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Abstract

In 1986, Manuel Blum claimed in his paper "How to Prove a Theo-
rem So No One Else Can Claim It” that he could apply zero-knowledge
methods to proving theorems in any proof system. He sketched a proof of
this result, but gave no details. We give a background of zero-knowledge
proofs and examine their applicability to the propositional calculus. We
then examine Blum’s claim, assuming the existence of a proof-verifying
program which can be modeled with a finite state machine, and complete
the proof. However, we also show that a zero-knowledge proof demon-
strating knowledge of a proof is no easier than actually determining a
proof of a theorem from scratch.

1 Introduction

Ever since the concept of zero-knowledge was first articulated, a large number
of problems that can be exploited for their use have been identified, and a large
number of applications determined. In particular, it has been determined that
the entire class of NP-complete problems have associated zero-knowledge proofs,
subject to a few assumptions [7, 8]. One of the most interesting applications,
however, is the idea that actual mathematical theorems are provable in zero-
knowledge. This idea was first put forth by Blum in [2], but he goes into little
detail of just how this is to be accomplished, although as Bruce Schneier points
out in [11], Blum could have published these results without revealing them!
A search of the literature has turned up no additional writing on the subject
save for references to [2]. Schneier states that the protocol involves mapping the
problem onto the Hamiltonian cycles problem, whereby successfully proving a
theorem becomes equivalent to finding a Hamiltonian cycle in a graph although
this is not clearly stated in [2]. In short, while it seems to be accepted that
proving theorems in zero-knowledge is possible, those who know how this is
done have not seen fit to tell the rest of us.

In order to fill in these gaps, we start by assuming that there exists some
program for checking a proof that can be run on a computer with finite memory.
This computer program can be modeled as a finite state machine. This has
the effect of immediately shedding some light on the problem. A finite state
machine effectively maps the problem onto a graph, and transforms it into the



problem of finding a path through this very complex graph to a certain vertex
- a good setting for a zero-knowledge proof. In this paper, I demonstrate how
a zero-knowledge protocol can be used to show knowledge of a proof without
revealing it. However, this brings up an unfortunate complication. Finding a
path between two points on a graph is not an intractable problem. Therefore the
zero-knowledge proof as it is formulated is not any easier than simply proving
the theorem.

2 Zero-Knowledge Proofs: Basic Concepts

Information is an intangible, ephemeral commodity, and virtually impossible to
control. Conversations can be overheard, letters intercepted, and e-mail servers
hacked. Of course, good cryptography can keep the information a secret between
two parties. But what is there to stop this second party from transferring that
information to a third party, who can then in turn pass it to a fourth, and so on?
In some cases, it is desirable to demonstrate that you possess some information,
but not to reveal it. For example, some authentication schemes require you to
give your private key to a trusted authority, not because the trusted authority
needs to know it, but because it needs to be certain that you do, in order to
prevent potential attackers from exploiting the certification process. This is
where zero-knowledge comes into play.

2.1 Definition

A zero-knowledge proof is an interactive protocol between two parties, called
the ”"prover” and the ”verifier”. The prover claims to have some information,
and the verifier would like to confirm that she actually knows it. The prover,
however, does not want to reveal it. In order to satisfy their respective desires
for secrecy and verification, the prover and the verifier engage in an interactive
proof system. This proof system should have two properties. It should be
”complete”, i.e., if the prover really does have the information claimed, the
verifier should come out of the protocol convinced of this fact with a probability
of 1, and it should be ”"sound”, i.e., if the prover does not have the information
claimed, the verifier should be able to see to it that the probability that she can
get away with it is arbitrarily small. (We follow here the terminology of [12];
"validity” is sometimes used in place of ”soundness”, as in [7].)

These criteria, however, do not form the basis of zero-knowledge. The verifier
emerges from the protocol convinced that the prover possesses the information,
but what is to prevent him from using the session transcript to convince a third
party that he possesses the information himself? Suppose, then, that the verifier
could provide a falsified transcript to the third party. If it is computationally
tractable to do so, then the third party will not be able to trust any transcript
the verifier may provide. Therefore, we call an interactive proof system a zero-
knowledge protocol if and only if there exists a simulator that can output results
identical to those of a real protocol.



