results

are shown in Figure ���� and Table ���� Again� the solutions from �rst� and

second�order regularization are much smoother and more accurate than the

solution from zero�order regularization�

These results show that the regularization order does a�ect the solu�

tion to the inverse problem� Zero�order regularization does not produce an ac�

curate solution for this problem� while� �rst�order and second�order regulariza�

tions produce smoother and more accurate results� In Run RO��� second�order
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Figure ����� Tikhonov regularization results for regularization order Run RO���
�a� Zero�order regularization� �b� First�order regularization� �c� Second�order
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Figure ���
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regularization produces a slightly more accurate result� while the di�erences are

negligible in all other runs� Therefore� either �rst�order or second�order regu�

larization would be satisfactory�

��� Evaluation of Parameter Selection for Minimum Relative En�

tropy Inversion

Solving the source history reconstruction problem using minimum

relative entropy inversion requires the user to specify lower and upper bounds

and an expected value for each solution parameter� These parameter choices

can be based on prior knowledge of the system� however� they are subjective� In

this section� we evaluate the e�ects of these parameters on the inverse problem

solution�

����� Evaluation of the Expected Value Function

We analyzed the sensitivity of the reconstructed source history to

the prior expected value functions for the four di�erent scenarios shown in

Table ��	� For each of these runs� we used three di�erent expected values

functions�

� Gaussian �shown in Equation 
��
��

� Uniform �si � 
����

� Exponential �shown in Equation 
�����

The parameters that were used in the runs described in Section ���

were also used here� except that for these runs� t� � 
 instead of t� � 
�
�� The



��

Table ��	� Test scenarios for the analysis of the prior expected value functions�
True Source Noise Level

Run Number History Function ���

EV�� Square 

EV�� Smooth 

EV�
 Square 
�
	
EV�� Smooth 
�
	

Table ���� Results of the analysis of the prior expected value functions�
Residual Norm

Run Number Gaussian Uniform Exponential

EV�� ���
 � �
�� ���� � �
�� ��	� � �
��

EV�� ���
 � �
�� ��	� � �
�� ���� � �
��

EV�
 ��
	 � �
�� ��

 � �
�� ��
� � �
��

EV�� ���� � �
�� ��
� � �
�� ���� � �
��

upper bound was constant at ���� and the lower bound was constant at 
�
� The

stopping tolerance for the � iterations was �
��� The results were evaluated

by comparing the L� norm �normalized by the total number of discretization

intervals in the source history function� of the di�erences between the true

input function and the inverse solution�

Run EV�� used perfect data and a square input function� The re�

sults are shown in Figure ���	 and Table ���� The three solutions are similar�

they match the vertical sections fairly well� and have a slight oscillation in the

horizontal section� The residual norms are approximately equal�

Run EV�� used perfect data and a smooth input function� The results

are shown in Figure ���� and Table ���� The three solutions are nearly indis�
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Figure ���	� MRE results for the expected value function analysis Run EV���
�a� Results with the gaussian expected value function� �b� Results with the
uniform expected value function� �c� Results with the exponential expected
value function� Parameters are� square input function and � � 
�
�
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Figure ����� MRE results for the expected value function analysis Run EV���
�a� Results with the gaussian expected value function� �b� Results with the
uniform expected value function� �c� Results with the exponential expected
value function� Parameters are� smooth input function and � � 
�
�

tinguishable� matching the timing of the three peaks well but showing slightly

less accuracy in matching the magnitudes of the peaks� The three solutions

di�er slightly near the middle peak� and these di�erences are re�ected in the

values of the residual norms�

Run EV�
 used inexact data and a square input function� The results

are shown in Figure ���� and Table ���� The three solutions are similar� they

capture the general shape of the true input function� but the �ner details are
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Figure ����� MRE results for the expected value function analysis Run EV�
�
�a� Results with the gaussian expected value function� �b� Results with the
uniform expected value function� �c� Results with the exponential expected
value function� Parameters are� square input function and � � 
�
	�

not reconstructed� The residual norms for the three cases are approximately

equal�

Run EV�� used inexact data and a smooth input function� The results

are shown in Figure ���� and Table ���� The three solutions are similar near the

�rst and third peaks� Near the middle peak� the solutions from the uniform

and exponential expected value functions are nearly identical� and show the

opposite behavior as the true function� This is likely due to the slightly over�
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Figure ����� MRE results for the expected value function analysis Run EV���
�a� Results with the gaussian expected value function� �b� Results with the
uniform expected value function� �c� Results with the exponential expected
value function� Parameters are� smooth input function and � � 
�
	�

estimated concentration sampled at x � ��
� and the underestimated sampled

concentrations at x � ��
� �

� �	
� and ��
 �See Figure ����� Near the middle

peak� the solution from the Gaussian expected value function shows similar

pattern as the other reconstructed solutions� however� the �uctuation is less

pronounced�

The results show that the solutions are relatively insensitive to the

prior expected value functions� The solutions were almost indistinguishable in
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Table ���� Test scenarios for the analysis of the upper bounds�
True Source Noise Level

Run Number History Function ���

UB�� Square 

UB�� Smooth 

UB�
 Square 
�
	
UB�� Smooth 
�
	

all but one case �EV����

����� Evaluation of the Upper Bound

We analyzed the sensitivity of the reconstructed source history to the

upper bound parameter for the four di�erent scenarios shown in Table ���� For

each of these runs� we used a constant upper bound �UB� of ��
�� ��	� and

��
� Since the upper bound is the upper limit on the value of the reconstructed

source history function� the upper bound must be greater than or equal to the

true source history� If the value selected for the upper bound is too low� the

data constraint cannot be satis�ed� The expected value function was Gaussian

�Equation 
��
�� which has a maximum value of ��
� therefore the value of the

upper bound must be greater than ��
� For the remaining parameters� we used

the same values as for Runs EV���EV���

Run UB�� used perfect data and a square input function� The results

are shown in Figure ���� and Table ���� The results get progressively worse as

the upper bound increases�

Run UB�� used perfect data and a smooth input function� The results
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Figure ����� MRE results for the upper bound analysis Run UB��� �a� Results
with upper bound UB � ��
�� �b� Results with upper bound UB � ��	� �c�
Results with upper bound UB � ��
� Parameters are� square input function
and � � 
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�

Table ���� Results of the analysis of the upper bounds�
Residual Norm

Run Number UB � ��
� UB � ��	 UB � ��


UB�� ���� � �
�� ���	 � �
�� ���� � �
��

UB�� ��

 � �
�� ��
� � �
�� ��		 � �
��

UB�
 ���
 � �
�� ���
 � �
�� ���� � �
��

UB�� ���
 � �
�� ���� � �
�� ��
� � �
��
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are shown in Figure ���
 and Table ���� For UB � ��	 or UB � ��
� the results

are similar and agree well with the true source history� For UB � ��
�� si 	 Ui

at ti � �	
� As discussed in Section 
����� if si � Ui� the probability density

function� q�mi�� is a Dirac delta function and the solution is always equal

to the upper bound� In this case� the probability density function� q�mi�� is

approximately equal to a Dirac delta function� therefore the solution will always

be near the upper bound� and the true solution cannot be attained when UB �

��
�� This problem was not encountered in Run UB�� because the true solution

at ti � �	
 was very close to the upper bound� Note that with UB � ��� �Run

EV��� Figure ����a�� the residual norm was ���
 � �
��� This� along with the

results in Figure ���
� indicates that the solution is better for lower values of

the upper bound� provided that the upper bound is su�ciently greater than

the expected value�

Run UB�
 used inexact data and a square input function� The results�

shown in Figure ���� and Table ���� show that the solution gets progressively

worse as the upper bound increases�

Run UB�� used inexact data and a smooth input function� The results

are shown in Figure ���� and Table ���� Similar to the results of UB��� the

solution is poor when UB � ��
� because the prior expected value� si� and the

upper bound� Ui� are approximately equal at t � �	
� For UB � ��	 and UB �

��
� the results match the �rst and third peaks� but do not match the timing

of the second peak� This is likely due to the measured concentration being

overestimated at x � ��
 and underestimated at x � ��
� �

� �	
� and ��
�

Recall that with UB���� �Run EV��� Figure ����a�� the residual norm was

����� �
��� which is lower than the residual norms for any of these runs� This
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Figure ���
� MRE results for the upper bound analysis Run UB��� �a� Results
with upper bound UB � ��
�� �b� Results with upper bound UB � ��	� �c�
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Figure ����� MRE results for the upper bound analysis Run UB�
� �a� Results
with upper bound UB � ��
�� �b� Results with upper bound UB � ��	� �c�
Results with upper bound UB � ��
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and � � 
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Figure ����� MRE results for the upper bound analysis Run UB��� �a� Results
with upper bound UB � ��
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� Parameters are� smooth input function
and � � 
�
	�

indicates that the solution is more accurate when the upper bound is closer to

the true maximum value� however� if the upper bound is equal to the expected

value function� the accuracy of the solution is diminished due to numerical

instabilities�

The results show that the solution is a�ected by the upper bound�

The upper bound must be greater than or equal to the true source history�

otherwise the data cannot be matched� The solution is most accurate when



�
�

the upper bound is near the maximum value of the true source history function�

and the accuracy decreases as the upper bound increases away from this value�

The accuracy is poor when the upper bound is equal or approximately equal

to the expected value function�



Chapter �

Comparison of Tikhonov Regularization and Minimum

Relative Entropy Inversion

In this chapter� we evaluate the results of Tikhonov regularization

and minimum relative entropy inversion for the source history reconstruction

problem to compare the relative e�ectiveness of the two methods in handling

complications that are intrinsic to or may be encountered in �eld situations� In

an ideal situation� the plume would be sampled completely �i�e� the sampling

would capture both the leading and trailing edges of the plume�� the sampled

concentrations would contain no measurement error� and the transport param�

eters would be known exactly� In this chapter we evaluate the ability of the

two methods to reconstruct the release history for an ideal situation� We also

address several non�ideal factors including�

� Measurement error�

� Incomplete spatial sampling of the plume�

� Errors in transport parameter estimates�

We also evaluate the ability of each method to reproduce a smooth source

history function and a non�smooth source history function� We use the smooth

source history function in the ideal case� and the non�smooth function in the

non�ideal case� although this decision was entirely arbitrary�

�





�
�

We examine the results of the two methods for an ideal scenario� then�

we run individual simulations addressing each possible non�ideality �including

the non�smooth source history function�� independent of the others� Since it

is possible that the compound e�ects of multiple non�ideal factors a�ect the

results di�erently than the individual factors� we also evaluate the results of

various combinations of the ideal and non�ideal factors�

��� Results of Simulations of the Ideal Scenario

For the ideal scenario� we used a smooth input function �shown in

Equation ��
 and Figure ����� and complete sampling of the plume at T �




 �x � �
�
�� �	� 	
� �
� �
� � � � � ��
� �	
� ��	� 


 �� The transport parameters

were exact� with v � ��
 and D � ��
� The reconstructed source history was

uniformly discretized into �

 intervals between t � 
�
� and t � �	
�

For Tikhonov regularization� we used second�order regularization�

and the F�test method for selecting the regularization parameter �n� � ���

For the MRE method� we used a uniform expected value function �si � 
����

and lower and upper bounds of 
�
 and ���� respectively� The stopping tol�

erances were �
�� for the 
i calculations and �
�� for the � calculations �see

Section 
������

The results are shown in Figure 	��� Both solutions are very close to

the true source history for this case� The timing of three peaks is reproduced�

and the magnitude is reproduced well except for the �rst peak�

We also ran an inverse problem for the ideal scenario� with data sam�

pled at T � �

� The data were sampled at �� uniformly�spaced points between
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Figure 	��� Tikhonov regularization and MRE results for the ideal scenario�
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 and sampled data used in the ideal scenario�

x � 


 and x � �

 �shown in Figure 	���� At T � �

� the plume has dis�

persed so that the three�peaked structure of the input function is no longer

apparent� The reconstructed source history was uniformly discretized into �



intervals between t � 
�
� and t � �	
� The results are shown in Figure 	�
�

The MRE solution matches the timing of the �rst and third peaks well� but

miscalculates the magnitudes of all peaks� Based on the residual norms �calcu�

lated for t 	 ��	�� both methods perform equally well� Both methods produce

a non�zero solution for t � 
	
� indicating that the sampled data provide no

information about the source history there� With v � ��
 and D � ��
� contam�

ination released from the source after t 	 
	
 would not reach the �rst sampling

location �x � 


� before sampling occurred at T � �

� For the MRE results�

the uncertainty in the solution for t � 
	
 can be seen in Figure 	��� which

shows the 	th and �	th percentile probability levels� The uncertainty is high for

t � 
	
� The uncertainty in the Tikhonov regularization model is based on the

model covariance� �m � G��d�G��T� where �d is the covariance matrix of

the data and G� is the generalized inverse� However� in this problem� we used
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perfect data� so �d � �m � 	�

��� Evaluating the E�ects of Individual Factors

The ideal scenario was modi�ed to account for each of the non�ideal

factors individually� For each of these cases� the inverse problem was solved

using the two inverse methods� and the residual norms of the solutions were

compared� Except for the non�ideal factor being tested� we used the parameters

from the ideal scenario for these runs�

����� Measurement Error

Sampled data always contains measurement error� therefore� to be

e�ective� inverse methods must be able to handle inexact data� Skaggs and

Kabala ������ used the following error model�

Cmeas�xj� T � � Cexact�xj� T � � ��jCexact�xj� T � � �	���



�
�

where Cmeas�xj� T � is the measured concentration at location xj at time T � xj is

the spatial coordinate of the jth sample� Cexact�xj� T � is the true concentration

at xj at time T � � is the noise level� and �j is the jth independent random

deviate �standard normal�� We will call this error model E�� Woodbury and

Ulrych ������ used a di�erent error model�

Cmeas�xj� T � � Cexact�xj� T � � ��j � �	���

We will call this error model E�� In error model E�� the magnitude of the

measurement error is proportional to the true concentration� and in error model

E�� the magnitude of the error is independent of the true concentration�

To evaluate the ability of the inverse methods to reconstruct the re�

lease history using inexact data� we created two sets of measurements with

error�one each with E� and E�� For E�� we used � � 
�
	� and for E�� we

used � � 
�
�� These data are shown in Figure 	�	� Note that with E�� some

of the measurements are negative� This is an artifact of the error model since

negative measurements are unrealistic in practice�

Tikhonov regularization uses the inexact data directly� and no esti�

mation of the noise level is necessary� With the MRE method� however� an

estimate of the noise level must be provided� In practice� the noise level is not

known� and therefore an incorrect estimate is likely to be used� To evaluate the

e�ects of incorrectly estimating the noise level� we ran the MRE method with

three di�erent noise levels�the exact value� an underestimated value ������

and an overestimated value ����� The results are shown in Figures 	�� and 	���

for error models E� and E�� respectively�
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 and sampled data used in the error evalu�
ation runs�

With both error models� the results from Tikhonov regularization are

similar �based on the residual norms� to those of the MRE method when the

exact noise level or the overestimated noise level is used� However� when the

noise level is underestimated� the MRE solution is poor� For the simulations

with an underestimated noise level� the stopping tolerance for the � iterations

��
��� in the MRE routine was not met� The solution was converging slowly�

so the process was stopped when the maximum number of iterations ���� in

this case� was reached� The simulation for E� stopped when the value of the

stopping criteria was ��
	��
��� and for E�� the simulation was stopped when

the value of the stopping criteria was ���	 � �
��� These results show that

the particular error model used �Equation 	�� or Equation 	��� does not a�ect

the relative results� The results also show that if the data contain measure�

ment error� Tikhonov regularization is more accurate than the MRE method

in reconstructing the release history� unless the noise level is known exactly

or overestimated� When the noise level was underestimated� the MRE routine

converged slowly� Therefore� it is possible that a practitioner could attribute
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Figure 	��� Tikhonov regularization and MRE results using inexact data �error
model E��� �a� Tikhonov regularization results� �b� MRE results with the
exact noise level� �c� MRE results with the underestimated noise level� �d�
MRE results with the overestimated noise level� Parameters are� smooth input
function� complete sampling frequency� true � � 
�
	� v � ��
� D � ��
� and
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Figure 	��� Tikhonov regularization and MRE results using inexact data �error
model E��� �a� Tikhonov regularization results� �b� MRE results with the
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 and sampling locations for Run SF���

the slow convergence of the MRE algorithm to an underestimated noise level�

and increase the noise level to a more appropriate value�

����� Sampling Frequency

In practical situations� it is often not possible to sample the entire

plume� For example� suppose a property owner detects contamination in a

monitoring well on his property� The owner can collect samples from other

locations on his property� but it might not be possible to collect samples from

o��site locations� To analyze this situation� we ran two test cases using di�erent

subsets of the sampled data used in the ideal scenario� The sample locations

are shown in Figures 	�� and 	��� for sampling near the source �Run SF��� and

away from the source �Run SF���� respectively� In each subset� one of the two

peaks in the true plume is sampled�

The results are shown in Figures 	��
 and 	��� for Runs SF�� and

SF��� respectively� For SF��� the two methods produce similar results� the

late peak is reproduced well because the data sampled near the source at T �



���

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

distance

C
on

ce
nt

ra
tio

n 
at

 T
=

30
0 True Plume

Exact Data

Figure 	��� True plume at T � 
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 correspond to this late source release� The non�zero solution at early

times indicates that the data is unable to provide any information about the

source history at these times� This is further supported by the MRE solution

uncertainty shown in Figure 	���� The 	th and �	th percentile probability levels

for t 	 �	
 cover almost the entire range of possible values �Li � 
�� Ui � �����

Since perfect data was used in this simulation� the model covariance �error� for

the Tikhonov regularization results is zero�

For SF��� both methods reproduce the �rst and second peaks fairly

well� and even partially reproduce the third peak� The MRE solution indicates

that the data does not provide any information about the source history for

t � �

� the resulting non�zero solution is re�ected in the value of the residual

norm� The Tikhonov regularization solution appears to provide a reasonable

solution for t � �

� and therefore has a lower residual norm� The uncertainty

in the MRE solution is shown in Figure 	��
� The 	th and �	th percentile

probability levels of the MRE solution cover the entire range of possible values

for t � ��
� indicating a high level of uncertainty in the solution in that region�
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Figure 	��
� Tikhonov regularization and MRE results with an undersampled
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Figure 	���� Tikhonov regularization and MRE results with an undersampled
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Figure 	���� Uncertainty in the MRE results with an undersampled plume
�Run SF����

����� Errors in Transport Parameters

In �eld situations� the transport parameters �v and D� are not known

exactly� To approximate this situation� we ran four test cases with incorrect

parameter values� In these runs� either the velocity or the dispersion coe�cient

was changed by 	� �increased in one run� decreased in another run�� while

the value of the other parameter was unchanged� All other parameters from

the ideal scenario �sampled at T � 


� were unchanged� Although D is often

modeled as a function of v� we assume that D and v are independent� therefore�

increasing or decreasing the value of v did not a�ect the value of D�

Figure 	��� shows the results of simulation with v overestimated

�v � ��
	 and D � ��
�� The results of the two methods are essentially

equivalent� the reconstructed solution is shifted to later times� and is more

disperse than the true solution� The solution is shifted to later times because�
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� Uncertainty in the MRE results with an undersampled plume
�Run SF����

with v overestimated� the plume is thought to travel faster than it actually

does� therefore� the data can be matched only if a later release time compen�

sates for the faster travel time� The reconstructed solutions are more disperse

than the true solution because the faster travel time results in less spreading

of the original plume� In order to match the spread indicated by the data� the

source history must be more spread out� Figure 	��	 shows the results of the

simulation with v underestimated �v � 
��	 and D � ��
�� In this case� the

reconstructed source history functions are shifted to earlier times and are less

disperse� The results of the two methods are approximately equal�

Figure 	��� shows the results of the simulation with D overestimated

�v � ��
 and D � ��
	�� The results of the two methods are similar� however�

based on the residual norms� Tikhonov regularization performs slightly better�

In both methods� the reconstructed solution is less disperse than the true so�

lution� Since D is overestimated� the spread of the data can be matched only

if the the reconstructed solution is less disperse� Figure 	��� shows the results
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Figure 	��	� Tikhonov regularization and MRE results with an underestimated
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Figure 	���� Tikhonov regularization and MRE results with an overestimated
dispersion coe�cient� Parameters are� smooth input function� complete sam�
pling frequency� � � 
�
� v � ��
� D � ��
	� and T � 
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of the simulation with D underestimated �v � ��
 and D � 
��	�� In this case�

the reconstructed source history functions are more disperse� Again� the results

of the two methods are approximately equal� however� Tikhonov regularization

performs slightly better�
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����� Smoothness of the Input Function

To evaluate the ability of each of the inverse methods to reconstruct a

non�smooth source history function� we modi�ed the ideal scenario so that the

true source history was a square function given by Equation ���� The results are

shown in Figure 	���� The solution from the MRE method reproduces the true

source history well� However� the solution from Tikhonov regularization cannot

reproduce the constant� non�zero input between t � ��	 and t � ��	� instead

the solution �uctuates around the true source history� This occurs because

Tikhonov regularization attempts to �t a smooth function� and the best��t

smooth function that can capture the step change in input concentration must

�uctuate� With the MRE method� the solution parameters are independent�

therefore� it is possible to reproduce the sharp rise and fall and the constant

section of the true source history function�

��� Evaluating the E�ects of Multiple Factors

In the previous section� we evaluated the e�ectiveness of the inverse

methods in reconstructing the release history under non�ideal situations� The

non�ideal factors included measurement error in the sampled data� incomplete

sampling of the plume� and incorrect estimations of the transport parameters�

In practice� many or all of these non�ideal factors are present� therefore� we

must evaluate the accuracy of the inverse solutions when multiple non�ideal

factors are present�

We used a fractional factorial design to select the combinations of ideal

and non�ideal factors to be evaluated� We selected �ve factors� and de�ned an
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Figure 	���� Tikhonov regularization and MRE results for the ideal scenario
with a non�smooth source history function� Parameters are� square input
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Table 	��� Coding chart for the fractional factorial design�
Factor No� Factor Ideal Value Non�ideal Value

� Noise level ��� 
�
 
�
	
� Sampling frequency complete incomplete

 Value of v correct �v � ��
� incorrect �v � ��
	�
� Value of D correct �D � ��
� incorrect �D � 
��	�
	 Input function smooth square

ideal and non�ideal value for each� The coding chart for these factors is shown

in Table 	���

Since the results of Section 	�� show that the relative success of the

two inverse methods does not depend on the particular error model used to

generate inexact data� we used error model E� �Equation 	��� for these multi�

factor simulations� Also� we used the exact noise level with the MRE method

because overestimating the noise level did not have a signi�cant e�ect on the

results� and the solution did not converge for an underestimated noise level�

For an underestimated noise level� the measurements are accurate to within �

of the true data� but the model is trying to �t a solution to within ��� of the

true data� Since this solution does not exist� the model does not converge� For

the incomplete sampling frequency� we used the sampling location shown in

Figure 	��� for sampling away from the source�

Evaluating all possible combinations of these �ve factors would require

�	 � 
� simulations� By using a fractional factorial design� we can systemati�

cally select a subset of these combinations to reduce the number of simulations�

while still obtaining good results� We used a �	��V fractional factorial design�
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Table 	��� Design matrix for the fractional factorial design�
Factor

Run Number � � 
 � 	

MF�� � � � � �
MF�� � � � � �
MF�
 � � � � �
MF�� � � � � �
MF�	 � � � � �
MF�� � � � � �
MF�� � � � � �
MF�� � � � � �
MF�� � � � � �
MF��
 � � � � �
MF��� � � � � �
MF��� � � � � �
MF��
 � � � � �
MF��� � � � � �
MF��	 � � � � �
MF��� � � � � �

in which all possible combinations of four �	 � � � �� of the factors are used�

resulting in �� � �� di�erent combinations� These are shown in Table 	�� for

the �rst four factors� where ��� indicates that the ideal value of the factor was

used� and ��� indicates that the non�ideal value was used� The value used

for the �fth factor was the product of the values used for the �rst four factors�

The products are calculated by substituting �� for ��� and �� for ��� �Law

and Kelton� ������

With this design� the main e�ects and two�way interactions can be

evaluated adequately� The main e�ects measure the average change in response

�the residual norm� to a change in one of the factors� Two�way interactions



���

measures the degree to which the e�ect of one factor depends on the value of

another factor� Higher�order interactions measure the degree of interaction be�

tween more factors� In the fractional factorial design� we do not run simulations

for all possible combinations� therefore� some information is sacri�ced and the

resolution of the design decreases� The resolution is given by the Roman num�

ber subscript� e�g� �	��V is a resolution V design� The resolution describes the

levels of interactions that can be reliably evaluated� For a resolution V design�

main e�ects �one�way interactions� can be evaluated reliably if fourth�order

e�ects and higher are negligible� and two�way interactions can be evaluated

reliably if three�way interactions and higher are negligible �Law and Kelton�

������

For each design point shown in Table 	��� we solved the correspond�

ing inverse problem using both Tikhonov regularization and minimum relative

entropy inversion� We compared the residual norms of the results to evaluate

the main e�ects� and we compared the di�erences in the residual norms of the

two methods� In these runs� all unspeci�ed parameters �e�g� sampling time�

upper bounds� etc�� have the same values as in the ideal scenario�

The results are shown in Figure 	����	�
� and in Table 	�
� which lists

the residual norms of the solutions of both methods� For each run� the smaller

of the two norms is printed in bold�faced type� The absolute and relative

di�erences of the two norms are also shown in the table� The di�erence is

calculated by subtracting the MRE norm from the TR norm� and the relative

di�erence of the norms is this di�erence normalized by the MRE norm� Note

that the MRE method performs better in eleven of the �� runs� Of the �ve

runs in which Tikhonov regularization performed better �MF��� MF��� MF����



���

Table 	�
� Results of multi�factor simulations�
Residual Norm

Run Number TR MRE Di�erence Rel� Di�erence
MF�� 
�
� � �
�� ����� �	�� ���
 � �
�� 
��	 � �
��

MF�� ��	� � �
�� ����� �	�� ���
 � �
�� 
��� � �
��

MF�
 
��� � �
�� ����� �	�� ��	
 � �
�� ��
� � �
�

MF�� ���� � �
�� ����� �	�� ��

 � �
�� ���� � �
��

MF�	 ���� � �
�� ���
� �	�� ��

 � �
�� 	�

 � �
��

MF�� ��
�� �	�� ���� � �
�� ����
� �
�� ���	� � �
��

MF�� ���� � �
�� ��	�� �	�� ���
 � �
�� ���
 � �
��

MF�� ��
� � �
�� ����� �	�� ��

 � �
�� ��	� � �
��

MF�� ���
� �	�� ���� � �
�� ���

� �
�� �	�
� � �
��

MF��
 ���� � �
�� ��
	� �	�� ���
 � �
�� ��
� � �
��

MF��� ��	
� �	�� ��
� � �
�� ���
�� �
�� ����� � �
��

MF��� ���� � �
�� ����� �	�� ��
� � �
�� ���� � �
��

MF��
 ���
 � �
�� ����� �	�� ���
 � �
�� ��
� � �
��

MF��� ����� �	�� ��	� � �
�� ���

� �
�� ����� � �
��

MF��	 ��

 � �
�� 
�

� �	�� ��

 � �
�	 ��

 � �
��

MF��� ��
�� �	�� 	�

 � �
�� ���

� �
�� ���	� � �
��

MF���� and MF����� the residual norms were very close for two of those runs

�MF�� and MF����� in the remaining three runs� the common factor was the

smooth input function�

Table 	�� shows the di�erence in the residual norms� separated out

by the values of each factor� For each factor� the column labeled �Ideal� lists

the average value of the di�erence of the residual norms for runs in which

that factor was at its ideal value� and the column labeled �Non�ideal� lists

the average di�erence of the residual norms for runs in which that factor was

at its non�ideal value� Recall that a positive value of the di�erence indicates

that the MRE method performed better� while a negative value indicates that
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Table 	��� Average di�erence of residual norms for runs with ideal and non�
ideal values of each factor�

Average Di�erence of Residual Norms
Factor Ideal Non�ideal

� ������ �
�� ���
 � �
�

� �	��	� �
�	 ���� � �
��


 ���� � �
�� 
��� � �
��

� ��

 � �
�� ���� � �
��

	 
��� � �
�� ��	� � �
��

Tikhonov regularization performed better� The results show that the MRE

method performs better� on average� than Tikhonov regularization whenever

the non�ideal value of any factor is used� Tikhonov regularization only performs

better than the MRE when data is exact� and when the plume is sampled

completely�

The main e�ects for each factor are calculated by

ek �
nX
i��

fk�iRi � �	�
�

where ek is the main e�ect of the kth factor� n is the number of runs� fk�i is the

level ���� for the ideal value� ��� for the non�ideal value� of the kth factor in

the ith run� and Ri is the response �residual norm� of the ith run� The main

e�ects are shown separately in Table 	�	 for the Tikhonov regularization results

and the MRE results� Here� a negative value indicates that the residual norm

of runs with the non�ideal factor is larger than the residual norm of runs with

the ideal factor� i�e� the results are more accurate if the ideal value of the factor

is used�
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Table 	�	� Main e�ects of the multi�factor simulations�
Factor TR MRE