An example will serve to illustrate these ideas on an informal level. Sup-
pose that the prover claims to know a Hamiltonian cycle C to a graph G. The
prover and the verifier execute the following protocol, which was originally de-
veloped by Blum in [2] as an improvement on an earlier protocol appearing in [7]:

1. The prover applies a random permutation ¢ to G. She then encrypts each
entry in the adjacency matrix of ¢(G) using a bit-commitment scheme (about
which more shortly), and passes the resulting ciphertext E(¢(G)) to the verifier.

2. The verifier determines a random bit ¢, and transmits it to the prover.

3. If i = 0, the prover decrypts every entry in the adjacency matrix and reveals
the permutation, enabling the verifier to determine for himself that ¢(G) is iso-
morphic to G. Otherwise, if ¢ = 1, then the prover decrypts the |G| entries in
the matrix that correspond to the edges in the Hamiltonian.

4. This procedure is repeated for a total of k£ rounds.

It all hinges on the fact that the prover hands over the permuted graph be-
fore the verifier chooses what he wants to see. Suppose the prover didn’t know
a Hamiltonian cycle for G. She has two choices: She can give the verifier a
permutation of G for which she still does not know a Hamiltonian, or she can
give him a graph the same size as G for which she does know a Hamiltonian,
but which is not isomorphic. Because she doesn’t know what the verifier wants
to see (and since the verifier chooses randomly each time, she has no way of
guessing in advance), she will choose correctly with a probability of 1/2 each
round. If she chooses wrong, the protocol ends in failure then and there. Thus,
this protocol can be seen to be sound: the probability that the prover can con-
vince the verifier that she knows a Hamiltonian she doesn’t know is 1/2% after
k rounds. The verifier can simply choose k > —logy M, where M is his desired
level of probability. The protocol is trivially complete— there is simply no way
for step 3 in the protocol to fail, if the prover really possesses the Hamiltonian
cycle. As for the prover, she is protected by the inherent difficulty of the prob-
lems involved. In the first case, the verifier will learn a permutation of G, but
this is of no help to him in finding a Hamiltonian cycle. In the second case, the
verifier will learn a Hamiltonian cycle, but will have no way of matching it to
any set of vertices and edges in G. However, it is not this fact which determines
zero-knowledge.

The zero-knowledge properties stem from the simulatability of the entire
process. In a genuine instance of the protocol, a transcript will be produced
documenting the information available to the verifier during each round. It will
contain the graph G and the encrypted permutations ¢(G), the random bits i,
and the permutations and Hamiltonian cycles that the prover reveals in step 3
in each round. Suppose the verifier wished to forge a transcript. He knows the
graph G. He does not know a Hamiltonian cycle for it, but he can easily create a
second graph H which is the same size as G and has a Hamiltonian cycle, which



he does know. Due to the NP-completeness of the Graph Isomorphism problem,
it will be infeasible for any other computationally limited party to show that G
and H are not, in fact, isomorphic.

The verifier now has everything he needs to generate a false transcript. He
first simulates the prover’s role. He determines a random bit h and a random
permutation ¢. If h = 0, he enters E(¢(G)) onto the transcript. If h = 1, he
enters E(¢(H)) onto the transcript. Now, he simulates his own role. He deter-
mines a random bit ¢. If h = 4, then he has asked the simulated prover either to
demonstrate the isomorphism of ¢(G) and G, or to show the Hamiltonian cycle
in ¢(H). So, he simply enters i onto the transcript and concludes the round by
having the simulated prover decrypt the relevant information. If h # 4, then he
has either just asked to reveal the Hamiltonian in ¢(G), or to demonstrate the
isomorphism of ¢(H) and G. He cannot do either of these things, but he can
reset the simulator and start the round from scratch.

Given that the probability that he will need to restart a round is 1/2 each
time, the expected running time for this simulator is twice that of the expected
running time of the actual protocol. And the final result is a transcript that
could have been generated in a real protocol as far as any third party who cannot
decrypt the graphs could determine. (The conditions under which a third party
can decrypt the graphs are discussed in the section on bit commitments.)

Of course, this only applies if the verifier is really choosing his bits randomly.
After all, the protocol guards against cheating provers, but has nothing to say
about cheating verifiers. He might choose his bits as a function of previous
bit choices and graph permutations. However, this can also be simulated, as
we shall see. Thus, since the verifier cannot prove any transcript, real of false,
to be genuine, he cannot simply turn around and claim that he knows the
Hamiltonian cycle to a third party. Put another way, the verifier learns nothing
from a genuine instance of the protocol that he could not learn from a spurious
one! It is this idea that is the essence of zero-knowledge, and it will be developed
more rigorously in subsequent sections.