� ���

e�
� �
���e�


� ���
�e�

 ���
�e�



 �	���e�

 ���	�e�


� ���
	e�

 �����e�
�
	 ���	�e�

 ����e�
�

The results show that� for each factor� the residual norms are lower

when the ideal value is used� which is to be expected� The only exception is

that the MRE method has smaller residual norms when a square input func�

tion is used instead of a smooth input function� The magnitudes of the main

e�ects of the Tikhonov regularization results are larger than those of the MRE

results� except for the velocity estimate �Factor 
�� This indicates that� in

general� the Tikhonov regularization is more sensitive than the MRE method

to using non�ideal values� For Tikhonov regularization� the factor that has the

largest e�ect on the residual norm is measurement error� followed in decreas�

ing order by sampling frequency� velocity estimate� smoothness of the input

function� and estimate of the dispersion coe�cient� For the MRE method�

the velocity estimate has the largest e�ect on the residual norm� The main

e�ect of the dispersion estimate and of the smoothness of the input function

are very low� These results show that the MRE method can perform equally

well with a smooth or non�smooth input function� while the Tikhonov regular�

ization method performs signi�cantly worse with a non�smooth input function

than with a smooth input function�



���

��� Summary of E�ects of Factors

We compared the relative e�ectiveness of Tikhonov regularization and

minimum relative entropy inversion in solving the source history reconstruction

problem when complications exist� Some complications that commonly arise in

�eld situation include measurement error� incomplete sampling of the plume�

inaccurate estimates of parameters values� unknown source location� inability

to accurately model all transport processes� spatial and temporal heterogeneity

of the transport parameters� etc� In this research� we addressed three of these

complications� measurement error� incomplete spatial sampling of the plume�

and inaccurate estimates of transport parameters� We ran several simulations

of the inverse methods to determine the e�ects of each of these complications

on the reconstructed source history� We also considered two di�erent types of

input functions�smooth and non�smooth�

With perfect data� no complications� and a smooth input function�

Tikhonov regularization performed slightly more accurately than the MRE

method� However� when a non�smooth input function was used� the MRE

method performed better than Tikhonov regularization� When undersampling

of the plume was the only complication� Tikhonov regularization performed

slightly better than the MRE method� When the transport parameters were

incorrectly estimated� both methods performed at a similar level of accuracy�

When measurement error was the only complication� the results of the two

methods were approximately equivalent if the noise level was known exactly�

In the MRE method� the noise level must be speci�ed� or estimated if it is not

known� If the noise level is underestimated� the MRE results are much worse

than those of Tikhonov regularization�
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Combinations of multiple complicating factors were addressed� These

results show that� in general� the MRE method was more accurate than Tik�

honov regularization under these circumstances� Note� however� that in the

runs with measurement error� the noise level was assumed to be known exactly�

thus eliminating the situation in which Tikhonov regularization performs much

better than the MRE method� In addition� the results of the MRE method

are sensitive to the value of the upper bound� In these simulations� we used

an upper bound of ���� which is near the maximum of the true solution and

therefore produces accurate results� If a larger upper bound were used� the

results of the MRE method would be less accurate� Speci�cally� the results

of the multi�factor simulations re�emphasize that the MRE method is more

accurate than Tikhonov regularization when the source history is a non�smooth

function�



Chapter �

Conclusions

Determining the release history of a source of groundwater contamina�

tion is necessary in assessing liability for remediation costs� In many cases� the

only available information concerning the contamination is the present spatial

distribution of the contaminant concentration� Inverse methods can be used

to reconstruct the release history from these measurements of the contaminant

concentration�

The source history reconstruction problem that was evaluated in this

research involves a point source of groundwater contamination at a known loca�

tion in a one�dimensional� saturated� homogeneous porous medium� A known

source history was input into a forward model to obtain the spatial concen�

tration distribution of the contaminant at some later time� These data were

sampled at discrete locations� and used in the inverse problem to reconstruct

a discrete �in time� release history at the source� Several methods for solving

this problem have been presented in the literature�

� Tikhonov regularization �Skaggs and Kabala� �����

� Method of quasi�reversibility� �Skaggs and Kabala� ���	�

� Minimum relative entropy inversion �Woodbury and Ulrych� �����

� Geostatistical approach �Snodgrass and Kitanidis� �����

���
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Several controversial statements have been made recently regarding

the strengths and limitations of using Tikhonov regularization and minimum

relative entropy inversion to solve the source history reconstruction problem

�Woodbury and Ulrych� ����� Kabala and Skaggs� ����� Woodbury and Ulrych�

����b�� however� the methods were not directly compared� The objective of

this research was to provide a thorough and unbiased comparison of these

two inverse methods� Tikhonov regularization and minimum relative entropy

inversion� in solving the source history reconstruction problem�

Tikhonov regularization and minimum relative entropy inversion solve

inverse problems de�ned by an ill�posed Fredholm integral equation of the

�rst kind� by discretizing the integral equation into a matrix equation� Both

methods use discrete measurements of concentration� along with an expression

describing the physics of the process �assumed to be known exactly and modeled

correctly�� to reproduce an input function that matches the data to within some

de�ned measurement error�

With Tikhonov regularization� the discretized Fredholm integral equa�

tion is replaced by a well�posed minimization problem whose solution is close

to that of the original problem� In this research� we used the code� CONTIN�

to solve the Tikhonov regularization problem� Skaggs and Kabala ������ also

used CONTIN� they provided us with their input �les� so we were able to

reproduce their results exactly�

With minimum relative entropy inversion� the model parameters to

be estimated are treated as random variables� A probability density function

is obtained for each model parameter� and the expected value of the model
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parameter� based on this probability density function� is chosen as the model

solution� The posterior distribution is obtained by minimizing the entropy of

the distribution relative to a prior distribution� while constraining the results

to match the measured data� The prior distribution can be developed so that

the mean value and the known bounds on the parameter values are included in

the solution� We wrote a MATLAB program to implement the MRE method�

To verify our program� we used it to solve the same problems that were solved

by Woodbury and Ulrych ������� We were able to reproduce most of their solu�

tions� however our probability bounds were wider and we could not reproduce

their pre��ltering approach to handling measurement error�

Both inverse methods contain some subjectivity� The stabilizer in

Tikhonov regularization has two components�a regularization parameter and

an operator matrix� the choice of these components is somewhat subjective�

The regularization parameter describes the relative trade�o� between matching

the concentration measurements and stabilizing the problem� Several methods

have been developed for selecting this optimal value� The choice of operator

matrix de�nes the order of regularization� which speci�es the feature of the

input function that is minimized� With minimum relative entropy inversion�

the selection of the prior expected value function and the upper bounds are

subjective�

We evaluated the e�ects of the subjective parameters on the solution

to the source history reconstruction problem� We found that the regularization

order does a�ect the solution to the inverse problem� Zero�order regulariza�

tion produces a solution with a very oscillatory structure� while� second�order

regularization produces smoother and more accurate results� Since the true
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source history function is not likely to be oscillatory� second�order regulariza�

tion is appropriate� We evaluated two methods for selecting the regulariza�

tion parameter�the F�test method and generalized cross�validation� Although

the value of the regularization parameter does a�ect the accuracy of the solu�

tion� the regularization parameter values chosen by the F�test and GCV meth�

ods were similar� and the resulting solutions to the inverse problem were also

similar� Therefore� although the choice of regularization parameter selection

method may be subjective� the results are fairly consistent�

We evaluated the e�ects of the prior expected value function and the

upper bounds on the solutions obtained using the MRE method� We found that

the solutions are relatively insensitive to the prior expected value functions� but

more sensitive to the upper bound� The accuracy is poor when the upper bound

is equal or approximately equal to the expected value function� If the expected

value of a solution parameter is equal to the upper bound of its range� then the

solution must be equal to the upper bound� This case is unrealistic� since it

implies that we know the exact value of the solution parameter� If the expected

value is very close to the upper bound� the probability density function shows a

high probability that the solution is near the upper bound� If the true solution

is not near the upper bound� then it will likely be overestimated� With the

MRE method� we also found that the solution is most accurate when the upper

bound is near the maximum value of the true source history function� and the

accuracy decreases as the upper bound increases away from this value�

The main goal of this research was to compare the e�ectiveness of the

two inverse method in solving the source history reconstruction problem� We

evaluated the two methods under an ideal situation �perfect knowledge of all
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parameters except for the release history� and with some complications that are

common in �eld situations �measurement error� incomplete spatial sampling of

the plume� and inaccurate estimates of transport parameters�� We considered

two di�erent types of input functions�smooth and non�smooth� and we ran

several simulation of the inverse methods to determine the e�ects of each of

these complications�

With perfect data� no complications� and a smooth input function�

Tikhonov regularization performed slightly more accurately than the MRE

method� However� when a non�smooth input function was used� the MRE

method performed better than Tikhonov regularization� Second�order Tikhon�

ov regularization produces a smooth solution which cannot capture the sharp

rise and fall of the non�smooth function�

When measurement error was the only complication� the results of

the two methods were approximately equivalent if the noise level was known

exactly� In the MRE method� the noise level must be speci�ed� or estimated

if it is not known� When the noise level was underestimated� the MRE results

were much worse than those of Tikhonov regularization� We evaluated two

di�erent error models for adding random noise to the data� In the �rst error

model� the random measurement error was proportional to the true concen�

tration �as in Skaggs and Kabala� ������ and in the second error model� the

random measurement error was independent of the true concentration �as in

Woodbury and Ulrych� ������ We found that the choice of error model does

not a�ect the relative accuracy of the two inverse methods�

When undersampling of the plume was the only complication� Tik�
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honov regularization performed slightly better than the MRE method� When

the plume is undersampled� the sampled data cannot provide information about

the entire source history� therefore� only incomplete reconstruction of the source

history is possible�

When transport parameters were incorrectly estimated� both methods

performed at a similar level of accuracy� When velocity was overestimated� the

reconstructed source history was shifted to later times and was more disperse

than the true source history� The opposite e�ect occurred when the velocity

was underestimated� When the dispersion coe�cient was overestimated� the

reconstructed source history was less disperse than the true source history� and

the opposite e�ect occurred when the dispersion coe�cient was underestimated�

We addressed combinations of multiple complicating factors� These

results show that� in general� the MRE method was more accurate than Tik�

honov regularization under these circumstances� Note� however� that in the

runs with measurement error� the noise level was assumed to be known exactly�

thus eliminating the situation in which Tikhonov regularization performs much

better than the MRE method� In addition� the upper bound used in the MRE

simulations was near the maximum value of the true solution� if a larger upper

were used� the MRE results would be less accurate�

Overall� the results show that Tikhonov regularization and minimum

relative entropy inversion produce similar results for many of the source history

reconstruction problems evaluated� Two exceptions are that the MRE method

performs better than Tikhonov regularization when the true source history is

a non�smooth function� and if the noise level is underestimated in the MRE
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method� the results of Tikhonov regularization are more accurate than those

of the MRE method� Although we can identify situations in which one method

outperforms the other� the shape of the true source history function and the

noise level in the measured data are not known in a practical situation� there�

fore� based on the information that is commonly available� we cannot determine

which inverse method will perform better�

In all cases� the accuracy of the solutions decreases when additional

uncertainty is added to the problem� Under ideal circumstances� both methods

produce results that are nearly indistinguishable from the true solution� How�

ever� perfect knowledge of the system cannot be expected in practice� Uncer�

tainty exists in the measured data� estimates of values of transport parameters�

source location� models of transport processes� spatial and temporal variability

of the transport parameters� the extent of the plume� etc� Both inverse meth�

ods are a�ected by this uncertainty� and the practitioner should be cautious of

the results of either method�
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Appendix A

Determining Lagrange Multipliers for the Prior

Distribution

In Section ������ we obtained an expression for the prior distribution�

p�m�� in terms of the Lagrange multipliers� 
 and 
i� i � �� �� � � � �M �Equa�

tion ������

p�m� � b�m� exp

�
��� 
�

MX
i��


imi

�
� �A���

where M is the number of model parameters and b�m� is the multivariate

uniform distribution �Equation ���
��

b�m� �
MY
i��

�

Ui � Li

for Li � mi � Ui �A���

b�m� � 
 otherwise

where Ui is the upper bound of parameter mi and Li is the lower bound of mi�

In this appendix� we solve for the Lagrange multipliers� following the approach

of Woodbury and Ulrych ����
��

To solve for the Lagrange multiplier� 
� we use the normalization

requirement� i�e�
R
p�m�dm � �� Let c � exp��� � 
�

QM
i���Ui � Li���� With

this substitution� Equation A�� becomes

p�m� � c
MY
i��

exp��
imi� � �A�
�

���



Integrating this expression over all m results in

c
Z
m

MY
i��

exp��
imi�dm � � � �A���

Evaluating this integral gives

c
MY
i��

�
�

�


i
exp��
iUi� �

�


i
exp��
iLi�

�
� � � �A�	�

Solving for c and substituting the result into Equation A�
 gives the following

expression for p�m��

p�m� �
MY
i��


i exp��
imi�

exp��
iLi�� exp��
iUi�
� �A���

The previous equation is indeterminate if 
i � 
 for any i� For any i�

Equation A�� shows that

p�mi� �

i exp��
imi�

exp��
iLi�� exp��
iUi�
� �A���

Taking the limit of this expression as 
i � 
 gives

p�mi� �
�

Ui � Li

� �A���

Therefore� the appropriate form of the prior distribution in terms of the La�

grange multipliers� 
i� is

p�mi� �

i exp��
imi�

exp��
iLi�� exp��
iUi�
for 
i 
� 
 �A���

p�mi� �
�

Ui � Li

for 
i � 
 �

p�m� �
MY
i��

p�mi� �

���



The values of 
i can be obtained from the expected value constraint

�Equation ���	��

Z
m

mkp�m�dm � sk k � �� �� � � � �M �A��
�

where sk is the expected value of model parameter mk� By the normalization

requirement� the integrals over mi for i 
� k evaluate to unity� Therefore� the

expected value constraint simpli�es to

Z Ui

Li

mi


i exp��
imi�

exp��
iLi�� exp��
iUi�
dmi � si � �A����

for i � �� �� � � � �M and 
i 
� 
� Evaluating this integral� we obtain the �nal

form of the expected value constraint�

��
iUi � �� exp��
iUi� � �
iLi � �� exp��
iLi�


i �exp��
iLi�� exp��
iUi� 
� si � �A����

for i � �� �� � � � �M � This equation can be solved numerically to obtain the

values of the Lagrange multipliers� 
i� From Equations A�� and A���� we see

that if si � �Ui � Li���� then 
i � 
�

��




Appendix B

Determining Lagrange Multipliers for the Posterior

Distribution

In Section ������ we obtained an expression for the posterior distri�

bution� q�m�� in terms of the Lagrange multipliers� 
 and �j � j � �� �� � � � � N

�Equation ������

q�m� � cp�m� exp

�
�� NX

j��

�
�j

MX
i��

gjimi


�
	 � �B���

where c � exp��� � 
�� N is the number of data points� M is the number of

model parameters� mi are the model parameters� gji are the kernel function

values� and p�m� is the prior distribution �Equation ������

p�mi� �

i exp��
imi�

exp��
iLi�� exp��
iUi�
for 
i 
� 
 �B���

p�mi� �
�

Ui � Li

for 
i � 
 �

p�m� �
MY
i��

p�mi� �

where 
i are Lagrange multipliers �whose values are obtained numerically�� Ui

is the upper bound of model parameter mi� and Li is the lower bound of mi�

In this appendix� we solve for the Lagrange multipliers� 
 and �j � following the

approach of Woodbury and Ulrych �������

To solve for the Lagrange multiplier� 
� we use the normalization

requirement� i�e�
R
q�m�dm � �� Reversing the order of summation in Equa�

���



tion B�� and substituting Equation B�� for p�m� �assuming that 
i 
� 
�� we

obtain

q�m� � c
MY
i��


i exp��miai�

exp��
iLi� � exp��
iUi�
� �B�
�

where ai � 
i �
PN

j�� gji�j� Integrating this expression over all m results in

c
Z
m

MY
i��


i exp��miai�

exp��
iLi�� exp��
iUi�
dm � � � �B���

Evaluating this integral gives

c
MY
i��


i �exp��aiLi�� exp��aiUi� 

ai �exp��
iLi�� exp��
iUi� 
� � � �B�	�

Solving for c and substituting the result into Equation B�
 gives the following

expression for q�m��

q�mi� �
ai exp��miai�

exp��aiLi�� exp��aiUi�
for ai 
� 
 �B���

q�mi� �
�

Ui � Li

for ai � 
 �

q�m� �
MY
i��

q�mi� �

This same result is obtained if 
i � 
� and p�mi� � ���Ui � Li� is used�

The values of �j can be obtained from the data constraint �Equa�

tion ���
��

!dj �
Z
m

q�m�
MX
i��

gjimidm � �B���

where !dj is the value of the jth measured data point� Reversing the order of

summation and integration and evaluating the integral� we see that

!dj �
MX
i��

gji "mi��� � �B���

��	



where "mi is the expected value of the model parameter mi� and is a function

of the Lagrange multipliers� � �� � ���� ��� � � � � �N  T � where T denotes trans�

pose�� Since the data is likely to contain measurement error� the equality in

the previous equation does not hold� To account for measurement error� �� we

add the following constraint�

NX
j��

�
!dj �

MX
i��

gji "mi���

��
� ���� � �B���

If measurement error is not proportional to the measured concentration �i�e�

Cmeas�xn� T � � Cexact�xn� T � � ��n�� then �� � N � If measurement error is

proportional to the measured concentration� then �� � jj!djj�� where jj�jj denotes