2.1.1 Computational Assumptions

What can we say about the computational powers of any prover or verifier in the
above protocol? The prover is obviously limited in his computational ability—
he cannot solve NP-complete problems, otherwise there would be little point in
concealing the Hamiltonian cycle from him in the first place. The prover, on
the other hand, only receives one randomly generated bit from the verifier. We
can assume that she has unlimited computational power, and it will not affect
the protocol. This holds for all members of the class of zero-knowledge proofs.
There is a second, related class called ”zero-knowledge arguments” in which the
opposite is assumed: limited prover, omnipotent verifier. This variant will be
discussed more fully below.



2.1.2 Types of Zero-Knowledge

In the informal discussion of the zero-knowledge properties of the Hamiltonian
cycle proof above, we mentioned that the transcripts generated by the simu-
lated protocol were identical to the transcripts generated by the actual protocol.
However, we would like some additional constraints. Certainly, the transcripts
themselves are identical, but what about their probability distributions? In the
long run, can we expect to see a certain transcript the same number of times
whether it is being generated by a real protocol or a simulator? To address
this question, Goldwasser, Micali, and Rackoff listed three categories of zero-
knowledge proofs: ”perfect”, ”statistical”, and ”computational” [9]. A fourth
category, "no-use”, covers a range of proofs that fall somewhat outside the for-
mal definition of zero-knowledge, but still do not impart any useful information
to the verifier [11].

A proof is said to be ”perfect zero-knowledge” if and only if there exists a
simulator which runs in polynomial time and yields transcripts with an iden-
tical probability distribution to the genuine protocol. An example of a perfect
zero-knowledge proof is that for the Graph Isomorphism problem from [7], in
which the prover wishes to demonstrate knowledge of a permutation = which
transforms the graph Gy to Gy:

1. The prover applies a random permutation ¢ to G, yielding H. She transmits
H to the verifier.

2. The verifier determines a random bit ¢, and transmits it to the prover.

3. If i = 0, then the prover reveals the composition 7 o ¢, and the verifier
checks that mo ¢(Go) = H. If i = 1, then the prover reveals ¢, and the verifier
checks that ¢(G1) = H.

4. They repeat this procedure for a total of k£ rounds.

The protocol is trivially complete. Soundness follows from the fact that if the
two graphs are not known to be isomorphic, then the prover will have to decide
in advance which graph to permute and transmit, and there is a one in two
chance each round that the verifier will want to see the permutation for the
wrong one. As for zero-knowledge, just as with the Hamiltonian protocol, the
verifier can set up a simulator that chooses a random bit h and permutes G}, at
random, chooses another random bit i, and if A = i, reveals the permutation,
and otherwise restarts the round. This simulator has an expected running time
twice that of the genuine protocol, so it runs in polynomial time. As for the
probability distribution, in the case of the genuine protocol, the transcript will
consist of k triples (H,14,7), where 7 is equal to either ¢ or 7 o ¢, depending on
the value of 4. The bit ¢ is randomly generated, as is ¢, and because H depends
on ¢, we can see that every triple occurs with equal probability. Moving on to
transcripts generated by the simulator, every i is equally likely. If ¢ = 0, the



permutation that transforms Gy to H is randomly generated, and just as likely
as any other permutation. It will also be equal to 7 o ¢, for some ¢ not known
to the verifier. If ¢+ = 1, then again, the permutation that maps G; to H is
randomly generated, and just as likely as any other, and equal to some ¢. Thus,
we see that every triple is equally likely to appear in a falsified transcript as
well, and so the two probability distributions are equal— so long as the verifier
stays honest.