the L� norm�

With this constraint� Equation B�� should be modi�ed as �Johnson

and Shore� �����

!dj �
MX
i��

gji "mi��� � ���
�j
jj�jj

� �B��
�

where the errors are taken as independent and identically distributed with mean

zero�

The values of the Lagrange multipliers� �� can be calculated using the

Newton�Raphson method� From Equation B��
� we de�ne

F ���j � !dj �
MX
i��

gji "mi��� � ��
�j
jj�jj

� �B����

and use Newton�Raphson method to solve for the zeroes of F��� iteratively

using�

�
k � �

k�� �

�
�F

��

�����
�

k��


��
Fk�� � �B����

���



where the superscripts denote the iteration� The terms of the �F��� matrix

are

�Fj
��l

� �
MX
i��

gji

�
� "mi

�ai
gli

�
�

��

jj�jj

�
�jl �

�j�l
jj�jj�

�
� �B��
�

where l � �� �� � � � � N � �jl is the Kronecker delta� and

� "mi

�ai
�

a�i �Ui � Li�� exp ��ai�Ui � Li� � �exp��aiLi�� exp��aiUi� 
�

a�i �exp��aiLi�� exp��aiUi� 
�

for ai 
� 


� "mi

�ai
� �

�Ui � Li��

��
for ai � 
 � �B����

The iterations are carried out until a reasonable tolerance is met� To solve

these equations numerically� several asymptotic approximations must be made�

these approximations are described in Chapter 
�

���



Appendix C

Minimum Relative Entropy Inversion Program

We wrote a MATLAB program to implement the minimum relative

entropy inversion method� The implementation was described in Chapters �

and 
� and in Appendices A and B� The source code for the MATLAB program

is included in this Appendix� We also include an overview of the program and

a table relating the program variable names to those used in this thesis�

C�� Program Overview

The program was written as a MATLAB function� The user calls

the function� and passes in the necessary parameter values� and the function

returns the results� The main function is domre�m� which calls many other

functions to implement the MRE method� The input to the function includes�

� the name of a MATLAB function that calculates the kernel

� array of sample locations

� array of sampled concentrations

� sampling time

� array of upper bounds for the prior distribution

� array of prior expected values

���



� transport parameters� v and D

� time array for the reconstructed source function

� noise level

� true source history� if available

� lower and upper limits of interval for bisection method for 
i calculations

� stopping tolerance for 
i calculations

� maximum number of iterations for 
i calculations

� stopping tolerance for � calculations

� maximum number of iterations for � calculations

� stopping tolerance for golden section search

� cuto� value for asymptotic approximations near zero

� cuto� value for asymptotic approximations near ��

� �ag specifying plot options

The output from the function includes the reconstructed source his�

tory� the model �t to the measured data� the values of the Lagrange multipli�

ers� and the 	th and �	th percentile probability levels� During each iteration

of Newton�s method in the � calculations� the following information is dis�

played in the command window� the iteration number� the condition number

of the Jacobian matrix� the optimal step length from the golden section search�

���



the norm of F �See Equation B����� and the value of the stopping criteria�

In addition� the user can select to display plots at each iteration of Newton�s

method �� calculations�� The items that can be plotted are the true and re�

constructed source history functions� the measured and �tted data� the values

of ai �ai � 
i �
PN

j�� �jgji�� and the Lagrange multipliers� ��

The functions called by domre�m and its subfunctions include�

� bisection�m � calculates the values of the Lagrange multipliers� 
i� using

bisection method

� getrep�m � calculates the values of the kernel matrix� G

� donewton�m � calculates the values of the Lagrange multipliers� �� using

Newton�s method� and the model solution� "m�

� snfcn�m � evaluates the function whose zero will be found using the

bisection method

� kernel�m � evaluates the value of the kernel function �Equation 
���

� getfk�m � evaluates the vector F �Equation B����

� getjac�m � evaluates the Jacobian matrix �Equation B��
�

� plotops�m � creates plots of information at each Newton�s method iter�

ation in the � calculations

� rscale�m � performs row scaling

� golden�m � performs the golden section search

��




C�� Source Code

���������� start of function domre�m ����������
�
� Function to solves an inverse problem using Minimum Relative
� Entropy Inversion
�
� Written by� Roseanna M� Neupauer
� Modification Date� April ��� �			
�
� 
csource�lambda�beta�fittedc�p��p	�� 
 ���
� domre�kernfn�xsample�csample�tsample�upper�expvalue����
� params�t�noise�cin�leftbegin�rightbegin�tolbeta����
� maxiter�tollam�lamiter�tolls�nearzero�large�pflag��
�
� Inputs
� kernfn name of matlab function that calculates the
� value of the kernel
� This function is called with the
� following command�
� y
kernfn�xx�tt�params�
� where xx is a location and tt is a time
� xsample array containing sampling locations
� csample array containing sampled concentrations
� tsample time of sampling
� upper array containing upper limit of prior
� distributions
� expvalue array containing prior expected value
� params array of all transport parameters values
� t array containing solution times
� noise standard deviation of normally�distributed
� random noise in measurements
� for noise � �� noise is absolute
� for noise � �� the absolute value of
� noise is proportional to
� sample concentration
� cin array containing true source history
� leftbegin lower limit of range for bisection method
� rightbegin upper limit of range for bisection method
� tolbeta tolerance for beta�fitting
� maxiter maximum number of iterations in beta�fitting
� tollam tolerance for lambda�fitting
� lamiter maximum number of iterations in
� lambda�fitting
� tolls tolerance for golden section search
� nearzero value below which the asymptotic
� approximation to zero is used
� large value above which the asymptotic
� approximation to infinity is used

���



� pflag plot flag ������
� pflag 
 sum of the following
� � � to plot true source history and
� fitted source history after
� each iteration
� � � to plot measured data and fitted
� data after each iteration
� � � to plot a vector at each iteration
� � � to plot lambda vector at each
� iteration
�
� Outputs
� csource array containing reconstructed solution of
� source history
� lambda array containing the Lagrange multipliers
� beta array containing the Lagrange multipliers
� fittedc array containing the model fit to the
� measured data
� p� array containing the �th percentile
� probability level
� p	� array containing the 	�th percentile
� probability level
�
� Functions called
� bisection calculates the values of the Lagrange
� multipliers� beta� using bisection method
� getrep calculates the values of the kernel matrix
� donewton calculates the values of the Lagrange
� multipliers� lambda� using Newton�s
� method� and� in the process� calculates
� the expected value of the posterior
� distribution

function 
csource�lambda�beta�fittedc�p��p	�� 
 ���
domre�kernfn�xsample�csample�tsample�upper�expvalue����
params�t�noise�cin�leftbegin�rightbegin�tolbeta����
maxiter�tollam�lamiter�tolls�nearzero�large�pflag��

� define size variables
nt
size�t����
ndata
size�csample����

� calculate betas using bisection method

beta
bisection�upper�expvalue�leftbegin�rightbegin����
maxiter�tolbeta�nt�nearzero�large��

� discretize representers
g
getrep�kernfn�t�xsample�tsample�params��

���



� use Newton�Raphson method to calculate values of Lagrange
� multipliers� lambda� and� in the process� the expected value
� of the distribution


lambda�fittedc�csource�a�
���
donewton��getfk���getjac��lamiter�tollam�tolls����
xsample�g�upper�t�cin�noise�csample�ndata�beta����
nearzero�large�pflag��

� calculate the probability levels of the distribution
� �page ���

p�
�log����� ���exp��a��upper���������a�
p	�
�log���	� ���exp��a��upper���������a�
alist
find�a � nearzero��
p��alist�
�����upper�alist��
p	��alist�
��	��upper�alist��

���������� end of function domre�m ����������

��




���������� start of function bisection�m ����������
�
� Function to calculate the values of the Lagrange
� multipliers� beta� using bisection method
�
� Written by� Roseanna M� Neupauer
� Modification Date� April ��� �			
�
� function beta
bisection�upper�expvalue�leftbegin����
� rightbegin�maxiter�tolbeta�nt�nearzero�large�
�
� Inputs
� upper array containing upper limit of prior
� distributions
� expvalue array containing prior expected value
� leftbegin lower limit of range for bisection method
� rightbegin upper limit of range for bisection method
� maxiter maximum number of iterations in beta�fitting
� tolbeta tolerance for beta�fitting
� nt number of elements in the time array
� nearzero value below which the asymptotic
� approximation to zero is used
� large value above which the asymptotic
� approximation to infinity
�
� Outputs
� beta array containing the Lagrange multipliers
�
� Functions called
� snfcn evaluates the function whose zero will be
� found using the bisection method

function beta
bisection�upper�expvalue�leftbegin�rightbegin����
maxiter�tolbeta�nt�nearzero�large�

beta
zeros�nt����

for i
��nt
u
upper�i��
sn
expvalue�i��
left
leftbegin�
right
rightbegin�
for j
��maxiter

bold
�left�right����
snfcnl
snfcn�left�u�sn�nearzero�large��
snfcnr
snfcn�right�u�sn�nearzero�large��
snfcnb
snfcn�bold�u�sn�nearzero�large��
if �abs���sn � u��eps�

beta�i�
���

���



break
elseif �snfcnl � � � snfcnr � ��

if �snfcnl � snfcnr�
beta�i�
leftbegin�

else
beta�i�
rightbegin�

end
break

elseif �snfcnl � � � snfcnr � ��
if �snfcnl � snfcnr�

beta�i�
rightbegin�
else

beta�i�
leftbegin�
end
break

else
if �snfcnb�snfcnl� � �

left
bold�
else

right
bold�
end
if �right�left� � tolbeta

beta�i�
�left�right����
break

else
if �j 

 maxiter�
disp��Beta iterations did not converge��
beta�i�
�right�left����

end
end

end
end � for j
if �beta�i� 

 leftbegin � u�sn �
 ��

beta�i�
����u�sn��
end

end � for i
���������� end of function bisection�m ����������

��	



���������� start of function getrep�m ����������
�
� Function to evaluate the kernel matrix
�
� Written by� Roseanna M� Neupauer
� Modification Date� April ��� �			
�
� f
getrep�kernfn�t�xsample�tsample�params��
�
� Inputs
� kernfn name of matlab function that calculates the
� value of the kernel
� This function is called with the
� following command�
� y
kernfn�xx�tt�params�
� where xx is a location and tt is a time
� t array containing solution times
� xsample array containing sampling locations
� tsample time of sampling
� params array of all transport parameters values
�
� Outputs
� f matrix of kernel function values� scaled by
� time interval
�
� Functions called
� kernfn calculated the value of the kernel at one
� location and time

function f
getrep�kernfn�t�xsample�tsample�params��

nt
size�t����
ns
size�xsample����
weight
t����t����
f
zeros�ns�nt��

� G matrix in Equation ���
for i
��nt

for j
��ns
if �t�i� �
 tsample� ���

f�j�i�
weight����
feval�kernfn�xsample�j��tsample�t�i��params��

end
end � for j

end � for i

return
���������� end of function getrep�m ����������

���



X���������� start of function donewton�m ����������
�
� Function to calculate the Lagrange multipliers� lambda�
� using Newton�s method
�
� Written by� Roseanna M� Neupauer
� Modification Date� April ��� �			
�
� 
lambda�fittedc�mhat�a�
���
� donewton�funfcn�jacfcn�lamiter�tollam�tolls����
� xsample�g�upper�t�cin�noise�csample�ndata�beta����
� nearzero�large�pflag��
�
� Inputs
� funfcn name of matlab function that calculates the
� F vector �Equation ����� funfcn
�getfk�
� jacfcn name of matlab function that calculates the
� Jacobian matrix �Equation B����
� funfcn
�getjac�
� lamiter maximum number of iterations in
� lambda�fitting
� tollam tolerance for lambda�fitting
� tolls tolerance for golden section search
� xsample array containing sampling locations
� g matrix of scaled kernel functions
� upper array containing upper limit of prior
� distributions
� t array containing solution times
� cin array containing true source history
� noise standard deviation of normally�distributed
� random noise in measurements
� for noise � �� noise is absolute
� for noise � �� the absolute value of
� noise is proportional to
� sample concentration
� csample array containing sampled concentrations
� ndata number of measured data points
� beta array of Lagrange multipliers
� nearzero value below which the asymptotic
� approximation to zero is used
� large value above which the asymptotic
� approximation to infinity is used
� pflag plot flag ������
� pflag 
 sum of the following
� � � to plot true source history and
� fitted source history after
� each iteration
� � � to plot measured data and fitted
� data after each iteration