However, if he chooses his bits nonrandomly, there is still a simulator that can
generate the necessary transcripts. Since the probability distributions cannot be
analysed directly, they must be analysed inductively on the number of rounds.
As the basis of our inductive proof, round zero is simply the beginning of the
protocol, when the only items on a real or forged transcript will be Gg and G;.
The probability distributions are obviously identical in this case. Assume that
the probability distributions for real and forged transcripts are identical up to
round j. In round j + 1, the prover will choose a random permutation of G.
The graph ¢;+1(G1) depends on this permutation, so the probability that a
given permutation/graph combination will be chosen is 1/|G1|!. The cheating
verifier will choose 7; = 0 with a probability of p, and i¢; = 1 with a probability
of 1 — p. Thus, the probability that (¢;, H;,0) gets written on the transcript is
p/|G1|!, and the probability that (¢;, H;, 1) appearsis (1—p)/|G1]|!. Considering
a simulator that models a cheating verifier, the simulated prover is still playing
fair, thus the probability that h; = 0, is still 1/2 for each iteration I. Thus, the
probability that hy = ij; = 0 is p/2 and the probability that (¢; 1, Hj1,0) is
written to the forged transcript in the very first iteration is p/2|G1|!. Similarly,
the probability that (¢;1, Hj 1, 1) is written on the first attempt is p/2|G1|!. The
probability that nothing at all is written on the first iteration, and the round
restarts is of course 1/2, and so the probability that (¢; 2, Hj2,0) is written on
the second iteration is p/4|G1]|!. So, we see that the probability that a triple that
includes 4;; = 0 is written to the transcript on the Ith attempt is p/2'|G1|!, and
therefore, the probability that some triple (¢, H,0) appears on the transcript

for round j is:
P 1 _ p
P IEArenE

Through analogous reasoning, the probability that (¢, H,0) turns up in the
jth position on the transcript is (1 — p)/|G1|!. Therefore, there exists a sim-
ulator that produces transcripts identical and identically distributed to those
of a real protocol, and therefore, the Graph Isomorphism protocol is a perfect
zero-knowledge proof.

A slightly weaker version of zero-knowledge also exists. It may be that a
simulator may produce in polynomial time transcripts with a probability distri-
bution identical to the real protocol except in a constant number of instances.
These protocols are called ”statistical zero-knowledge proofs”.

Weaker still are the ” computational zero-knowledge proofs”. Instead of hav-
ing probability transcripts with probability distributions identical or nearly iden-
tical to the real protocol, their simulated transcripts are merely indistinguishable




from real transcripts in polynomial time. What do we mean by ”indistinguish-
able”? Consider the set T' of transcripts with length less than or equal to .
Consider also two probability distributions Py and P; on T'. These two proba-
bility distributions are computationally indistinguishable if there does not exist
any probabilistic algorithm D, called a ”distinguisher”, which maps each ¢ in T'
to {0,1} based on the likelihood that ¢ arose from the probability distribution
Py or Py, such that |Ep(Py) — Ep(P1)| > || ¢ for some large constant ”security
parameter” ¢, where

Ep(P,) =Y pi(t)p(D(t) = 1]t).

teT

In other words, the difference between the expected distinguisher outputs taken
over P, and P, should be very small.

Finally, we have the "no-use zero-knowledge proofs”. These are proofs that
are not necessarily simulatable, but can be established to reveal only insignifi-
cant amounts of data to the verifier.

2.1.3 Minimum Disclosure

Alternatively, we can remove the zero-knowledge requirement entirely, but retain
completeness and soundness. Such a protocol is called a ”minimum disclosure
proof”. This idea was developed in [6]. (Let the researcher beware: ”minimum
disclosure” was used interchangeably with ”zero-knowledge” in the infancy of
the field. Even now, we occasionally see ”"minimum disclosure” used in this
sense by researchers who dislike the term ”zero-knowledge”.)

2.2 Bit Commitment

In the Hamiltonian protocol above, we stated that the adjacency matrix of the
permuted graph was to be encrypted before the prover passed it to the verifier,
but we went into no detail about how this was to be done. Encryption in
this context is done via a ”bit-commitment scheme”: a probabilistic encryption
algorithm used to encrypt one bit at a time. It takes the form of an interactive
protocol which resembles a zero-knowledge proof in that it also makes use of the
”cut-and-choose” paradigm. The concept of bit commitment actually predates
that of zero-knowledge. It was first put forward by Blum in [1] as a means
for two parties conversing on a telephone to flip a coin. In that context, the
prover would flip a coin and encrypt the resulting bit by binding it up in some
intractable problem, such as quadratic residues or discrete logarithms. She
would then send the resulting ciphertext, called a ”blob” to the verifier, who
calls the toss. Finally, she would "open the blob”, i.e. reveal how the bit was
encrypted so that the verifier could see for himself whether the coin came up
heads or tails. Although the idea of using encryption in zero-knowledge proofs
can be seen very early on, the concept and the terms ”bit commitment” and
"blob” were first formalized in [3].



The role of bit-commitment in the Hamiltonian protocol is similar to its role
in flipping coins by telephone: the prover encrypts each entry in the adjacency
matrix separately, sends all the blobs to the verifier, and opens the relevant
blobs depending on what the verifier asks to see.

As an example, consider the following protocol, based on quadratic residues
which appears in [4, 3, 12]. The prover generates two secret primes p and gq. The
product n of these two primes she makes public. She determines a quadratic
nonresidue m modulo n, and this too she makes public. She and the verifier
then execute the following protocol.

1. When the prover wishes to encrypt a bit ¢, she chooses a random z and
computes miz?, and transmits this blob to the verifier.

2. When the verifier needs to know ¢, the prover simply reveals it along with x,
so that the verifier can see for himself that the bit was encrypted properly.

It is important to note that each bit is to be encrypted separately, with a
different value of = each time.

2.2.1 Computational Assumptions

Bit commitment schemes have two essential properties: A bit commitment is
said to be ”concealing” if the verifier cannot extract the bit directly from the
blob, and it is said to be ”binding” if the prover cannot encrypt both a one and
a zero as the same blob [12].

If we assume unlimited computing power for the prover, it is necessary that
any bit commitment scheme must be unconditionally binding— it must be math-
ematically impossible for the prover to open a blob as both a one and a zero.
The example above can be seen to be unconditionally binding. Suppose there
was some blob that could be opened as both a zero and a one. Then, we would
have ma? = x3 (mod n) for some x; and 29, and so m = (z] 'x2)?  (mod n).
But, since it has already been established that m is a quadratic nonresidue
modulo n, this is a contradiction. On the other hand, the scheme is only com-
putationally concealing, since finding b from the blob would involve determining
whether the blob was a quadratic residue or a nonresidue without knowing the
factorization of n. An omnipotent verifier could do this, so the verifier must be
restricted to normal computational power to use this scheme [12].

It is also possible to have a computationally binding but unconditionally con-
cealing scheme. Consider the following protocol from [3, 12], based on discrete
logarithms, in which we have a public prime p, a public generator a of the fi-
nite field Z, and 3, which is an element of this finite field chosen by the verifier:

1. The prover encrypts the bit ¢ by choosing a random z and computing the
blob G'a”.

2. The prover opens the blob when the time comes simply by revealing ¢+ and x.



The verifier chooses 3, and he can choose it to be whatever he likes. In particu-
lar; he can choose it in such a way that he knows its discrete logarithm [. This
means that whatever bit the prover encrypts, the verifier will be able to open it,
but he will also be able to open it as the opposite bit: a!ia® = of(1=9)g#Hi=1)
(mod p). The blobs are thus unconditionally concealing, as without knowledge
of x, the verifier will have no way of knowing which bit was encrypted. How-
ever, since the blobs can be opened both ways, we need to restrict the prover
to conventional computing ability so that she cannot take advantage of this
fact. These computational assumptions obviously impact the computational as-
sumptions we can make regarding the participants (limited prover, omnipotent
verifier), and also impacts the computational assumptions to be made on the
zero-knowledge properties of the proof in which it is used, as we shall shortly
see.

2.3 Proofs vs. Arguments

The variant of zero-knowledge proofs in which we assume a verifier with unlim-
ited computational power, and a more limited prover is called a ”zero-knowledge
argument”. The idea was first discussed in [3], and formalized in [5]. Somewhat
confusingly, arguments are considered a subset of zero-knowledge proofs while
also considered somehow distinct from them. The main difference between ar-
guments and proofs lies in the bit-commitment schemes. The soundness of a
zero-knowledge proof using bit commitment is dependent on the binding prop-
erties of the bit commitment scheme. If the prover can open a blob as a zero or a
one, she can cheat the verifier. Thus, a zero-knowledge proof, with its computa-
tionally powerful prover, requires unconditionally binding bit commitment. On
the other hand, a zero-knowledge argument requires unconditionally conceal-
ing bit-commitment, to keep the verifier from opening the blobs himself. The
blobs are now computationally binding, but a computationally limited prover
can no longer exploit this property, so the argument is computationally sound.
Completeness is of course unconditional for both proofs and arguments [12].
However, the most interesting difference between the two lies in the zero-
knowledge property itself. Consider the zero-knowledge properties of the Hamil-
tonian Cycles protocol if formulated as a zero-knowledge proof. A falsified tran-
script, whether or not the possibility of a cheating verifier is taken into account,
will contain encrypted and permuted instances of a graph H which is not iso-
morphic to the original graph G. An omnipotent third party will be able to
break the computationally concealing blobs, and determine that the graphs are
not isomorphic. Thus, this third party will be able to tell a forged transcript
from a real one, and the proof achieves only computational zero-knowledge.
On the other hand, if the blobs are unconditionally concealing, and the
protocol therefore a zero-knowledge argument, an omnipotent third party will
be just as likely to decrypt any given blob as a zero or as a one. Since the
unknown quantity that the prover uses to encrypt her bits is chosen randomly,
and since the range of blobs generated by zero is identical to that generated by



one, any blob is just as likely to appear in any given location as any other. The
result is perfect zero-knowledge.

3 Zero-Knowledge Proofs: Relevant Results

There are several results outside the scope of basic zero-knowledge that are
relevant here. Not the least of these is Blum’s original zero-knowledge proof for
proving theorems. I present the theorem and its proof outline exactly as they
appear in [2]:

Given any logical proof system (such as Russell and Whitehead’s
extremely general system within which it is generally acknowledged
that all mathematical theorems can be formulated and proved),
given any theorem provable in that system, and given an upper
bound, L, on the length of some proof of the theorem in the system,
it is possible to efficiently transform that proof into a zero-knowledge
proof of the theorem. This is an interactive probabilistic protocol
whereby the prover persuades the verifier with high probability,

(1) the theorem has a proof in the given proof system of length
< L, and

(2) the prover knows such a proof. The probability that a cheater,
i.e., a prover who does not know a proof, will pass this test < 1/2*
for a protocol with k rounds.

IDEA OF PROOF. The proof system is defined by a nondetermin-
istic TM (Turing machine) which, on input (statement of theorem,
1™), guesses a proof of the theorem of length < n, checks if it is a
valid proof within the system, and accepts if it is, rejects if not.

The prover gives the verifier a zero-knowledge proof that he, the
prover, knows an accepting path for this TM for some n. The proto-
col for this is along the same lines as for Hamilton Cycle in a graph:
one splits the computations into two pieces. The integer n must be
chosen by the prover to be an upper bound on the length of the
proof in the system. Q.E.D.

3.1 Finite State Machines

Blum intended the protocol to run in the context of a nondeterministic Turing
machine. However, given that it involves keeping track of accepting paths, it is
more appropriate to view it in the context of a finite state machine. We would,
of course, like to extend these results to Turing machines.

A finite state machine is a computing model that consists of an input tape,
a collection of states, and transitions between those states. A state is simply
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a configuration of a computer’s memory. Any program running on a computer
with a finite amount of memory can be modeled as a finite state machine. For
example, a computer with sixteen bits of memory has 2'6 possible states. The
particular instance of the problem being solved is encoded on the input tape.
The machine reads the input tape in one direction, and can transit between
states depending on what symbol it reads. There exists at least one state called
an "accepting state”. If the machine reaches the end of the input tape while
in an accepting state, then the input is a yes-instance of whatever problem is
being solved, and the machine accepts. Otherwise, it rejects.

The state machine can be represented as a directed graph, with states as
vertices and transitions as edges. For an example, consider the finite state
machine illustrated in figure 1. Assume the input tape is written in binary
notation. This finite state machine starts out in its initial state qq, represented
by the circle with the thick border. No transition is indicated for any symbol
other than a zero, so it simply stays in the initial state if a zero is not read. If
a zero is on the input tape, it transits to state ¢q;. Either way, the read head
of the machine advances to the next symbol on the tape. If having advanced
to any state g, other than the initial state, the machine reads a one from the
tape, then it returns to the initial state, otherwise it continues to g,41 until
it reaches the accepting state g3, represented by the filled circle. If after this
point no more ones are read, then the machine accepts. So, we can see that the
machine accepts if and only if the input tape contains a binary representation
of an integer divisible by eight.

Figure 1: A finite state machine that determines divisibility by eight.

0 q3

0 0
®
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3.2 Subprotocols

In order to demonstrate a theorem in zero-knowledge, a preliminary zero-knowledge
result must first be established. We need a means of demonstrating knowledge of

a path P between two vertices a and b in a directed graph. This zero-knowledge
proof runs along very similar lines to the Hamiltonian proof shown above.

1. The prover applies a random permutation ¢ to the vertices in the graph G.
She encrypts each entry of the adjacency matrix of ¢(G) with a bit-commitment
scheme and transmits it to the verifier.

2. The verifier determines a random bit 3.

3. If i = 0, then the prover reveals the permutation, i.e. opens each and
every blob in the adjacency matrix, enabling the verifier to see for himself that
¢(G) is isomorphic to G. If i = 1, the prover reveals the path ¢(P). This entails
opening the blobs that correspond to the component edges of the path.

4. This procedure is repeated for a total of k£ rounds.

If the prover does indeed know such a path, the verifier will be convinced of
this fact with probability 1. If the prover does not know such a path, she will be
able to falsely convince the verifier that she does with probability 1/2*. Thus,
the protocol is both complete and sound.

The zero-knowledge properties follow from the fact that just as with the
proof for Hamiltonian cycles or any other zero-knowledge proof, the verifier
never sees the whole picture at once. In any round, the prover will provide the
verifier with ¢(G), which may or may not contain the relevant path P, or a
path, just like any other path, that may or may not be P, and does not even
necessarily come from G. Thus, the verifier can set up a simulator. He simulates
the prover by determining a random bit h. If h = 0, he permutes G randomly.
If h = 1, he permutes a graph of size |G| containing a random path of length
|P|. He then encrypts the adjacency matrix and transmits it to the simulated
verifier. The simulated verifier determines a random bit . If A = 4, then the
simulated prover opens the relevant blobs to the simulated verifier, and the
round concludes successfully and is recorded on the transcript. If A # ¢, then
the simulator resets to the beginning of the round, and starts again. Since any
path of length |P| is just as likely as any other such path, and any permutation
¢ is also just as likely as any other, the decrypted portion of the set of simulated
transcripts will have the same probability distribution as the decrypted portion
of the set of real ones. The proof for the case involving the cheating verifier also
proceeds along the lines of that for the Hamiltonian Cycle protocol. Therefore,
this protocol is either perfect or computational zero-knowledge, depending on
the properties of the bit-commitment scheme employed.
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4 The Propositional Calculus P

The setting we have chosen for the theorem decidability problem is the propo-
sitional calculus due to Lukasiewicz, given in [10] as Pry. It is a full classical
axiomatic system with negation. Its major distinguishing properties are that
its axioms have been pared down to a completely independent set, as have its
improper symbols.

4.1 Rules of Formation and Rules of Transformation

The symbols of the propositional calculus P/ are partitioned into the set of
proper symbols and the set of improper symbols. The set of proper symbols
comprises an infinite number of propositional variables, here designated v, for
some integer p. There are four improper symbols: The unary operator —, the
binary operator =, and the bracketing symbols ( and ). The operators are de-
fined in tabular form:

pla|pr=4q
T | T T
T | F F
F | T T
F|F T
b |™p
T| F
F|T

Thus, these two symbols correspond to the notions of ”implication” and ”nega-
tion”, respectively.

A formula is defined as any combination of symbols. A well-formed formula
is simply a sequence of symbols put together in such a way as to be meaningful
within the rules set down by the given calculus. Within Pp7/, the following
rules of formation apply:

1. Any proper symbol v, is a well-formed formula unto itself.

2. If A is a well-formed formula, then its negation —A is a well-formed for-
mula.

3. If A and B are well-formed formulae, then the statement that A implies
B, enclosed in brackets, is a well-formed formula: (A = B).

Finally, there are two rules of transformation. These rules govern the deter-
mination of "immediate consequences” in the system Pp7,. The first of these
is the rule of substitution: If A and B are well-formed formulae, then B is an
immediate consequence of A by substitution if and only if it can be derived by
substituting some well-formed formula C' for every instance of some variable p
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in A.

The second is the rule of modus ponens. If A, B, and C are well-formed
formulae, then C is the immediate consequence of A and B by modus ponens
if and only if the formula B states ”A = C”.

Of course, for a formula to be considered valid in P17 it is not sufficient for
it to be derivable from other well-formed formulae. It must be the final link of
a chain of implication stretching back to the basic axioms of the calculus.

4.2 Axioms and Theorems

The basis of all deductions in P is its three axioms:

1. (1}0 = (’Ul = 1}0))

2. ((’UO = (’Ul = 1}2)) = ((’UQ = 1}1) = (’UQ = 1}2)))

3. (("’Uo = —|U1) = (’Ul = Uo))

A theorem is simply a sequence of formulae in which each formula is either
an axiom or the immediate consequence of some previous formula or formulae
by either of the rules of transformation.

5 Proving a Theorem in P/ in Zero-Knowledge

Since the propositional calculus seeks to reduce the exercise of logic to a matter
of adherence to simple formal structures related by a small number of rules, it
is admirably fitted to the finite state machine model of computation.

5.1 A Finite State Machine for Provability Testing

If a computer program could be written to verify a proof, then such a program
could be simulated by a finite state machine. Such a machine would have a
starting state and an accepting state. Thus, the knowledge of a proof for a
certain formula f is equivalent to knowledge of a path from the initial state,
through the states representing f as it is parsed by the program, to the accepting
state.

Such a machine would be known to any potential verifiers and third parties
in a zero-knowledge proof. A verifier would be able to examine this machine
and verify that it does what it is purported to do before any protocol began.

To demonstrate that such a finite state machine exists, I have created a
proof-checking program. This program, written in CMU Common LISP, checks
proofs given in the form of a list of well-formed formulae. The formulae them-
selves are denoted as follows: (A = B) is given as (A B), and —A is given as
(A) The formulae are arranged in "reverse order”, i.e., formulae precede their
justifying arguments in the list. The program checks each formula successively
to verify that it is either an axiom or that it can be derived by a formula or for-
mulae occuring later in the list by substitution or modus ponens. For example,
consider the following theorem, which proves the formula ((p = ¢) = (p = p)):
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L (p=(¢=p)

2. (p=(@=r)=((p=9={@=r1))
3. (p=(@=p)=((r=9={@=p))
4. ((p=9=(=7p)

When the proof-checker receives this theorem as input in the form ’> (((p q) (p
P) ((p (ap)) ((paq) (ppP))) ((p (gx)) ((pq (px))) (p (qgp))),
it returns t, because formula 4 is derivable from formulae 3 and 1 by modus
ponens, formula 3 is derivable from formula 2 by substituting p for each instance
of r, and formulae 1 and 2 are axioms. On the other hand, the proof-checker
returns nil for the following ”theorem”:

L (p=(¢=Dp))
2. (p=@=nr)=>(=9=@=r)))
3. (p=q)

4. (¢= (p=9)

This is because no justification is given for formula 3, in spite of the fact that
formula 4, the very formula that the ”theorem” purports to prove, is itself an
axiom and needs no justification. Thus, the proof-checker can be seen to verify
the validity of proofs, while not considering the validity of individual formulae
independent of the proofs in which they occur. In other words, the program
checks proofs, it does not write them.

5.2 Proving a Theorem in Zero-Knowledge

We now have a setting for our zero-knowledge proof. It is a simple application of
the proof of the knowledge of a path as presented above: The prover randomly
permutes the graph Gy representing the finite state machine, and sends it to the
verifier. The verifier determines the random bit 7 and sends it back to the prover.
Finally, if i = 0, the prover reveals the permutation, and if i = 1, the prover
reveals the path Py from the initial state to the accepting state representing the
formula.

Revealing the graph resulting from diagramming the finite state machine is
a necessary step. The verifier needs to know that the proof is taking place in the
setting of the correct finite state machine. However, as far as the zero-knowledge
aspect of the proof is concerned, the fact that a verifier has an unobstructed
view of the graph is not a problem. The verifier could just as profitably occupy
his time with attempting to find possible predecessors to the formula which is
to be proved on his own, without any help from the prover and her finite state
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machine. Finding the proof in this manner is no more difficult than finding the
proof any other way. And herein lies the problem.

Through a simple breadth-first search, it is possible to determine in time
linear in the number of edges in G whether a path between any two given points
exists. Now, the number of states in any proof-checking finite state machine will
be enormous— it will be exponential in both the length of the proof and the
maximum allowed formula length, and consequentially, the number of edges in
the resulting graph will also be very large. However, it is the graph that the
verifier sees. So, while the verifier will indeed gain no knowledge of the theorem
proof from executing the protocol, he will be able to find a path from the initial
state to the accepting state— and hence the proof— with even more efficiency
than the protocol affords him.

6 Conclusion

It still may be possible to create a zero-knowledge protocol to demonstrate
knowledge of a proof, but it would have to be based upon a different, intractable
problem. Finding such a problem is an area for future work. Once that has been
done, the task of generalizing the results to any formal system, such as that of
Principia Mathematica, can be undertaken, as was Blum’s original intent.

However, as it now stands, the protocol cannot effectively accomplish its
goal. Finding a proof for a theorem may or may not be an intractable problem,
but any and all intractability vanishes when the finite state machine’s graph is
presented to the verifier. While a zero-knowledge proof can be seen to exist for
this problem, it is essentially a trivial protocol.
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