���



� � � to plot a vector at each iteration
� � � to plot lambda vector at each
� iteration
�
� Outputs
� lambda array containing the Lagrange multipliers
� fittedc array containing the model fit to the
� measured data
� mhat array containing the expected value of the
� model� based on the posterior distribution
� a array containing the vector� a
�
� Functions called
� getfk calculates the F vector
� getjac calculates the Jacobian matrix
� plotops creates some intermediate plots
� rscale row scales the Jacobian
� golden performs a golden section search

function 
lambda�fittedc�mhat�a�
���
donewton�funfcn�jacfcn�lamiter�tollam�tolls����
xsample�g�upper�t�cin�noise�csample�ndata�beta����
nearzero�large�pflag��

k
��
fignum
��
normcs
norm�csample��
lambda
ones�ndata����

for i
��lamiter

� calculate the F matrix �Equation �����
fprintf��Newton method� ITERATION �i�n��i�

fe�mhat�a�
feval�funfcn�lambda�g�beta�upper�csample����

noise�nearzero�large��

� display some plots
if pflag


k�fignum�
plotops�pflag�k�fignum�t�mhat�cin�i����
lambda�csample�noise�ndata�xsample�a�fe�large��

end

� calculate the Jacobian matrix �Equation B����
dfe
feval�jacfcn�lambda�g�upper�a�beta�csample�noise����

nearzero�large��

� perform row scaling on the Jacobian matrix �page �	�

dfe�fe�
rscale�dfe�fe��
fprintf�� Condition number of Jacobian� �e �n��cond�dfe��

���



� solve the matrix equation to obtain step direction
� �Equations ���� and B����

dellame
�dfe�fe�

� Use Golden section search to find the optimal step length
� �page �	�

alpha
golden�funfcn�lambda�dellame�tolls�g�beta�upper����
csample�noise�nearzero�large��

fprintf�� Step length is �f�n��alpha��

lambda
lambda�alpha�dellame�

fe�mhat�a�
feval�funfcn�lambda�g�beta�upper����

csample�noise�nearzero�large��
fprintf�� new norm�F� is �e �n��norm�fe���

� check if convergence criteria is met �page �	�
ratio
norm�fe�����norm�csample���
fprintf�� Stopping criteria is �e �n��ratio��
if ratio � tollam � isnan�ratio�

� calculate the fitted plume data
norml
norm�lambda��
if �noise � ��

fittedc
�fe�csample�sqrt�ndata��noise����
lambda�norml�

else
fittedc
�fe�csample�normcs�abs�noise�����

lambda�norml�
end
break�

end
end

return
���������� end of function donewton�m ����������

���



���������� start of function snfcn�m ����������
�
� Function to evaluate the equations whose zero will be found
� using the bisection method
�
� Written by� Roseanna M� Neupauer
� Modification Date� April ��� �			
�
� function f
snfcn�beta�u�sn�nearzero�large��
�
� Inputs
� beta estimation of the ith beta
� u ith upper value
� sn ith expected value
� nearzero value below which the asymptotic
� approximation to zero is used
� large value above which the asymptotic
� approximation to infinity
�
� Outputs
� f value of function whose zero will be found
� using the bisection method

function f
snfcn�beta�u�sn�nearzero�large��

bu
beta�u�
if bu 

 �

� Equation ���
f
sn�u���

elseif �abs�bu� � nearzero�

� Equation �� 
f
sn��u���������bu����bu!������������bu����bu!��bu!����

elseif bu � �large

� page ��
f
sn��u���beta��

elseif �bu � large�

� page � 
f
sn���beta�

else

� Equation ��� and Equation A���

��




f
sn���exp��bu�����bu��������beta�����exp��bu�����

end

return
���������� end of function snfcn�m ����������

���



���������� start of function kernel�m ����������
�
� Function to evaluate the kernel for one x and one time
�
� Written by� Roseanna M� Neupauer
� Modification Date� April ��� �			
�
� f
kernel�xx�tt�params�
�
� Inputs
� xx location
� tt difference between sample time and
� calculation time
� params array of all transport parameters values
�
� Outputs
� f value of kernel function at xx�tt
�

function f
kernel�xx�tt�params�

� Equation ���
f
xx�����sqrt�pi�params����tt�!��������

exp���xx�params�����tt��!������params����tt���

return
���������� end of function kernel�m ����������

���



���������� start of function getfk�m ����������
�
� Function to calculate the F vector �Equation �����
�
� Written by� Roseanna M� Neupauer
� Modification Date� April ��� �			
�
� 
fe�mhat�a�
getfk�lambda�g�beta�upper�csample�noise����
� nearzero�large�
�
� Inputs
� lambda array containing the Lagrange multipliers
� g matrix of scaled kernel functions
� beta array of Lagrange multipliers
� upper array containing upper limit of prior
� distributions
� csample array containing sampled concentrations
� noise standard deviation of normally�distributed
� random noise in measurements
� for noise � �� noise is absolute
� for noise � �� the absolute value of
� noise is proportional to
� sample concentration
� nearzero value below which the asymptotic
� approximation to zero is used
� large value above which the asymptotic
� approximation to infinity is used
�
� Outputs
� fe array containing the F vector
� mhat array containing the expected value of the
� model� based on the posterior distribution
� a array containing the vector� a

function 
fe�mhat�a�
getfk�lambda�g�beta�upper�csample����
noise�nearzero�large�

� define array sizes and create new arrays

ndata�nt�
size�g��
fe
zeros�ndata����
b
zeros�nt����
a
zeros�nt����
mhat
zeros�nt����
blarge
�����

� calculate the a vector �page ���
for k
��nt

aa
���
for l
��ndata

��




aa
aa�lambda�l��g�l�k��
end
a�k�
beta�k��aa�
b�k�
aa�

end

� calculate mhat
mau
a��upper�
for j
��nt

if mau�j� 

 ��

� Equation ����
mhat�j�
upper�j����

elseif �beta�j� � �blarge�

� Equation ����
mhat�j�
��upper�j���������beta�j������upper�j�����

�beta�j��b�j�������
���	�beta�j�!�����beta�j��b�j��upper�j��b�j�����
�beta�j��b�j������

elseif �abs�mau�j�� � nearzero�
au
a�j��upper�j��

� Equation ����
mhat�j�
upper�j����������au����au!������

���������au����au!��au!���

elseif mau�j� � �����!�

� page �	
mhat�j�
upper�j����a�j��

elseif �mau�j� � ��!��

� page �	
mhat�j�
��a�j��

else

� Equation ����
mhat�j�
�exp��mau�j������mau�j������������

�a�j������exp��mau�j�����

end
end

� calculate the F matrix

���



if noise � �
errfactor
sqrt�ndata��noise�norm�lambda��

else
errfactor
norm�csample��abs�noise��norm�lambda��

end
� Equations ���� and B���
for k
��ndata

ff
csample�k��
for l
��nt

ff
ff�g�k�l��mhat�l��
end
fe�k�
ff�errfactor�lambda�k��

end

return
���������� end of function getfk�m ����������

��	



���������� start of function getjac�m ����������
�
� Function to calculate the Jacobian matrix �Equation B����
�
� Written by� Roseanna M� Neupauer
� Modification Date� April ��� �			
�
� dfe
getjac�lambda�g�upper�a�beta�csample�noise�nearzero����
� large��
�
� Inputs
� lambda array containing the Lagrange multipliers
� g matrix of scaled kernel functions
� upper array containing upper limit of prior
� distributions
� a array containing the vector� a
� beta array of Lagrange multipliers
� csample array containing sampled concentrations
� noise standard deviation of normally�distributed
� random noise in measurements
� for noise � �� noise is absolute
� for noise � �� the absolute value of
� noise is proportional to
� sample concentration
� nearzero value below which the asymptotic
� approximation to zero is used
� large value above which the asymptotic
� approximation to infinity is used
�
� Outputs
� dfe array containing the Jacobian matrix

function dfe
getjac�lambda�g�upper�a�beta�csample�noise����
nearzero�large��

� calculate array sizes and define new arrays

ndata�nt�
size�g��
dfe
zeros�ndata��
dmndan
zeros�nt����
b
zeros�nt����
norml
norm�lambda��
blarge
�����

� calculate the b vector �page ���
for k
��nt

aa
���
for l
��ndata

aa
aa�lambda�l��g�l�k��
end

���



b�k�
aa�
end

� calculate the derivative of mhat with respect to a or b
mau
a��upper�
for j
��nt

if beta�j� � �blarge

� Equation ��� 
dmndan�j�
��upper�j���	�beta�j������

�������b�j��upper�j����	�beta�j�!���

elseif abs�mau�j�� � nearzero
au
a�j��upper�j��

� Equation ����
dmndan�j�
�upper�j�!�����������au���au!������

����������au�����au!���

elseif abs�mau�j�� � large

� Equation ����
dmndan�j�
�a�j�!�����

else

� Equations ���� and B���
dmndan�j�
��a�j�!����upper�j�!���exp��mau�j�����

�����exp��mau�j���exp����mau�j�������
��a�j�!������exp��mau�j���!���

end
end

� calculate the derivative of F with respect to lambda

if noise � �
errfactor
sqrt�ndata��noise�norml�

else
errfactor
norm�csample��abs�noise��norml�

end
� Equation B���
for j
��ndata

for l
��ndata
fl
��
for n
��nt

fl
fl�g�j�n��dmndan�n��g�l�n��
end
dfe�j�l�
fl�errfactor�lambda�j�����

���



lambda�l���norml!���
end

end
dfe
dfe�errfactor�eye�ndata��

return
���������� end of function getjac�m ����������

���



���������� start of function plotops�m ����������
�
� Function to create intermediate plots during each
� iteration of Newton�s method
�
� Written by� Roseanna M� Neupauer
� Modification Date� April ��� �			
�
� 
k�fignum�
plotops�pflag�k�fignum�t�mhat�cin�i�lambda����
� csample�noise�ndata�xsample�a�fe�large�
� Inputs
� pflag plot flag ������
� pflag 
 sum of the following
� � � to plot true source history and
� fitted source history after
� each iteration
� � � to plot measured data and fitted
� data after each iteration
� � � to plot a vector at each iteration
� � � to plot lambda vector at each
� iteration
� k plot number on plot of true solution and
� fitted solution
� fignum figure identifier on plot of true solution
� and fitted solution
� t array containing solution times
� mhat array containing the expected value of the
� model� based on the posterior distribution
� cin array containing true source history
� i iteration number
� lambda array containing the Lagrange multipliers
� csample array containing sampled concentrations
� noise standard deviation of normally�distributed
� random noise in measurements
� for noise � �� noise is absolute
� for noise � �� the absolute value of
� noise is proportional to
� sample concentration
� ndata number of measured data points
� xsample array containing sampling locations
� a array containing the vector� a
� fe array containing the F vector
� large value above which the asymptotic
� approximation to infinity is used
�
� Outputs
� k plot number on plot of true solution and
� fitted solution
� fignum figure identifier on plot of true solution

���



� and fitted solution

function 
k�fignum�
plotops�pflag�k�fignum�t�mhat�cin�i����
lambda�csample�noise�ndata�xsample�a�fe�large�

� plot user�selected plots
if mod�pflag���

� plot true and fitted solution at each iteration

k
k���
funstr
strcat��subplot�����num�str�k�������
if k 

 �

figure�fignum�
subplot�����
clf
fignum
fignum���

elseif k 

 	
k
��

end
eval�funstr�
if �isempty�cin�

plot�t�mhat�t�cin������
else

plot�t�mhat�
end
xlabel��time���ylabel��Source Concentration���
text���������num�str�i����
pause���

end

if �mod�pflag��� �
��

� plot fitted and measured data at each iteration

figure����
norml
norm�lambda��
normcs
norm�csample��
if �noise � ��

fittedc
�fe�csample�sqrt�ndata��noise����
lambda�norml�

else
fittedc
�fe�csample�normcs�abs�noise�����

lambda�norml�
end
plot�xsample��csample��o��xsample��fittedc��V��
legend��Sampled Data���Fitted Data����
text���������num�str�i����
pause���

��




end

if �mod�pflag��� �
 ��

� plot a vector at each iteration

figure����
tp
find�a � ���
tn
find�a � ���
semilogy�t�abs�a������t�tp��a�tp���o�����

t�tn���a�tn���V��t�large�ones�size�t���
xlabel��Time��
ylabel��values of a��
legend��Absolute a���Positive a���Negative a�����

�Asymptotic Cutoff����
pause���

end

if �pflag �
 ��

� plot lambdas

figure����
nl
size�lambda����
tp
find�lambda � ���
tn
find�lambda � ���
tt
linspace���nl�nl���
semilogy�tt�abs�lambda������tt�tp��lambda�tp���o�����

tt�tn���lambda�tn���V��
xlabel��x��
ylabel��values of lambda��
legend��Absolute lambda���Positive lambda�����

�Negative lambda����
pause���

end
figure�fignum���

return
���������� end of function plotops�m ����������

���



���������� start of function rscale�m ����������
�
� Function to perform row scaling of Jacobian matrix
�
� Written by� Roseanna M� Neupauer
� Modification Date� April ��� �			
�
� 
Aout� vout�
rscale�Ain�vin�
�
� Inputs
� Ain unscaled Jacobian matrix
� vin unscaled F vector
�
� Outputs
� Aout scaled Jacobian matrix
� vout scaled F vector

function 
Aout� vout�
rscale�Ain�vin�


nr�nc�
size�Ain��
maxval
max�Ain�
�����
for i
��nr

Aout�i���
Ain�i����maxval�i��
end
vout
vin��maxval�

return
���������� end of function rscale�m ����������

���



���������� start of function golden�m ����������
�
� Function to perform a Golden section search to calculate
� optimal step length
�
� Written by� Roseanna M� Neupauer
� Modification Date� April ��� �			
�
� alpha
golden�funfcn�lambda�dellame�tolls�g�beta�upper����
� csample�noise�nearzero�large�
� Inputs
� funfcn name of matlab function that calculates the
� F vector �Equation ����� funfcn
�getfk�
� lambda array containing the Lagrange multipliers
� dellame step direction
� tolls tolerance for golden section search
� g matrix of scaled kernel functions
� beta array of Lagrange multipliers� beta
� upper array containing upper limit of prior
� distributions
� csample array containing sampled concentrations
� noise standard deviation of normally�distributed
� random noise in measurements
� for noise � �� noise is absolute
� for noise � �� the absolute value of
� noise is proportional to
� sample concentration
� nearzero value below which the asymptotic
� approximation to zero is used
� large value above which the asymptotic
� approximation to infinity is used
�
� Outputs
� alpha optimal step length
�
� Functions called
� getfk calculates the F vector

function alpha
golden�funfcn�lambda�dellame�tolls�g�beta����
upper�csample�noise�nearzero�large�

� bracket the step length to within a ���length interval
normdel
ones�������
for brack
����

del
�����brack����

newfe�dummy�dummy��
feval�funfcn�lambda�del�dellame����

g�beta�upper�csample�noise�nearzero�large��
normdel�brack�
norm�newfe��

end

��




minbrack
find�normdel

min�normdel���
minbrack
minbrack����
if �minbrack �
 ���

aa
��	�
bb
����

elseif �minbrack �
 ��
aa
���
bb
����

else
aa
�����minbrack����
bb
�����minbrack����

end

� Using the ����length interval as a starting interval�
� perform a Golden section search in the step direction


newfe�dummy�dummy��
feval�funfcn�lambda�aa�dellame�g�beta����
upper�csample�noise�nearzero�large��

fa
norm�newfe��

newfe�dummy�dummy��
feval�funfcn�lambda�bb�dellame�g�beta����

upper�csample�noise�nearzero�large��
fb
norm�newfe��

tau
�����sqrt�����
F�
aa����tau���bb�aa��
F�
aa�tau��bb�aa��

newfe�dummy�dummy��
feval�funfcn�lambda�F��dellame�g�beta����

upper�csample�noise�nearzero�large��
fF�
norm�newfe��

newfe�dummy�dummy��
feval�funfcn�lambda�F��dellame�g�beta����

upper�csample�noise�nearzero�large��
fF�
norm�newfe��
while abs�F��F�� � tolls

if �fF� � fF� � fa � fF��
aa
F��
temp
F��
F�
F��
fF�
fF��
F�
temp�tau��bb�temp��

newfe�dummy�dummy��
feval�funfcn����

lambda�F��dellame�g�beta�upper����
csample�noise�nearzero�large��

fF�
norm�newfe��
else

bb
F��
temp
F��
F�
F��
fF�
fF��

���



F�
aa����tau���temp�aa��

newfe�dummy�dummy��
feval�funfcn����

lambda�F��dellame�g�beta�upper����
csample�noise�nearzero�large��

fF�
norm�newfe��
end

end
alpha
�F��F�����
return
���������� end of function golden�m ����������

��	



Table C��� Variable de�nitions for MATLAB program�
Variable Description Page

alpha optimal step length in Newton�s method 	�
fittedc model �t to measured data NA
lamiter maximum number of iterations in Newton�s method NA
large asymptotic cuto� for �� 	�

leftbegin lower limit of initial interval for bisection method 	�
maxiter maximum number of iterations in bisection method NA

p� 	th percentile probability levels 
�
p	� �	th percentile probability levels 
�
pflag �ag to select plotting options NA

rightbegin upper limit of initial interval for bisection method 	�
tolbeta stopping tolerance for bisection method 	�
tollam stopping tolerance for Newton�s method �

tolls stopping tolerance for golden section search NA

C�� Variable De�nitions

The variables used in the MATLAB program are de�ned in the fol�

lowing tables� The variables that are not de�ned by a symbol in this thesis

are shown in Table C��� with a brief description of the variable and a refer�

ence to the page number in this thesis where the variable is described� For the

variables that have a corresponding symbol in this thesis� Table C�� shows the

variable names in the MATLAB program� the symbol used in this thesis� and

a reference for the equation or page number where the symbol is de�ned�

���



Table C��� Variable names and symbols for MATLAB program�
Variable name Symbol Reference

a ai Page 
	
beta 
i Equation ����
cin Cin�t� Equation 
��

csample d � C�xj� T � Equation 
�

csource m Equation 
�

dfe �F��� Equations B��� and 
��


Equations B���� 
����
dmndan � "mi��ai and � "mi��bi 
��	� 
���� and 
���
expvalue si Equation ���	

fe F Equations B��� and 
��

g G Equation 
�


kernfn f�xj � T � ti� Equation 
��
lambda � Equation ����
mhat "m Equations ����� 
���� and 
���
ndata N Page ��

nearzero �� Page 	�
noise � Equation 
��

nt M Page ��

params �v�D Equation 
��
t ti Page ��

tsample T Equation 
��
upper Ui Equation ���


xsample xj Page ��

���


