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Abstract

Focusing on new, incoming freshmen, this study examines several variables to see

which can provide information about retention and academic outcome after three

semesters.  Two parametric classification models and one non-parametric classification

model were used to predict various outcomes based upon persistence and academic

standing.  These classification models were: Logistic Regression, Discriminant Analysis,

and Classification and Regression Trees (CART).  In addition, the outcome of the

freshmen who participated in the Group Opportunities for Activities and Learning

(GOAL) program were examined to determine if these students were retained and

performed well academically at higher rates than predicted given their admission criteria.
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1.  Introduction

1.1 Background

High rates of student attrition have been a concern at the New Mexico Institute of

Mining and Technology or New Mexico Tech (NMT) for the past several years.  Many

inquiries have been made to determine whether new students are adequately prepared for

post secondary work or if the institution is fostering an academically healthy environment

for its students.  As part of a continuing effort to improve student retention and academic

performance at NMT, this study investigated three types of mathematical models used to

predict student persistence and good academic performance.  These models classify

students as likely or unlikely to persist or do well academically based on variables taken

from their past academic record and their experience during their first semester at NMT.

There were three main objectives in this study.  The first was to find classification

models of different outcomes with acceptable prediction rates.  These outcomes were

based upon student retention and academic success.  In the process of developing the

models, the second objective was to uncover the influential factors that lead to accurate

classification.  Hopefully, by gaining a better understanding of these factors, the school

can find new ways to improve student retention and academic performance.  Finally, the

third objective was to determine if the freshman program, GOAL, was effective at

retaining students and helping them academically.

The population of this study was first-time freshmen entering NMT in the fall or

summer semesters from 1993 through 1997.  These freshmen were full-time or part-time,

degree-seeking students.  Freshmen entering in the spring semesters were excluded from

the study for a few reasons.  Most first-time freshmen enter NMT in the fall semester.
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NMT also offers these students special programs in their first fall semester or in the

preceding summer semester.  Finally, the Council of University Presidents issues the

Performance and Effectiveness Report of New Mexico’s Universities that measures

freshmen progress only with freshmen who entered in summer and fall semesters,

excluding those students who entered in the spring semester [7].

Another standard measurement in the Performance and Effectiveness Report of

New Mexico's Universities for first-time freshmen is fall to fall persistence.  Fall to fall

persistence is defined as a student entering in the fall (or preceding summer) and still

being enrolled in the institution the following fall semester [7].  Often in this study, fall to

fall persistence is referred to as just “persistence”. This definition provided a basis for the

three sets of outcome variables in this study.

The three sets of outcome variables consisted of combinations of four different

groups of students.  These four groups were defined as follows:

Group 1: Students who persisted fall to fall in good academic standing.

Group 2: Students who persisted fall to fall in poor academic standing.

Group 3: Students who did not persist in good academic standing.

Group 4: Students who did not persist in poor academic standing.

Here, the definition of good and poor academic standing is different than the definition

used by NMT.  At NMT, academic standing is based upon a sliding scale, depending on

the number of hours completed.  For the purposes of this study, good academic standing

was defined as a student having a cumulative grade point average by the end of his third

semester greater than or equal to 2.0 on a 4.0 scale.  If the student left before his third

semester, then he is considered to be in good academic standing if his cumulative grade
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point average was greater than or equal to 2.0 at the last semester of his enrollment.  If a

student left before the tenth week of his first semester, then he was not included in the

study, but if a student left after his tenth week, but before grades were issued then he

would have been recorded as not persisting in poor academic standing.

All the outcome variables were binary, separating the students into class 1 or class

0 given the dichotomous nature of persistence.  Although the cumulative college grade

point average, instead of academic standing, could have been modeled as a continuous

variable, it was not considered in this study.   The first outcome variable was based upon

fall to fall persistence only.  Here, class 1 consisted of groups 1 and 2, students who

persisted from fall to fall whether they were in good academic standing or not.  Class 0

consisted of groups 3 and 4, students who all left before their second year.

The second outcome variable combined both fall to fall persistence and good

academic standing.  Here, class 1 consisted only of group1, students who persisted from

fall to fall in good academic standing.  Class 0 consisted of everyone else, students who

persisted or left in poor academic standing and students who left in good academic

standing.

In the process of developing prediction models for the first two outcome

variables, it became apparent that it would be interesting and helpful to investigate a third

outcome variable based upon academic performance only.  Thus, for the third outcome

variable, class 1 consisted of groups 1 and 3, students who were in good academic

standing either at the end of their third semester or at the time they left NMT.  Class 0

consisted of groups 2 and 4, students who were in poor academic standing either at the

end of their third semester or at the time they left.
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The independent or predictor variables fell into three main categories.  These

were the students' personal information, high school background, and first semester

experience. The personal information recorded for each student was:

1. Ethnicity

A. Caucasian vs. Everyone Else

2. Sex

The two-group break up of the variable, Ethnicity, separated students who marked

their predominant ethnic background on their undergraduate application form as

Caucasian versus any other predominant ethnic background which were: Black, Hispanic,

Asian/Pacific, and American Indian.  Furthermore, the “Everyone Else” category

included a few students who were labeled as non-resident alien.  There were very few

students who were recorded as Black, non-resident alien, or American Indian, therefore

they were clumped together into one category for the Ethnicity variable along with

students recorded as Hispanic.

The high school information was:

1. High School Grade Point Average ( High School GPA)

2. ACT Scores

A. Composite, English, Mathematics, Reading Comprehension, Science

       Reasoning

3. Location/ Type of High School Education

A.  New Mexico High School versus Non-New Mexico High School

Finally, the variables taken from the students' first semester experience were as

follows:
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1. First Semester Math Course Taken

A. Pre-Calculus versus Calculus

2. Major

A. Undecided versus Decided

There are a couple of comments that need to be made about the first semester

predictor variables.  If a student did not take a math course his first semester he was

excluded from the study.  It was suspected that if a student in this data set did not take a

math course his first semester then it was likely that he was not a freshmen when he first

enrolled.  There were only 27 students in the data set who did not have a math course

their first semester.  Also, the school has a special category for students who are

undecided about which branch of engineering to pursue.  These students were labeled as

decided in this study since they were more likely to persist from fall to fall in good

academic standing than students who were completely undecided about their major.

Therefore, only students who were completely undecided about their major their first

semester were labeled as undecided.

1.2 Description of Classification Models

Based on a set of measurements of a student, a classification model predicts the

outcome class of that student.  These models are created with a learning set of data where

the outcomes of the students are already known.  There were two of different ways the

classification models were developed in this study.  For the parametric methods, it was

assumed that the students’ measurements belong to some underlying probability

distribution.  Based upon this assumed distribution a probability for a student belonging

to a given class could be found and in turn, based upon this probability the outcome class
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of the student could be predicted.  For the non-parametric method, the learning set of data

was searched through to find the features that most differentiated the two classes.  For

both the parametric and non-parametric methods, once the class probability distributions

or the differential features had been assessed, a classification rule was derived that would

assign a student to a class based upon the student’s measurements.

Often different populations share similar characteristics.  This makes it difficult to

separate them and a student may be assigned to the wrong class.  A good discrimination

and classification procedure should result in few misclassifications. Furthermore, when

trying to correctly classify one population, the model should have a higher success rate

than the given percentage of that population in the overall data set.  For example, if 85%

of the objects in the group we want to separate and classify belong to population A and

15% belong to population B, then we could simply classify all the objects as belonging to

population A and we would be correct 85% of the time.  In order to be certain that the

predictor variables actually tell something about the outcome,  a model must be found

that has a higher prediction rate than 85%.

 The models’ prediction rates on the learning data set are likely to be

overestimates of how well the model will predict future observations since the learning

data set was used to build the model.  One common way of assessing a model’s ability to

predict future observations is to break the data set into two subsets.  One subset is used to

build the model and the other subset is used to find the model’s misclassification rates.

Unfortunately, this requires a large data set.

Another common way to test a model’s true predictive ability is with cross

validation.  There were two types of cross validation used in this study; 10-fold cross
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validation and “leave one out” cross validation.  In 10-fold cross validation, 10% of the

data is set aside and a model is built with the remaining 90%.  The misclassification rates

on the separate 10% of data are found.  The process is repeated for a different 10% of the

data set and the remaining 90% are used to create the model until the entire data set has

been used as a test sample.  Next, using all the data, the final model is created.  The true

error rate of this model is estimated to be the average of all the error rates from the ten

test models.  “Leave one out” is a more intensive cross validation technique.  Here, one

data point is left out of the learning sample, a test model is built with the remaining

observations and then the test model is used on the one point left out.  This process

continues for all the data points.  Again, the final model is created using all the data, but

its estimated error rates are determined by how well the test models predicted the

outcome of “points left out”.

Throughout the model building process, a model with fewer variables was

preferred if its prediction rate was similar to a model with more variables.  Although it

may seem paradoxical, models with more variables may lead to less predictive accuracy.

This problem occurs when the model “overfits” the learning sample.  An overfitted model

can predict the outcomes of the data set that was used to build it very well, but it may

work poorly at predicting the outcomes of a new data set.  This occurs because most data

sets have unusual observations, and the overfitted model would be good at predicting the

unusual observations at the expense of not representing the general trend of the data.

Although including too many variables could lead to an overfitted model, it would be

equally detrimental to not include an important variable.  This leads to the difficulty in
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selecting predictor variables for most models.  For each of the models in this study, the

variable selection process was described in detail.

1.3 Three Different Classification Methods

Logistic Regression (LR)

Logistic regression is a parametric method that is based upon the assumption that

the probability of the event occurring follows a logistic distribution.  In this case, the

event is that a student belongs to a certain group called class 1.  The logistic distribution

allows for all types of variables.  This distribution is defined as follows:

( ) 1
1|

1
TP outcome

e β−
= =

+ X
X

 where  0 1 1 2 2 ...T
k kx x xβ β β β β= + + + +X  and X  is a set of measurements,

[ ]1 2, ,...,
T

kx x x=X .

The logistic distribution has many good attributes.  It is bounded by zero and one,

which is necessary to represent probabilities.  Also, the distribution is in the shape of an

“S”.  This indicates that small differences at the extreme values of the predictor variable

do not influence the outcome nearly as much as differences around the center [8].  For

example, it might not make much of a difference in a student’s probability of dropping

out if his high school grade point average was a 2.0 or a 2.5, nor if his high school grade

point average was a 3.5 or a 4.0.  However, there may be a large difference in the

probability of a student persisting depending if his high school grade point average was a

2.5 or a 3.0.
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This leads to the logistic distribution’s ability to separate and predict binary

outcomes.  The upper portion of the “S” represents high probabilities of the event

occurring and the lower portion of the “S” represents low probabilities of the same event

occurring.  These two portions determine the two outcomes.  The difficulty lies in

deciding where to cut the “S” and separate the two outcomes [8].

Classification and Regression Trees (CART)

CART was the only non-parametric method used in this study.  Perhaps the best

way to describe CART is with a simple example:

At a medical center a classification tree was developed to identify incoming heart

attack patients as being high risk or not.  This is assessed by taking at most three

measurements on the patient according to the following CART model shown in Figure

1.1 [5].

Figure 1.1 CART Example

T

Is the minimum systolic blood
pressure > 91?

No
Yes

High Risk

Is age > 62.5?

No
Yes

Not High Risk

Is sinus
tachycardia
present?

No
Yes

High Risk Not High Risk
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These trees are made by searching through the ranges of all the predictor variables

and finding the value that best divides the classes.  The variable that provides the split

that results in two new nodes where the class heterogeneity is at a minimum is then added

to the tree and the process continues until the optimal tree is reached.  This series of splits

partitions the objects into terminal nodes.  These nodes are then classified by the

population that makes up the largest percentage of objects in that node. CART is very

flexible because it allows for all types of variables: continuous variables, and ordered and

unordered categorical variables.  In addition, the classification trees are very easy to

interpret.

Discriminant Analysis (DA)

Discriminant analysis is a parametric method that works on the assumption that

the predictor variables for the different classes are multivariate normal.  This implies that

the measurements taken on the objects cluster around their class mean vector.  When a

new observation comes along, the multivariate normal distribution can be used to find the

“distance” from the new observation to each of the class mean vectors, or the multivariate

normal distribution can be used to find the probability of the new observation belonging

to each of the different classes.  The new observation is then assigned to a class

depending on which class mean vector is the closest or which class yields the highest

membership probability.  These two ways of determining the class of the new observation

are equivalent.  Depending on assumptions made about the covariance matrices of the

two classes, the discriminant analysis function may be linear or quadratic.
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Since DA works under the assumption that the predictor variables are normally

distributed, only continuous predictor variables were allowed to be candidates for entry in

the final model.  Binary variables simply cannot be normally distributed and therefore

should not be used with this method.  This is the main disadvantage of discriminant

analysis since binary or categorical variables may be very informative about the outcome.

However, the histograms of all the continuous variables for this study were

approximately normal.

1.4 Previous Studies

Lim, Loh, and Shih compared thirty-three classification algorithms with various

data sets in 1998 [11]. CART, logistic regression, and both linear and quadratic

discriminant analyses were included in this study.  These researchers empirically

investigated the accuracy and the relative time needed to build each model (running time)

of these and other classification algorithms.  They used a total of thirty-two data sets.

Fourteen of the data sets were taken from real-life studies and two were simulated data.

These data sets ranged in size from 3,772 to 151 observations.  The number of data sets

was then doubled by adding noise to each of the original data sets.

Amongst all thirty-three classification algorithms in this study, logistic regression

and linear discriminant analysis performed exceptionally well at correctly predicting class

outcome.  The two versions of CART performed marginally well, and finally quadratic

discriminant analysis performed very poorly in classification accuracy.  None of these

algorithms had median running times in hours.  Logistic regression had the longest
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median running time of four minutes.  The other algorithms, CART and discriminant

analysis, had median running times of less than a minute.

It is interesting to note how well linear discriminant analysis performed despite

the requirement for predictor variables to be normally distributed.  In another study done

by Meshbane and Morris, the predictive accuracy of logistic regression and linear

discriminant analysis were compared [12].  In their presentation, Meshbane and Morris

list the many conflicting reports about which classification method works better for non-

normal predictors and for small sample sizes.  It was concluded that there is no specific

type of data set that favors logistic regression or linear discriminant analysis.  Instead the

classification accuracy of both logistic regression and linear discriminant analysis should

be carefully compared to determine which may provide a better model.

This leads to the comparison of logistic regression and linear discriminant

analysis in Eric L. Dey’s and Alexander W. Astin’s study of college student retention [8].

Astin previously equated linear discriminant analysis to linear regression [8].  In their

study, Dey and Astin used logistic and linear regression to predict whether first-time,

full-time community college freshmen who intend to earn a two-year degree would

graduate on time.  They also tried predicting less stringent expectations of the students

such as completing two years of college, or being enrolled for a third consecutive fall

semester upon admission.  They used predictor variables that “were shown to predict

retention among students at four-year colleges and universities” [8].  These predictor

variables included students’ concern about ability to finance their education, their

motives for attending college, how many hours they spent per week at various activities

their first year, and their high school grade point average.
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In their results, Dey and Astin did not find any important differences between

logistic and linear regression.  Both methods indicated that a student’s high school grade

point average was the strongest positive predictor of earning a degree in two years.

These methods also indicated that a student’s concern over finances and motivations to

attend college in order to earn money were significant negative predictors of retention.

Each of the techniques had similar classification accuracy as well [8].

Although Dey and Astin claimed that the methods used in linear regression are

analogous to those used in linear discriminant analysis [8], no discriminant model was

created.  However, discriminant models have been used to predict student success.

Hamdi F. Ali, Abdulrazzak Charbaji, and Nada Kassin Hajj used linear

discriminant functions in their study to see what admission criteria could help predict

student success at Beirut University College (BUC) in Lebanon [4].  BUC had the

problem of having far more applicants than space for these aspiring students.  Not only

had the number of applicants to BUC increased, but also the number of students who

were on academic probation had increased.  Ali, Charbaji, and Hajj developed three

different linear discriminant models for each of the divisions at the school: business,

natural sciences, and humanities.

In their learning sample, the researchers only chose students who were on the

dean’s list with grade point averages greater than 3.2 or on academic probation with

grade point averages less than 2.0 in their second year at the college.  These two

populations determined the outcome variables.  The predictor variables were taken from

admission information which included high school grade point average, scores from a

college entrance exam, type of high school (public or private), relevant language skills,
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personal characteristics, and finally the type of government certificate (did the student

pass an official public exam or were they given a statement of candidacy due to the civil

war).  In the analysis, the researchers decided to use the interactive effects of these

variables.

Ali, Charbaji, and Hajj were satisfied with the predictive ability of all three

discriminant models for each academic division.  Each model had slightly different

predictive variables.  The variables chosen for the science division were:

Score on college entrance exam *  High school grade point average

Score of college entrance exam * Type of high school

Score of college entrance exam * Sex

High school grade point average * Type of certificate

Overall students who passed the public exams and women were less likely to be

on probation.  In the natural sciences division, students from private schools and those

with high college entrance exam scores and good high school grade point averages were

also less likely to be on probation.

Although discriminant analysis and logistic regression are well known in college

student retention studies, CART holds promises for being a good classification model.

CART does not depend on any underlying structure of its variables and it also provides

an easy-to-interpret graphical model.  Using a wide array of classification models allows

for the problem of predicting student attrition to be approached from many different

perspectives.
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2. Data Collection and Preliminary Analysis

In this chapter, the procedures used to collect the data set in this study are

described.  This description is intended to provide documentation for the data set so that

the study may be repeated and so that student information can be retrieved in a similar

manner if future predictions of student outcome are to be made.  In addition to describing

the methods used for collecting the data, this chapter also contains the preliminary

analysis where the data set is examined for trends over the years.  If there were any strong

trends in the data then it would not be appropriate to use a single prediction model to try

to determine class outcome for all the years together.  However, if the distributions of the

variables remained steady over the period from 1993 to 1997, then it would be safe to

assume that the distributions of the current student population are the same as those of

past students.

All the data for this study was collected from the student database provided by the

Registrar’s office at NMT.  Although this database contained several tables, only four

were needed to collect the student data.  Here is a summary list of the tables used and the

data collected from them.

    Table 2.1 Student Database Tables

Table in the Student Database Student Information Collected

1. APPLICATION 1. High School Information

2.  STUDENT 2.  Personal Information

3.  STUDENT COURSE 3.  First Semester Math Course

4.  STUDENT HISTORY 4. Information to Construct the
    Outcome Classes
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The first step was to query the population of this study: first-time, degree seeking

freshmen.  Unfortunately, there was no one specific label for this group of students in the

database.  Instead, if a student’s original status was labeled as “new student,” and the

student was labeled as both a freshmen and enrolled for the first time in a degree seeking

program at NMT for a given semester, that student was included in the study.  Requiring

students to be both a new student and a freshman might seem redundant, however there

were a few students who were labeled as new students although they entered NMT for

the first time as sophomores, juniors, and seniors.  After investigating a few of these

students it was apparent that they were all probably transfer students and they needed to

be excluded from the study.

Since the important information identifying new freshmen was contained in three

different tables, it was a complicated process to select students who had the three

requirements of:

1. Enrolling for the first time in a given semester (information contained in the

APPLICATION table)

2.  Having original status as “new student” (information found in the STUDENT table)

and

3. Having the status as “freshmen” in the first semester entering NMT (information

found in the STUDENT HISTORY table).

For one semester, all the students who first enrolled in NMT that semester were

selected by querying students labeled as “enrolled” under the STATUS field in the

APPLICATION table for the given term. From this group, students who were labeled as

“new students” under the ORIGINAL STATUS field in the STUDENT table were
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collected.  Finally, this group was further restricted to those students who were labeled as

“freshmen” under STUDENT LEVEL in the STUDENT HISTORY table.  Once this

process was completed, a cohort of first-time freshmen for that semester was collected.

Next the groups’ data was collected.  The simplest data to collect was the personal

and high school information since it did not depend on any particular semester. A

student’s first term math course was found in the STUDENT COURSE table, where

students’ past courses taken were labeled by the semester the course was taken and by the

course name. Finally, the STUDENT HISTORY table contained past semester

information on students’ declared major, their term grade point average, and the units

they attempted, completed and were graded.  The past term grade point averages and

units graded were used to construct the outcome classes. The following table shows the

field name and the table from which the data was collected and the names of the variables

given to this data.

Table 2.2 Variable Information
Variable Field Name Table

1. Ethnicity ETHNIC STUDENT

2. Age BIRTH DATE STUDENT
3. Sex SEX STUDENT
4. High School GPA GPA APPLICATION

5. ACT Scores
a. Composite
b. English
c. Math
d. Science Reasoning
e. Reading Comprehension

a. ACT COMP
b. ACT ENG
c. ACT MATH
d. ACT NATS
e. ACT SOCS

APPLICATION

6. Location/ Type of High School
Education

HS CODE APPLICATION

7. First Term Math Course SECTION KEY STUDENT COURSE

8. Major Declared in First Term MAJOR1 STUDENT HISTORY

9. Outcome Classes (found from term
grade point averages and units
graded for the next three semesters
upon initial enrollment)

GPA, UNITS GRADED STUDENT HISTORY
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In most cases if a student was missing information there was no way for it to be

replaced.  However, if a student did not have ACT scores but he had an SAT equivalent

score, then the SAT combined score replaced the ACT composite score.

Unfortunately, the methods used for logistic regression and discriminant analysis

do not allow for missing data.  Therefore, students with missing data were not used to

build these models.  In order to be consistent, these students were also excluded in

building the CART models, although CART does allow for missing data.

Once all the data was cleaned and organized, the data was examined to see if the

distributions remained stable over time.  Fortunately, all the various distributions were

fairly homogeneous for the different years.  Since there were no noticeable trends, the

data from all the years were lumped together to form the learning sample for each

classification model.

The data was examined using graphical methods.  Bar charts were used to

investigate the discrete or categorical variables to see if the percentages of the various

categories changed over time.  The graphs used to examine the variables over time are

shown in this chapter.  Beginning with the three outcome variables, the first outcome

variable was fall to fall persistence versus non-persistence.  Figure 2.1 shows the yearly

percentage of freshmen that persist from fall to fall. 

The second outcome variable was persistence with good academic standing versus

everyone else.  The percentages of students who persisted fall to fall with a cumulative

grade point average of 2.0 or greater is shown in Figure 2.2.
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Figure 2.1

Figure 2.2
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Despite the modest increases at the end of the five-year period there was no strong

trend among these variables, nor was there one year that was plainly different from the

rest.

The last outcome variable divided students into two groups dependent on

academic standing only.  Here class 1 was defined as students who were in good

academic standing at either the end of their third semester or at the time they left NMT.

The bar chart for this variable is shown below.

Figure 2.3

In Figure 2.3, again, there is no trend over the years in the third outcome variable.

These three graphs indicate that the number of students in the different outcome

classes remained steady over the five-year period.  Although there was a slight

improvement in student retention between the two groups of years 1993-1995 and 1996-

1997 it is not significant enough to divide the learning data set into two parts.
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 The next set of categorical variables to be examined for trends over the years was

sex, ethnicity, and location of high school.  The bar graphs for these plots are given by

Figures 2.4 to 2.6.  Here the percentages of male and female students were approximately

70% to 30%.  The percentage of Caucasian students was approximately 72%.  Finally,

approximately 65% of the students came from high schools located in New Mexico.

Figure 2.4
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Figure 2.5

Figure 2.6
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The previous set of bar graphs represented personal and high school information

about the students.  The next set of bar graphs involves information found in the students’

first semester.  First semester categorical variables consisted of first semester math class

and whether or not the student decided on a major.  First semester math classes were

broken up into two categories: Pre-Calculus, and Calculus and above.  The variable,

Major, was also broken up into two categories: those who declared a major even if it was

undecided within the engineering departments and those students who were completely

undecided.  Please note that this was the major declared the first semester upon enrolling

at NMT and that students often choose to change their majors.  Figure 2.7 shows the

percentages of students who began in Pre-Calculus, and those who took Calculus or

above.  Figure 2.8 shows the percentages of students who were undecided about their

major their first semester.

Figure 2.7
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Figure 2.8

The bar chart for the first semester math course is very interesting.  In 1994 and

1995 the percentages of students who began in Pre-Calculus and those who began in

calculus or above are about equal.  Otherwise there were more students beginning in

calculus and above than there were students beginning in Pre-Calculus.  Despite this

anomaly there did not appear to be any distinct trend over time.  The number of new

freshmen enrolling at NMT who began in Pre-Calculus was not increasing or decreasing.

The following chart shows that the number of freshmen who were undecided

about their major their first semester fluctuated between 9.3 and 16.1 for the five year

period with no trend up or down over the years.

The distributions of the continuous variables were examined for trends using

boxplots.  The continuous variables in this data set were high school grade point average,

and all the various ACT scores.  An example boxplot is shown below.
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          *

To create a boxplot, first the data points are ordered.  The middle point in the

ordered data set is called the median.  The quartiles, Q2 and Q3  mark the points where

25% of the data lay above and 25% of the data lay below, respectively.  These second

and third quartiles mark the limits of the box.  The lines that extend from the box are

called whiskers.  These whiskers extend 3 21.5( )Q Q− units above and below the box.

Any point that lies beyond the whiskers is considered an outlier, an extreme point, in the

data set.

Figure 2.9 contains the boxplots of students’ high school grade point averages for

each year.  The circles on these plots indicate the means of the distributions.  The high

school grade point averages mostly ranged from 3.0 to 4.0 over the years.  There were

four people in 1993 and 1995 who were admitted with high school grade point averages

lower than a 2.0.

Q2 + 1.5(Q3-Q2)

Q2

Median

Q3 – 1.5(Q3 – Q2)

Outlier

Q3
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Figure 2.9

Figures 2.10 to 2.14 are the boxplots of all the various ACT scores.  A brief

description of the different portions of the test is given in Table 2.3 below [1]:

Table 2.3 ACT Exam Content
ACT Section Topics covered

English  Punctuation, Grammar, Sentence Structure, and Rhetorical Skills

Mathematics Pre-Algebra, Elementary-Intermediate Algebra, Coordinate and Plane Geometry,
and Trigonometry

Reading
Comprehension

 Comprehension of Prose in Social Studies, Natural Sciences, Fiction, and
Humanities

Science Reasoning  Data Representation and Interpretation of Research Summaries
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Figure 2.10

Figure 2.11
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Figure 2.12

Figure 2.13
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Figure 2.14

The boxplots of high school grade point averages appear to have increased

slightly over the years.  The distributions for the years 1996 and 1997 were higher than

the distributions of the previous three years.  Once again, despite the increase being

noticeable, it was not very large.

The ACT composite scores also appear to slightly increase over time, yet none of

the individual scores, English, Mathematics, Reading Comprehension, and Science

Reasoning, showed any trends either up or down.  Since the composite score is the

average of the individual scores, the slight increase in the composite score was not due to

an increase in any one individual score.
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Overall it appeared that new freshmen are entering NMT with slightly better

credentials and they are more successful in persisting to the second fall semester.  For the

purposes of this study, these trends were not significant enough to divide the data set

according to year and to attempt to build a new predictive model for each year.  Instead,

all the data for the different years was combined to provide the learning data set for a

single predictive model.
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3. Methods Used to Construct the Classification Models

3.1 Logistic Regression

The logistic regression model is based upon the assumption that the probability

that an object belongs to a given class follows the logistic distribution.  Once this

assumption has been made all that is left to construct the logistic model is to estimate the

parameters using the method of maximum likelihood.  The logistic distribution is given

by:

( ) 1
1|

1 e
T
i

i iP y
β−

= =
+ X

X , (3.1)

where 0 1 1 2 2 ...T
i i i k kx x x= + + + +X β β β β β .

Thus, the likelihood function for the logistic distribution is:
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The β̂  that produces the maximum likelihood becomes the estimate used in the logistic

model.

In order to make the likelihood function easier to manipulate the natural logarithm

of it is taken.  This result is called the log likelihood.  Since the natural logarithm is a

monotonically increasing function, the β̂  that produces the maximum log likelihood will

also be the β̂  that produces the maximum likelihood.  Therefore, finding the estimates
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for the coefficients for the logistic distribution all boils down to finding β̂  such that

( ){ }ˆlog ,L βX is a maximum.  This is found by numerical methods.

Once β̂  is found, the logistic distribution is complete, but the classification rule

that assigns a student to class 1 or class 0 must still be formulated.  This rule is found by

determining a “cut-off” probability.  Any student whose probability of belonging to class

1 is higher than or equal to the cut-off probability is assigned to class 1, otherwise the

student is assigned to class 0.  The value that produced the most overall correct

predictions in the learning sample was chosen to be the cut-off probability.  However, if

anyone wanted to raise or lower the number of false positive or false negative

predictions, it can be done by lowering or raising the cut-off probability.

The central difficulty in constructing the logistic regression models in this study

was not estimating β  or finding the cut-off probability, but selecting the variables to

enter the model.  The goal in variable selection is to find the few key variables that will

give the model the best prediction rates. A model that contains extra variables that are not

helpful at predicting the outcome is likely to be unstable.  Instability happens when large

changes occur in the outcome variable due to small changes in the predictor variables.

The variable selection process in this study consisted of several stages.

• First, a univariate analysis was conducted to see which variables alone had significant

relevance to the outcome.

• Next, a stepwise procedure was used to reduce the number of potential candidates  for

the final model.

• Next, the variables selected from the stepwise procedure were tested to see if any

interactions existed between them.  If there were any interactions, then the
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appropriate interaction term was included as a potential candidate for the final

model.

• Finally, the potential candidates for the final model were carefully examined.  Models

with various subgroups of these variables were tested to see which produced the

best prediction rates on the learning sample of data.  The simplest model with the

best prediction rate was chosen as the final model.

• Once the final model was chosen, 10-fold cross validation was used to estimate its

true error rate.

In the univariate analysis, a logistic model was built for each predictor variable. The

univariate models were of the form:

0 1( )

1
( 1| )

1 jj xP y x
e

β β− += =
+

, (3.3)

where xj = predictor variable j.

The statistical test used to see if the variable, xj, had any potential predictive ability was

the likelihood ratio test.

The likelihood ratio test in logistic regression is analogous to the partial F test for

linear regression.  These tests are used to compare a model’s ability to explain the

outcome with or without a certain set of variables.  The notion of a “saturated” model

must be explained in order to understand how the likelihood ratio test works. The

saturated model is the most overfitted model possible since it contains a parameter for

each data point.  This model also predicts the outcome variable exactly for each data

point, thus providing a “perfect fit” for these points.  The saturated model is useless in

practice since it does not involve the predictor variables.  However, it does provide a

standard for which to compare other models. The likelihood ratio test compares the
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likelihood of the model in question to the likelihood of the saturated model.  The more

complicated the model, i.e. the more parameters it contains, the larger the model’s

likelihood will become.  If the likelihood of the model in question is sufficiently close to

that of the saturated model it may be concluded that the model “fits” the data. A statistic

called deviance, D, is used in the likelihood ratio test.  It is calculated as follows:

2 log
Likelihood of the current Model

D
Likelihood of the Saturated Model

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
. (3.4)

Continuing with the univariate analysis, the deviance was used to compare two

models, one containing only the intercept 0β , and the other containing both 0β and 1β .

The change in deviance between these two models was found:
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This expression simplifies to:
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Under the null hypothesis that 1β  equals zero, the statistic, G, has approximately a chi-

square distribution with one degree of freedom [13].

Usually the null hypothesis is rejected if the p-value for the test is less than 0.05,

since low p-values indicate that the data does not support the null hypothesis.  However,

Hosmer and Lemeshow recommend including all variables as potential candidates for the

final model if the p-value for the univariate likelihood ratio test is less than 0.25 [9].  This
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ensures that variables that might act as good predictors in conjunction with other

variables are not omitted.

 The major shortcoming to univariate analysis is that it does not tell if a group of

variables taken together can provide for correct predictions, although the variables might

not be such good predictors on an individual basis.  In order to examine the effects on a

model when more than one variable was involved, a stepwise procedure can be used. This

procedure begins with forward selection and then follows with backward elimination.

Here, the model is first fitted for the intercept only, then each variable is added to the

model and removed to see which most increases the likelihood of the model.  Next, the

best candidate for entry is added to the model.  This process continues until none of the

variables outside of the model meet the minimum significance level for entry.  Also, at

each stage, after a variable enters the model, all the variables within the model are

checked to see if they still meet the statistical requirements to remain in the model.  This

variable selection process is based upon statistical criteria only, and it has been known to

select irrelevant variables due to sampling error [9].  This is why it is important to

carefully examine the variables selected from stepwise procedures before constructing the

final model.

During the stepwise procedure a relaxed significance level for entry was used.  A

variable could enter the model if its significance level was 0.20 instead of 0.05.  This

would usually lead to four or five variables in the model found by the procedure.  The

possibility of interactions among these variables was examined.   For four variables there

are eleven possible interactions, and for five variables there are twenty-six possible

interactions.  Because there were so many possible interactions, only the interactions that
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appeared to be important were tested. The likelihood ratio test was used to see if any

interaction term was statistically significant.

The overall goal was to find a simple model with the best predictive abilities.

Therefore, models consisting of subsets of the final pool of candidates and possible

interaction terms were tested for their ability to correctly classify the outcome on the

learning set of data.  The model with the best prediction rate on the learning sample was

chosen as the final model. Unfortunately, the prediction rate on the learning sample

usually overestimates the model’s true predictive ability.  In order to get a better estimate,

the prediction rate under 10-fold cross validation was found.  This was the final step in

the model building and model assessment process for the logistic regression method.

3.2 Classification and Regression Trees (CART)

CART is a binary recursive partitioning procedure since it splits the objects into

two parts and then continues splitting the resulting parts into two.  The way CART

decides to split the objects begins by selecting a predictor variable and then searching

through all the values of that predictor variable in the learning set to find the value that

best separates the objects into two groups.  A split is given by a question.  If a predictor

variable is ordered then the splits are based upon questions such as: “Does the object

have a value less than or equal to some number for the given predictor variable? “ If the

predictor variable is categorical then the question takes on the form: “Does the object

belong to a specific category (or some subset of categories)?” CART searches through all

the possible splits of all the predictor variables.  The one that produces the best split,

where the class heterogeneity of the resulting subgroups is a minimum, becomes the root
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node of the tree.  This process is repeated on the resulting subgroups, again allowing all

the predictor variables to be potential candidates for the next split.  These splits are

referred to as decision nodes.  The tree is grown until the resulting subgroups meet a

minimum class heterogeneity.  This becomes the maximum tree.  The resulting partition

is a collection of terminal nodes.  All the objects in a terminal node are labeled as

belonging to the class that makes up the largest percentage at that node.  The percentage

of misclassified objects at a node is called the node impurity.  CART is a greedy

algorithm; that is, it only looks at the current best split, not possible combinations of

splits beyond the current one.  This allows the algorithm to be fast and efficient at

growing the maximum tree.

The maximum tree is an overfitted model.  This tree is very successful at

predicting class outcomes for the learning sample; however, it typically performs very

poorly on an independent set of data or under cross validation.  In order to find the best

model, the maximum tree must be pruned back.  Sequential levels are removed from the

maximum tree all the way down to the root node.  This results in a series of trees, one of

which will provide the best predictions on an independent set of data.  Cross validation is

needed to find the optimal tree.  The prediction rates for the learning sample give no

indication of which level the pruning should be stopped since they steadily decrease as

the tree is pruned.  However, the prediction rates with cross validation start off low with

the maximal tree then begin to increase to a maximum then quickly decrease as the tree

gets pruned down to the root node.  The maximum occurs at the optimal tree.

CART software also reports on the various trees in the pruning process.  The

optimal tree selected by the software may not always be chosen as the final model.  It is
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important to examine any candidate for the final model to see if the splits are logical.

There is always the option of selecting a simpler model if it does not result in too great a

sacrifice of predictive ability.

In the process of growing trees for this study, first all the predictor variables were

allowed to enter the model.  The prior probabilities for the outcome classes were also

taken into account.  The optimal tree and trees similar to the optimal tree were examined.

Smaller trees with comparable cross validation prediction rates were preferred.  Larger

trees however, were carefully examined to see if they produced any revealing information

about the data.  Once several trees were examined, one was picked to be the final model

under the guiding principle of simplicity and good predictive ability.

3.3 Discriminant Analysis

Discriminant analysis (DA) was the third classification model used in this study.

Two types of discriminant analysis models were considered, linear and quadratic.  DA is

a parametric method that is based upon the assumption that the density functions

associated with the different populations are multivariate normal.  Linear discriminant

analysis (LDA) further assumes that the covariance matrices of the different populations

are equal.

There are several ways that a classification rule may be developed in DA.  In this

particular study, Statistical Analysis Software (SAS) was used to build the DA model.

This software applies the “largest posterior probability” classification rule [14].  Here, a

new observation is assigned to the class that yields the largest posterior probability.  The



39

posterior probability is the probability that object i  belongs to class j  given that a set of

measurements on object i , ix , was observed. This conditional probability is given by:

( )
( )

( | ) i i
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P y j and is observed
P y j
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== = x
x

x
  (3.6)

Since this probability of  object i  belonging to class j  is calculated after  ix  was

observed, it is called the posterior probability [10].  Using Bayes’ rule the expression for

the posterior probability becomes
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( )iP y j=  is the prior probability, jp , that any given observation belongs to class j.  In

this study, the prior probabilities were estimated by their respective class proportions in

the learning sample.  Also, in this study, the outcome variable was always dichotomous

with j only taking on the values 0 or 1.  This simplifies the classification rule to:

assign student i  to class 1 if:

( ) ( )1| 0 |i i i iP y P y= > =x x . (3.8)

This inequality further simplifies to:

( ) ( )1 0| 1 | 0i i i iP y p P y p= > =x x . (3.9)

If the inequality does not hold true, then student i  is assigned to class 0.

Now the assumptions about the distributions of the populations can be worked

into the classification rule.  It is assumed that ( )| 1i iP y =x and ( )| 0i iP y =x are

multivariate normal joint densities with mean vectors: 1μ , 0μ ; and with covariance

matrices: 1 0Σ Σ Σ= = .  The joint densities for the two classes are defined as:
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( )
( )

( ) ( )1
22

11 1
exp

22
p

T

j j jf μ Σ μ
π Σ

−⎧ ⎫= − − −⎨ ⎬
⎩ ⎭

x x x 0,1j =                             (3.10)

where p is the number of variables.

With this new information, the classification rule becomes:

assign observation i  to class 1 if:

( ) ( )1 1 0 0i if p f p>x x ,     (3.11)

otherwise assign observation i  to class 0.

Substituting equation 3.10 into 3.11 results in:

( ) ( ){ } ( ) ( ){ }1 11 1
1 1 1 0 0 02 2exp exp

T T

i i i ip pμ Σ μ μ Σ μ− −− − − > − − −x x x x .          (3.12)

Since the density functions are assumed to be multivariate normal there are some

intuitive aspects that can be observed from the classification rule.  By this assumption,

each population is clustered around its mean, jμ , in the metric space.  Also, since the

covariance matrices are assumed equal, the dispersion of each population about its mean

is equal.  Therefore, when a new observation comes along, the squared distance of the

new observation to each of the population means is found. The closest population mean

determines the class of the new observation. The squared distance of the observation, ix ,

to the population mean, jμ , is:

( ) ( )1T

i j i jμ Σ μ−− −x x . (3.13)

This expression is sometimes referred to as the Mahalanobis distance [14].  If the prior

probabilities for the different classes are unequal, then they must also be taken into

account when calculating the distance of the new observation to the population means.
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The prior probabilities and the Mahalanobis distance are used to create the generalized

squared distance of a new observation to the population mean.

By manipulating equation 3.12 it is possible to see how the classification rule is

based upon finding the smallest generalized squared distance from the population mean.

The classification rule becomes:

assign ix  to class 1 if:

( ) ( ) ( ) ( )1 1
1 1 1 0 0 02 log 2log

T T

i i i ip pμ Σ μ μ Σ μ− −− − − < − − −x x x x ,     (3.14)

otherwise assign ix  to class 0.

Here, both the Mahalanobis distance and the prior probabilities are taken into account in

finding the likelihood of the observation belonging to class 1.  Equation 3.3.7 shows that

if ix  is in relatively close proximity to 1μ  and if class 1 has a relatively high prior

probability then ix  will be assigned to class 1.

The description of the LDA classification rule for this study is just about

complete.  As is the usual case, the population parameters, 0μ , 1μ , and Σ  were unknown.

They were estimated by the sample statistics, 0X , 1X , and pooledS .  These estimates were

calculated from the data set in the following manner:

0X
0

0
10

1

=

= ∑ x
n

i
kn 1X

1

1
11

1

=

= ∑ x
n

i
kn

( ) ( ) ( ) ( )
0 1

0 1
0 1 0 1

1 1

1 1 1 1pooled

n n

n n n n

⎡ ⎤ ⎡ ⎤− −= +⎢ ⎥ ⎢ ⎥− + − − + −⎣ ⎦ ⎣ ⎦
S S S       (3.15)

where ( )( )
1

1

1

jn
T

j jk j jk j
kj

X X
n =

= − −
− ∑S x x 0,1j =
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Finally, the linear discriminant analysis model is complete.  Using this model, a

student with predictor variable scores ix  is assigned to class 1 if:

( ) ( ) ( ) ( )1 1
1 1 1 0 0 02 log 2log

T T

i pooled i i pooled iX X p X X p− −− − − < − − −x S x x S x ,       (3.16)

otherwise the student is assigned to class 0.

In the case where the covariance matrices of the different populations are not

assumed equal, quadratic discriminant analysis (QDA) is used.  The fundamental

classification rule, given by equation 3.11, remains the same.  The coefficients, 
1

2

i

−

Σ ,

however, do not cancel out.  Therefore, the classification rule for quadratic discriminant

analysis becomes:

    assign student i  to class 1 if:

 ( ) ( ) ( ) ( ) ( ) ( )1 1
1 1 1 1 1 0 0 0 0 0log 2log log 2log

T T

i i i ip pμ Σ μ Σ μ Σ μ Σ− −− − + − < − − + −x x x x ,

       (3.17)
  otherwise assign student i  to class 0.

Here, the generalized distance between the new observation and the population mean

must also take into account the dispersion of the population.

Again, the population parameters were not known so they must be replaced by

their sample estimates.  Once this is done, the final quadratic classification rule becomes:

assign student i  to class 1 if:

( ) ( ) ( ) ( ) ( ) ( )1 1
1 1 1 1 1 0 0 0 0 0log 2log log 2log

T T

i i i iX X p X X p− −− − + − < − − + −x S x S x S x S

       (3.18)

otherwise assign student i  to class 0.

Johnson and Wichern warn that quadratic discriminant analysis is very sensitive

to deviations from normality [10].  Also, Lim, Loh, and Shih found that QDA was one of
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the poorer classification methods in terms of predictive ability [11].  However QDA does

have one positive feature that made it desirable to test its predictive ability in this study.

QDA is not a linear model like LDA and logistic regression.  In LDA and logistic

regression the boundaries that separate the classes are flat since they are lines, planes, and

higher-dimension planes.  QDA allows for curved boundaries, quadratic functions, to

separate the different populations.  In order to see if class boundaries could be curved

instead of flat, QDA models were examined for their predictive ability.

Since DA works under the assumption that the predictor variables are normally

distributed, only continuous predictor variables were allowed to be candidates for entry in

the final model.  This restriction on the variables only allowed for High School GPA,

ACT Composite score, and ACT English, Mathematics, Reading Comprehension, and

Science Reasoning Scores to be candidates for the final model.  Since there were

relatively few variables to choose from, stepwise methods did not seem necessary.  There

were a couple of other reasons for not using stepwise methods.  First, stepwise methods

cannot be used with quadratic discriminant analysis .  Secondly, Jean Whitaker gave a

scathing review of the use of stepwise methods in discriminant analysis.  Whitaker claims

that stepwise methods are unreliable since they capitalize on sampling error and that they

are liable to not select the best subset of predictor variables [15].  Because of these

reasons, stepwise methods were not used to help build the DA model.  Instead, models

were built with different subgroups of variables and compared using cross validation.

The following subgroups were used to build both linear and quadratic discriminant

models for the various outcome variables.
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       Table 3.1 DA Test Models
Model Variables Used to Construct the Model

1
High School GPA, ACT Composite

2
High School GPA, ACT Math

3
High School GPA, ACT English, ACT Math

4
High School GPA, ACT English, ACT Math, ACT Reading
Comprehension, ACT Science Reasoning

5
ACT English, ACT Math, ACT Reading Comprehension,
ACT Science Reasoning

Discriminant analysis models are very easy to build, which allows for more

intensive cross validation techniques.  For these models, the “leave one out” cross

validation was used to estimate their true predictive ability.

In summary, the final model was found by first creating both linear and quadratic

models containing the various subgroups of predictor variables.  Each model was then

cross validated to get a better estimate of its predictive ability.  Finally, after examining

the complexity of the models and the cross validation scores, the final model was chosen.
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4. Results

4.1.1 Predicting Fall to Fall Persistence with Logistic Regression

Fall to fall persistence was defined as the event of a new freshman enrolling in the

fall semester (or previous summer semester) and still being enrolled for the following fall

term.  Of the new freshmen in this study, 71.3% persisted from fall to fall.  This is

important to note because any prediction model for fall to fall persistence should have an

overall correct prediction rate greater than 71.3%, otherwise there is no way to tell if the

predictor variables give any information about fall to fall persistence.

Beginning with the univariate analysis for each of the predictor variables, the

following table shows the chi-square statistic and the corresponding p-values of the

likelihood ratio tests for each predictor variable.

Table 4.1 LR Univariate Analysis (First Outcome)

Variable Chi-Square Statistic
(1 degree of freedom)

P-Value

1. High School GPA 36.845 .0000
2. ACT Math Score 26.038 .0000
3. Pre-Calculus (binary) 21.741 .0000
4. ACT Science Reasoning Score 10.300 .0013
5. ACT English Score 8.161 .0043
6. ACT Reading Comprehension
    Score

6.400 .0114

7. Major 2.864 .0897
8. Sex 2.864 .0906
9. Ethnicity 1.108 .2925
10. New Mexico High School 0.893 .3447

Due to their high p-values, the variables Ethnicity and New Mexico High School

were excluded from the pool of candidates for the final model.  However, there were

significant differences among the scores between the persistors and the non-persistors for

the rest of the variables at the 0.25 significance level.
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The next step in the analysis involved using the stepwise procedure on the

remaining eight variables.  Using the relaxed significance level for entry into the model,

α = 0.20, the following variables were selected:

Order of Selection Variable

First High School GPA
Second ACT Math Score
Third Sex

Two interaction terms were next taken into account.  These were “Sex*High

School GPA” and “Sex*ACT Math Score.”  Both interaction terms were not statistically

significant at the 0.05 level.  The p-values for the likelihood ratio tests for these terms

were 0.077 and 0.73 respectively.  Hence, no interaction terms were considered.

A preliminary model with the three variables High School GPA, ACT Math Score

and Sex was created.  Women were slightly more likely to persist from fall to fall than

men.  Of the 288 women in the data set, 75.0% of them persisted, and of the 662 men in

the study, 69.6% of them persisted.  However, the most important variables in this model

were High School GPA and ACT Math Score.  The p-value for the null hypothesis:

0Sexβ =  was 0.1318.  At the 0.05 significance level the null hypothesis was accepted and

the variable Sex was dropped without sacrificing a significant amount of variance

explained by the model.

Although the statistical criteria for the model with High School GPA and ACT

Math Score were acceptable, the model was an inadequate predictor.  Recall that logistic

regression models the probability that the event occurs.  The event in this case was fall to

fall persistence.  This probability model was turned into a predictive model by selecting a

cut-off probability. If a student’s probability of persisting from fall to fall was greater
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than the cut-off probability, then that student was labeled as persisting, otherwise he was

labeled as not persisting.  The cut-off probability was selected by finding the value that

yielded the greatest overall correct prediction rate.  None of the cut-off probabilities

could yield correct predictions for more than 71.3% of the students.  This was the exact

proportion of students who persisted from fall to fall in the data set.  This correct

prediction rate was achieved by picking a cutoff probability so low that all the students

were labeled as persisting.  For example, the cutoff probability for persisting was 0.26.  If

a student’s probability of persisting was at least 0.26 then he was labeled as persisting.

However, no student had a probability of persisting lower than 0.26.  As the cutoff

probability was raised, the total percentage of correct predictions fell from 71.3% until it

reached 38.7% where everyone was labeled as not persisting.  Therefore, fall to fall

persistence could not be adequately modeled using logistic regression.

4.1.2 Predicting Fall to Fall Persistence with CART

At the beginning of the tree growing process, all the predictor variables were

allowed to enter the model.  The prior probabilities were specified as 0.713 for class 1,

students who persisted from fall to fall, and 0.287 for class 0, students who did not persist

from fall to fall.  These prior probabilities were the respective proportions of the two

classes in the entire data set.  At this point the misclassification costs were set equal.

CART grew the maximal tree and found the cross validation prediction rates for

the various pruned levels of the tree.  Table 4.2 shows the prediction rates for the

different sized trees.
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Table 4.2  CART Tree Prediction Rates (First Outcome)

Tree Number
Number of Terminal

Nodes

Cross Validation
Overall Correct
Prediction Rate

Learning Sample
Overall Correct
Prediction Rate

1 129 0.632 0.896
10 39 0.677 0.824
11 37 0.676 0.821
12 32 0.676 0.812
13 25 0.685 0.797
14 18 0.689 0.782
15 14 0.696 0.772
16 12 0.699 0.766
17 10 0.689 0.759
18 5 0.690 0.739
19 1 0.713 0.713

The optimal tree, tree number 19, had only one node.  This indicates that no split

existed that could improve the performance of the tree [6].  The best overall correct

prediction rate, 0.713, occurs when all the students are labeled as persisting from fall to

fall.  Given the prediction methods employed by CART and the available predictor

variables, no model could be provided to predict the outcome of fall to fall persistence.

However, a CART model could be produced by varying the misclassification

costs.  For example, if the misclassification cost for labeling a student actually in class 0

as belonging to class 1 was increased by 30% over the misclassification cost of the

opposite error, then the optimal tree could predict 26.4% of the non-persistors. Before,

when all the students were labeled as persisting from fall to fall, none of the non-

persistors were identified.  This slight improvement lead to a slight decrease in the

model’s ability to predict who will persist and the overall correct prediction rate.  Instead

of correctly labeling all of the persistors, 86.4% of them were correctly labeled and the

overall correct prediction rate decreased from 0.713 to 0.692.

Despite the results from the misclassification cost manipulations, fall to fall

persistence could not be adequately modeled by CART using the available predictor
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variables.  Forcing the CART method to try predicting only students who did not persist

from fall to fall does not indicate that the predictor variables reveal anything about fall to

fall persistence.

4.1.3 Predicting Fall to Fall Persistence with Discriminant Analysis

Linear and quadratic discriminant models were built in a third attempt to find a

classification model for fall to fall persistence. In view of the fact that logistic regression

techniques failed to provide a model, there was not much hope that linear discriminant

analysis would provide a model either. There was some vague hope however, that

quadratic discriminant analysis might provide some sort of prediction model.

Before the model building process began, the prior probabilities for the two

classes were specified as the class proportions in the learning sample.  These were 0.287

for class 0, the students in the data set did not persist from fall to fall, and 0.713 for class

1, the students who did persist from fall to fall.  Again, the major test of the model was

seeing if it could predict the correct outcome for more than 71.3% of the students.

The following table shows the models that were tested, the variables included in

each model, and their prediction rates.
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Table 4.3  DA Test Models (First Outcome)

Model Variables

Linear Model
Learning
Sample
Overall
Correct
Prediction
Rate

Linear Model
Cross
Validation
Overall
Correct
Prediction
Rate

Quadratic
Model
Learning
Sample
Overall
Correct
Prediction
Rate

Quadratic
Model Cross
Validation
Overall
Correct
Prediction
Rate

1
High School GPA,
ACT Composite

0.704 0.703 0.707 0.703

2
High School GPA,
ACT Math

0.707 0.705 0.707 0.700

3
High School GPA,
ACT English, ACT
Math

0.707 0.706 0.713 0.708

4

High School GPA,
ACT English, Math,
Reading
Comprehension, and
Science Reasoning

0.709 0.706 0.709 0.701

5

ACT English, Math,
Reading
Comprehension, and
Science Reasoning

0.708 0.707 0.707 0.705

None of the cross validation overall correct prediction rates met the requirement

of being greater than 0.713.

Like the logistic model, both the linear and quadratic discriminant analysis

models were only able to achieve an overall correct prediction rate around 0.7 by

classifying nearly all of the students as persisting from fall to fall.  There were 273

students in the data set who did not persist from fall to fall, yet none of the DA models

examined ever labeled more than 36 students as belonging to this class.

The third attempt at finding a prediction model for persistence failed.  Neither

linear nor quadratic discriminant analysis could produce a model.  This was an indication

that neither flat nor curved boundaries exist between the two classes that can be described

using the continuous variables in this study.
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4.2.1 Predicting Fall to Fall Persistence in Good Academic Standing

          with Logistic Regression

The second outcome variable was defined as the event of persisting to the second

fall semester with good academic standing versus any other outcome (persisting in poor

academic standing or dropping out).  Beginning the variable selection process, the

univariate models were constructed and tested using the log likelihood ratio test.  The

results from this analysis are given in Table 4.4.

     Table 4.4  LR Univariate Analysis (Second Outcome)
Variable Chi-Square

 Statistic (1 d.f.)
P-Value

1. High School GPA 159.957 .0000
2. ACT Math Score 69.821 .0000
3. Pre-Calculus (binary) 56.099 .0000
4. ACT Composite Score 46.987 .0000
5. ACT English Score 25.920 .0000
6. ACT Science Reasoning
         Score

23.238 .0000

7. ACT Reading
    Comprehension Score

14.930 .0001

8. Sex  (binary) 2.124 .1450
9. New Mexico High School
                            (binary)

1.945 .1631

10. Ethnicity (binary) 1.711 .1908
11. Major  (binary) 1.162 .2811

It was interesting to note the very large chi-square statistic for High School GPA

in comparison to the statistics for the other variables.  The variable Major was eliminated

from further analysis since its p-value was greater than 0.25.

The next step was to build a model using forward selection followed by backward

elimination based upon the ten remaining variables.  The variables selected from this

procedure were:

Order of Selection Variable

First High School GPA
Second ACT Math Score
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Third New Mexico High School
Fourth Pre-Calculus

The overall correct prediction rate for this model was 69.3%.  Since the

proportion of students persisting in good academic standing in the data set was 54.4%,

the model’s ability to predict the outcome was better than simply assigning all the

students to class 1.

Although all the various ACT scores had significant p-values in the univariate

analysis, there was no need to include them as candidates for the final models since they

were all highly correlated with ACT Math Score.  Due to these high correlations, if a

model already contained ACT Math Score, then the other ACT scores would not

contribute any new information about the outcome if they were included.  Likewise, the

variable Pre-Calculus was excluded since it was also highly correlated with ACT Math

Score.  Although the correlation between Pre-Calculus and ACT Math Score was not as

high as the correlations between the various ACT scores, the inclusion of Pre-Calculus

did not improve the predictive ability of the models tested.

Next, models containing subsets of the variables High School GPA, ACT Math

Score, and New Mexico High School and their interactions were tested.  During this

procedure it became evident that High School GPA and ACT Math Score needed to be

included in the final model.  The predictive ability of a model was reduced considerably

if it did not contain these two variables.  There were two models that produced high

prediction rates on the learning set of data.  The first model had a correct prediction rate

of 70.4% and it contained the following two variables:

1. High School GPA

2. ACT Math Score
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The second model had a correct prediction of 70.2% and it contained the following

variables:

1. High School GPA

2. ACT Math Score

3. New Mexico High School

4. High School GPA*New Mexico High School

If a student attended a New Mexico High School, he was slightly more likely to

be in class 1.  The percentage of students in the data set who attended a New Mexico

High School and who belonged to class 1 was 56.1%, while the percentage of students

who had not attended a New Mexico High School and who belonged to class 1 was

51.4%.  In the second model described above, if a student attended a New Mexico High

School then his likelihood of belonging to class 1 would only increase if he had a high

school GPA greater than 2.83.

The difference in the predictive ability between the two models was negligible

and since the first model was much simpler than the second it was chosen as the final

model.  This model was:

( )
1 21 2 6.6917 1.4778 0.0765

1
1| ,

1 x x
P y x x

e − −= =
+

, (4.1)

where 1x High School GPA= ,

    and 2x ACT Math Score= .

Equation 4.1 represents the probability of a student persisting in good academic standing.

The cut-off probability that yielded the most correct predictions overall in the learning

sample was 0.46.  Therefore, in order for a student to be labeled as belonging to the
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population of students who persist in good academic standing the student’s probability

must be at least 0.46.  This produced the following classification rule:

assign student i to class 1 if:

1 2( 1| , ) 0.46i i iP y x x= ≥ ,

otherwise assign student i  to class 0.

In order to get a better estimate of the predictive ability of the final model, 10-fold

cross validation was used.  The following table shows the correct and incorrect

classifications produced by the model.

Table 4.5 LR Confusion Matrix (Second Outcome)

Actual Outcome

0 1 Total

0 245 100 345
Predicted
Outcome

1 188 417 605

Total 433 517 950

The overall correct prediction rate was (245 417) / 950 .697.+ =  The proportion of correct

classifications of the students who persisted in good academic standing, or the sensitivity,

was 417 / 517 .807.=  The proportion of correct classifications of the students who did

not persist from fall to fall with good academic standing, or the specificity, was

245 / 433 .566= .

The predictive ability of the model may also be examined graphically by plotting

the students’ high school GPA and ACT math score along with the level curve where the

model equals the cut-off probability.  Recall that the requirement to be labeled as

belonging to class 1:

1 2( 1| , ) 0.46iP y x x= ≥
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1 2(6.691 1.4778 0.0765 )

1
0.46

1 x xe− − − ≥
+

.

Simplifying this inequality results in:

1 21.4778 0.0765 6.8513x x+ ≥ .  (4.2)

This equation provides the requirements on high school GPA and ACT math score

needed for a student to be labeled as persisting in good academic standing.  The boundary

line between the two outcomes is:

1 21.4778 0.0765 6.8513x x+ = .  (4.3)

A scatter plot of students’ high school GPA and ACT math score that also contains this

boundary line can be used to see how the students are labeled.  The following graph is a

scatter plot of only the students who persisted in good academic standing.  The points that

lay above the line represent students who were correctly classified.

Figure 4.1
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The bulk of the points lay above the line.  This corresponds to the correct classification of

80.7% of the students who persisted in good academic standing.

The ability of the model to correctly classify students who did not persist in good

academic standing was not as good.  The following graph is a scatter plot of those

students along with the model.

Figure 4.2

Here the line cuts through nearly the center of the scatter plot.  All the points that lay

above the line represent misclassified students.  Recall that the correct prediction rate of

students who did not persist in good academic standing was 56.6%.  This corresponds to

the percentage of points that lay below the line.

The students who did not persist in good academic standing were a mixed group

of those who left in good academic standing and those who persisted or left in poor

academic standing.  This contributed to the high error rate when trying to predict students

who did not persist in good academic standing.  The following graph is a scatter plot of

the students who left before their second fall term upon enrollment in good academic
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standing.  The percentage of students who were mislabeled as persisting in good

academic standing was 56.7%.  These incorrect classifications made up 24.2% of the total

misclassifications.  It is highly likely that these students left NMT for reasons that were

not due to lack of academic preparation.

Figure 4.3

Of the students who were in poor academic standing at the time they left NMT or

by their second fall semester, only 23.0% were incorrectly labeled as persisting in good

academic standing.  Figure 4.4 is a scatter plot of the high school GPA versus ACT math

score of this group of students.  Here the bulk of the points, 77.0%, lay below the line.

These students were correctly classified as not persisting in good academic standing.
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Figure 4.4

Now that the strengths and weaknesses of the logistic model have been assessed,

the estimated coefficients in the model must be interpreted.  With linear regression the

interpretation of the coefficients in the model is very straightforward.  Given the linear

model 0 1y xβ β= + , for every unit change in x there is a change of 1β  in y.  The

interpretation of the coefficients is not so simple with logistic regression.  Here the notion

of odds must be introduced. Odds are defined as:

probability the event occurs

probability the event does not occur
.

The odds may be thought of as the likelihood of the event occurring.

The relative likelihood of the event occurring for two different individuals is

found with the odds ratio.  Here the event is defined as a student persisting in good
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academic standing.  The odds ratio for a student with a high school GPA 1xΔ  points

higher than another student, and controlling for ACT math score is:

1 1 2

1 1 2

1 2

1 2

( 1| , )
1 ( 1| , )

( 1| , )
1 ( 1| , )

P y x x x

P y x x x

P y x x

P y x x

⎛ ⎞= + Δ
⎜ ⎟− = + Δ⎝ ⎠

⎛ ⎞=
⎜ ⎟− =⎝ ⎠

.

This expression simplifies to

1 1 1
ˆ 1.4778x xe eβ Δ Δ= . (4.4)

A reasonable value for 1xΔ  must be chosen.  For example, if 1 .5xΔ =  then the odds ratio

is 2.09.  This indicates that a student who has the same ACT math score, but half a grade

point higher than another student is 2.09 times more likely to persist in good academic

standing.

This same process is used to examine the coefficient on the variable 2x , ACT

math score.  Here the odds ratio for two students with the same high school GPA, but one

with 2xΔ  points higher on the math portion of the ACT exam, is

2 2 2
ˆ 0.0765x xe eβ Δ Δ= . (4.5)

Again, a reasonable value for 2xΔ must be chosen.  If 2 5xΔ = points then 
0.0765*5e =1.47.

Therefore, for every five points higher a student scores on the math portion of the ACT

math exam, he will raise his likelihood of persisting in good academic standing 1.47

times.

The values 1β̂  and 2β̂ are point estimates of the coefficients 1β  and 2β .  In order

to gain more information about 1β  and 2β , the interval estimates of these values were
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found.  According to Hosmer and Lemeshow, the maximum likelihood estimate, ˆ
iβ , of

the logistic model has approximately a normal distribution with mean, iβ , and standard

deviation, the standard error of ˆ
iβ  [9].  Therefore a 95% confidence interval for iβ  is:

ˆ ˆ1.96 ( )i iSEβ β± .

Using this information, the 95% confidence interval for 1β  in the model is:

1.4778 1.96*0.1549± ,

(0.298, 2.657) .

Likewise, the 95% confidence interval for 2β  in the model is:

0.0765 1.96*0.0185± ,

(0.040,0.113) .

Since neither of these intervals contain zero, it may be concluded with 95% confidence

that 1β  and 2β  are nonzero.

Confidence intervals for the odds ratios may also be found by exponentiating the

end points of the confidence intervals for the coefficients.  The 95% confidence interval

for the odds ratio for the variable High School GPA is:

( )1 10.298 2.657,x xe eΔ Δ
,

where 1xΔ  is the change in high school GPA.  If 1 0.5xΔ =  the corresponding 95%

confidence interval for the odds ratio is:

(1.161,3.775) .

Likewise, the 95% confidence interval for the odds ratio for the ACT math score is:

( )2 20.04 0.113,x xe eΔ Δ
.
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If 2 5xΔ = , then the confidence interval becomes:

(1.221,1.944) .

Thus, with 95% confidence, if a student achieves half a grade point higher for his high

school GPA, then he is between 1.161 and 3.775 times more likely to persist in good

academic standing.  Likewise, if he scores five points higher on the math portion of the

ACT exam, he is between 1.221 and 1.944 times more likely to persist in good academic

standing.

4.2.2 Predicting Fall to Fall Persistence in Good Academic Standing

with CART

Since CART software picks the variables for the model, all the predictor variables

were allowed to be potential candidates.  Equal prior probabilities of  0.5 were assigned

to the two outcome classes although 0.54 of the students in the learning set persisted from

fall to fall with good academic standing (class 1) and 0.46 of them did not (class 0).  The

difference of 0.04 was not that large.  In fact, when prior probabilities of 0.54 and 0.46

were specified, there was no change in the model.  Finally, the misclassification costs

were also set equal.  There was no greater penalty for mistaking a successful student for

an unsuccessful one or visa versa.

In the pruning process, searching for the optimal tree, the results of several trees

were reported.  Table 4.6 shows these results.
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Table 4.6 Cart Tree Prediction Rates (Second Outcome)
Tree Number Number of

Terminal Nodes
Cross Validation Overall Correct

Prediction Rate
Learning Sample Overall Correct

Prediction Rate
1 125 0.579 0.887

28 26 0.664 0.775
29 25 0.669 0.773
30 23 0.679 0.766
31 18 0.677 0.748
32 8 0.670 0.722
33 7 0.664 0.718
34 6 0.663 0.711
35 5 0.669 0.709
36 4 0.677 0.703
37 2 0.663 0.683

The pruning process began with the largest tree of 125 terminal nodes and

worked down to the smallest tree with only one terminal node.  Normally, as the tree

decreases in size, the cross validation prediction rate goes up to a maximum, indicating

the optimal tree, then the cross validation prediction rate quickly decreases as the tree

becomes very small.  However, here there were two relative maximum cross validation

prediction scores.  These occurred on tree 30 with 23 terminal nodes and a prediction rate

of 0.679, and tree 36 with 4 terminal nodes and a prediction rate of 0.677.    The learning

sample prediction rate behaved in a typical manner, continually decreasing as the number

of terminal nodes decreased.

The tree with 23 terminal nodes was marked as the optimal tree since it had the

best cross validation prediction rate.  However, with 23 terminal nodes it was a very big

tree.  Figure 4.5 is a thumbnail sketch of this tree.  Despite the tree’s cumbersome size

there were some interesting aspects to it.  The first two splits were based upon High

School GPA.  If a student had a high school GPA less than or equal to 3.105 then he was

classified into group 0, not persisting in good academic standing.  Next, if a student had a

high school GPA greater than 3.775 then he was classified into group 1, persisting in



63

good academic standing.  It was far more difficult to predict the outcomes for students

with high school GPAs between 3.105 and 3.775.

Figure 4.5  Preliminary CART Model (Second Outcome)

As the tree struggled to classify this population, students with high school GPAs

between 3.105 and 3.775, a few splits were made that appear to uphold suspicions about

successful and unsuccessful students at NMT.  Looking at the leftmost series of splits

based upon high school GPA and ACT English and Reading Comprehension scores,

these students had low ACT Math scores. If they also had high ACT English scores, the

CART model would assign them to class 0.  This seems logical since NMT is a science

and engineering school.  There is also evidence in this tree that students with very high

ACT Composite scores, but not equally good high school GPAs do not do well.  It has
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been speculated that these students are very talented, but they lack the study skills

necessary for post-secondary work.

Students who start in Pre-Calculus also do not have a high success rate.  These

students have a couple of disadvantages.  They have not yet mastered the algebra and

trigonometry needed for Calculus and they are set back a semester since Calculus is a

prerequisite or co-requisite for many freshmen courses.

Although the optimal tree had the best overall cross validation prediction score

and some interesting branches, its main disadvantage was its size.  The next best tree in

terms of both cross validation prediction rates and size was tree number 36 with only 4

terminal nodes and a cross validation prediction rate of 0.677. Due to this tree’s

simplicity and the fact that its predictive ability was only 0.002 less than the optimal tree,

it was selected as the final CART model.  This tree is shown in detail by Figure 4.6.

Since the final model is just the pruned version on the optimal tree it retains the difficulty

of predicting the outcome of students with high school GPAs  between 3.105 and 3.775.

This is apparent with the split on the ACT math score.  Terminal node 2, which contained

students with high school GPAs between 3.105 and 3.775 and ACT math scores of 22

and below, was a very impure node with only 59.6% of its population being correctly

classified.  Likewise terminal node 3, which contained students with ACT math scores

above 22, did not have much of an improvement, with 64.0% of its population being

correctly classified.
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Figure 4.6 Final CART Model (Second Outcome)

Extreme values of high school GPA appear to be a far more definitive than ACT

math score since the correct prediction rates for node 1 and 4 were 71.3% and 82.2%

respectively.  However, it is important to remember that these are the prediction rates for

the model using all of the data for the learning sample.  If this model was applied to an

independent set of data, its predictive ability would probably decrease.
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In order to get a better estimate of the model’s predictive ability, cross validation

was used.  Table 4.7 shows the correct and incorrect classifications produced by the

model under cross validation.

Table 4.7 CART Confusion Matrix (Second Outcome)

Actual Outcome

0 1 Total

0 278 152 430
Predicted
Outcome

1 155 365 520

Total 433 517 950

The overall correct prediction rate, as mentioned before, was (278 365) / 950 0.677+ = .

The sensitivity, or the model’s ability to predict the event of a student persisting in good

academic standing, was 365 / 517 0.706= .  The specificity, or the proportion of correct

classifications of the students who did not persist from fall to fall with good academic

standing, was 278 / 433 0.642= .

Another benefit of this simple model is that the prediction rates may be easily

examined graphically.  Figure 4.7 is a scatter plot of high school GPA versus ACT math

score along with the model.  Only the students who persisted in good academic standing

are shown in this plot.  Any points that lay in the regions labeled class 0 are students who

were incorrectly labeled.
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Figure 4.7

Here, the way the model partitions the two variable plane may be observed as

well as where the students’ scores lay on that plane.  Figure 4.8 is a scatter plot of the

students who did not persist from fall to fall with good academic standing.  These

students either left before their second year or they were not in good academic standing

by the end of their second fall semester.  In this plot, the points that lay in regions labeled

class 1 were misclassified.

10 20 30

2

3

4

5

ACT Math Score

H
ig

h 
S

ch
oo

l G
P

A

with CART Model (Second Outcome)
Students who Persisted in Good Academic Standing

Class1

Class0

Class0

Class1



68

Figure 4.8

Many of the students who did not persist in good academic standing had

sufficiently high ACT math scores and high school GPAs to be labeled as successful

students.  It would be interesting to see how many of these students either left in poor

academic standing, or persisted with poor academic standing without the students who

left with good academic standing.  Figure 4.9 is a scatter plot of this population along

with the model.
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Figure 4.9

Of the students who left in poor academic standing or who persisted in poor

academic standing, 75.1% of them were correctly labeled as belonging to class 0.  This

was a fairly high correct classification rate.  The same is not true of the students who left

in good academic standing.  Of these students, only 34.2% of them were correctly labeled

as belonging in class 0.  This means that 65.8% of these students were incorrectly

assigned to group 1.  These misclassifications contributed 28.6% of the total error of the

model.  Figure 4.10 is a scatter plot of the students who left in good academic standing.

The points that lay in the regions labeled class 1 represent misclassified students.
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Figure 4.10

The CART model using the two variables, High School GPA and ACT Math

score, was not very successful at predicting the outcome of students who left in good

academic standing.  Nevertheless, the CART classification tree does have some

informative aspects.  It is logical that students with very good high school GPAs will do

well in post secondary studies and that the opposite is true of students with low high

school GPAs.  The classification tree shows this with the first two splits and it helps to

quantify what is a “high” and “low” high school GPA.  The model also split the students

with ACT math scores of 22 and less from those with scores of 23 and above.  According

to the American College Testing organization, students with ACT math scores in the

range of 20-23 are capable of solving basic, straight forward  problems in arithmetic,

probability, algebra, and coordinate geometry [2].  Freshmen at NMT are expected to

solve problems that require several steps and perform complex algebraic manipulations in
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first semester Calculus.  The described capabilities of students who score in the range

from 20-23 are not sufficient for a first semester Calculus class.  In fact, 84.9% of the

students in the data set who scored a 22 or below on the math portion of the ACT exam

began in Pre-Calculus. Not only did this model reveal borderline ACT math scores and

high school GPAs, but it also helps confirm the importance of these two variables as

well.

4.2.3 Predicting Fall to Fall Persistence in Good Academic Standing

          with Discriminant Analysis

The logistic regression model worked fairly well at describing the class

boundaries with a linear function.  This was an indication that linear discriminant analysis

would perform fairly well too.  Nevertheless, quadratic discriminant analysis was tested

to see if it could provide an adequate prediction rule as well.

The model building process began by setting the prior probabilities for the two

classes equal to 0.5.  The following table shows the predictive results of the various

models tested.
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Table 4.8 DA Test Models (Second Outcome)

Model Variables

Linear Model:
Learning
Sample Overall
Correct
Prediction Rate

Linear
Model: Cross
Validation
Overall
Correct
Prediction
Rate

Quadratic
Model :
Learning
Sample Overall
Correct
Prediction Rate

Quadratic
Model: Cross
Validation
Overall
Correct
Prediction
Rate

1
High School GPA,
ACT Composite

0.673 0.669 0.678 0.676

2
High School GPA,
ACT Math

0.694 0.692 0.691 0.689

3
High School GPA,
ACT English, ACT
Math

0.694 0.693 0.698 0.688

4

High School GPA,
ACT English, Math,
Reading
Comprehension, and
Science Reasoning

0.690 0.687 0.690 0.682

5

ACT English, Math,
Reading
Comprehension, and
Science Reasoning

0.6291 0.628 0.632 0.621

Despite the fact that model 3 with the variables High School GPA, ACT English,

and ACT Math had the best overall correct prediction rate, it was not chosen as the final

model.  Model 2, with the variables High School GPA, and ACT Math, was the second

best model in terms of overall correct cross validation prediction rate.  The difference

between the prediction rates of model 3 and model 2 was only 0.001.  This was not a

large enough difference to merit the addition of ACT English into the model.  Not only

that, but the coefficient on ACT English in model 3 was negative.  This indicated that the

higher a student scores on the English portion of the ACT exam, the less likely he was to

persist in good academic standing.  It would not be good to penalize students for having

high scores on their college entrance exams.  Therefore, model 2, using linear

discriminant analysis and the two variables High School GPA, and ACT Math was

chosen as the final model.
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The breakdown of how this model performed under cross validation is shown in

the following table.

Table 4.9 DA Confusion Matrix (Second Outcome)

Actual Outcome

0 1 Total

0 293 153 446
Predicted
Outcome

1 140 364 504

Total 433 517 950

Again, the overall correct prediction rate under cross validation was

(293 364) / 950 0.692+ = . The sensitivity of the model was 364 / 517 0.704= , while the

specificity was 293 / 433 0.677= .

Since this model contains the same variables as the logistic regression model, and

the two models both employ linear functions to separate the populations, the two models

are nearly exactly the same.

The linear discriminant analysis model assigns a student to class 1 if:

1 21.4867 0.0794 6.9620x x+ ≥ ,

1

2

where  High School GPA,

   and    ACT Math Score,  

x

x

=
=

otherwise the student is assigned to class 0.

The logistic regression model assigns a student to class 1 if:

1 21.4779 0.0765 6.8513x x+ ≥ ,

otherwise the student is assigned to class 0.

The specificity of the linear discriminant analysis model was higher than that of

the logistic regression model by 0.111.  However, the sensitivity of the linear
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discriminant analysis model was less than that of the logistic regression model by 0.103.

The overall correct prediction rates for the two models differed by 0.005.  The similarity

between these two models is further illustrated by the graphs of the boundary lines

between the two classes produced by the models.  This is shown in Figure 4.11.

Figure 4.11

The classification rule in linear discriminant analysis was not the only helpful

equation that came out of the analysis.  The posterior probability of a student belonging

to class 1 given that he had a high school GPA equal to 1x  and an ACT math score equal

to 2x  was calculated by:

( ) ( )1 1 1 2
1 2

1 1 1 2 2 2 1 2

,
1| ,

( , ) ( , )

p f x x
P y x x

p f x x p f x x
= =

+

{ }
{ } { }

1 2

1 2 1 2

exp 34.6258 10.6522 1.1856

exp 34.6258 10.6522 1.1856 exp 27.6638 9.1654 1.1061

x x

x x x x

− + +
=

− + + + − + +
.   (4.6)
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With this equation the probability of an individual student belonging to class 1 can be

found.  These probabilities can sometimes be more informative than just the predicted

binary outcome.

This model, like the previous models used to predict persistence in good academic

standing, was far more successful at correctly classifying students who left or persisted in

poor academic standing than those who left in good academic standing.  Of the students

who left or persisted in poor academic standing, 77.3% of them were correctly labeled as

belonging to class 0, whereas only 44.2% of the students who left in good academic

standing were correctly assigned to class 0.  The misclassifications of the students who

left in good academic standing contributed 23.0% of the total errors made by the model.

4.3 Predicting Academic Success

In the process of testing the classification models for fall to fall persistence in

good academic standing, it became apparent that a fair amount of the error involved in

these models was due to labeling students who left in good academic standing as

persisting in good academic standing.  It is likely that these students were sufficiently

prepared academically for continuing their studies at NMT.  The following table shows

the percentages of students who actually left with good grades but they were

misclassified as persisted with good grades for each of the models.
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       Table 4.10 Students who Left in Good Academic Standing

Model

Percentage of Students
who Left in Good
Academic Standing
who were Predicted as
Persisted in Good
Academic Standing

Percentage of the
Errors Classifying
Class 0 as Class 1
caused by
Misclassifying These
Students

Percentage of the Total
Error Contributed by
Misclassifying These
Students

Logistic Regression 56.7% 75.5% 24.2%

CART 67.8% 52.9% 28.7%

Linear Discriminant
Analysis

55.8% 48.3% 23.0%

Another interesting result was the model’s ability to predict the outcomes of

students who made up of the rest of the class 0 population, those who persisted or left in

poor academic standing.  Unlike the students who left in good academic standing, most of

the students who either left or persisted in poor academic standing were correctly labeled

by the models.  Table 4.11 shows the correct prediction rate of these students.

                      Table 4.11 Students with Poor Academic Standing

Model
Percentage of Students who Persisted or Left
in Poor Academic Standing who Were
Correctly Classified

Logistic Regression 77.0%

CART 75.1%

Linear Discriminant Analysis 77.3%

These results lead to the creation of a new binary outcome variable that had no

dependence on fall to fall persistence but was only based upon academic outcome.  Class

1 consisted of students who either left or persisted in good academic standing and class 0

consisted of students who either left or persisted in poor academic standing.  The three

different methods were used to create prediction models for this outcome.

In order for any classification model for the new outcome variables to be valid it

must correctly predict the outcome for more than 67.1% of the students because 67.1% of
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the students in the learning sample belonged to class 1.   With this minimum overall

correct prediction rate noted the three models were constructed.

4.3.1 Predicting Academic Success using Logistic Regression

Unlike the other models there is no need to provide a prior probability for logistic

regression.  Therefore, the model building process could begin immediately with the

univaritate analysis for each predictor variable.  Table 4.12 shows the results from the

univariate analysis.  Any predictor variable with a p-value less than 0.25 was allowed to

be a candidate for the final model.

      Table 4.12  LR Univariate Analysis (Third Outcome)
Variable Chi-Square

 Statistic (1 d.f.)
P-Value

1. High School GPA 230.446 0.000
2. ACT Math Score 81.861 0.000
3. Pre-Calculus (binary) 60.211 0.000
4. ACT Composite Score 57.108 0.000
5. ACT English Score 38.100 0.000
6. ACT Science Reasoning
         Score

23.665 0.000

7. ACT Reading
    Comprehension Score 19.015 0.000

8. Sex  (binary) 3.802 0.051
9. New Mexico High School
                            (binary)

2.800 0.094

10. Ethnicity (binary) 1.363 0.243
11. Major  (binary) 0.002 0.964

All the variables except for New Mexico High School were allowed to be

candidates for the final model.  In order to reduce the number of potential candidates the

stepwise method, forward selection followed by backward elimination was used next.

The significance level to enter the model was relaxed to 0.20.  The following two

variables were the only ones to meet the 0.20 significance level for entry.
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Order of Selection Variable

First High School GPA
Second ACT Math Score

Again, despite their significant p-values in the univariate analysis, the variables

Pre-Calculus and the various ACT scores were excluded as candidates for the final model

due to their high correlation with ACT math score.  If an interaction term, High School

GPA*ACT Math Score, was added to the model it increased the overall correct prediction

rate from 0.758 to 0.760.  This increase was not large enough to justify including an

interaction term in the model and there was no change in the log likelihood of the model

by including the interaction term at the 0.19 significance level, therefore the variables

chosen for the final model were High School GPA and ACT Math Score.

The overall correct prediction rate for this model on the learning sample was

75.8%.  Since this rate is greater than 67.1%, the percentage of students belonging to

class 1 in the learning sample, the predictor variables do give information about the

outcome.

10-fold cross validation as used to get a better estimate of the model’s true

predictive abilities.  Table 4.13 shows the correct and incorrect predictions made by the

model under cross validation.

Table 4.13  LR Confusion Matrix (Third Outcome)

Actual  Outcome

0 1 Total

0 190 111 301
Predicted
Outcome

1 123 526 649

Total 313 637 950
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The overall correct prediction rate was (190 526) / 950 0.754+ = .  The sensitivity, or the

model’s ability to correctly predict class 1, was 526 / 637 0.826= , while the specificity,

or the model’s ability to correctly predict class 0, was 190 / 313 0.607= .

This final model that represents the probability that a student belongs to class 1 is

given by the following equation:

( )
1 21 2 8.0551 2.0819 0.0873

1
1| ,

1 x x
P y x x

e − += =
+ ,  (4.7)

where 1  High School GPAx = , and 2  ACT Math Scorex = .

In order for a student to be labeled as belonging to class 1, his probability of either

persisting or leaving in good academic standing must be equal to or greater than 0.56.

This produces the classification rule:

assign student i to class 1 if:

( )1 21| , 0.58P y x x= ≥ , (4.8)

otherwise assign student i  to class 0.

The inequality given by equation 4.8 becomes:

 ( )1 28.0551 2.0819 0.0873

1
0.58

1 e x x− + ≥
+

,

which further simplifies to:

1 22.0189 0.0873 8.3779x x+ ≥ . (4.9)

Previously, in order for a student to be labeled as persisting from fall to fall in

good academic standing, his high school GPA, 1x , and ACT math score, 2x , needed to be

high enough to satisfy:

1 21.4778 0.0765 6.8513x x+ ≥ .
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These two inequalities represent the class boundaries of the different outcome

variables.  These boundaries are graphed together in Figure 4.12 to get a better sense of

how they are oriented in relation to each other.

Figure 4.12

Line 1: Boundary for the Persisted in Good Academic Standing Model
(1.4778x1 + 0.0765x2 = 6.8315)

Line 2: Boundary for the Persisted or Left in Good Academic Standing Model
(2.0189x1 + 0.0873x2 = 8.3779)

The most notable aspect about the differences between the two plots was that the

boundary line for persisting in good academic standing lies above the boundary line for

either persisting or leaving in good academic standing.  This indicates that higher high

school GPA’s and ACT Math scores were needed in order to be labeled as persisting in

good academic standing over either persisting or leaving in good academic standing.

The far less noticeable aspect of these two plots was that line 2 was oriented

slightly more horizontally than line 1.  The slope for line 1 was

0.0765 /1.4778 0.0518− = −  while the slope for line 2 was 0.0873 / 2.0189 0.0432− = − .

The more horizontal these lines lay, or the closer their slopes are to zero, the less ACT
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Math score matters in predicting the outcome relative to High School GPA.  Here, ACT

Math score was slightly more important in predicting the outcome of persisting in good

academic standing relative to predicting just good academic standing.

Next, looking at the two groups divided on academic standing only, the boundary

line for this model (line 2) along with a scatter plot of the student data may be examined

to see how the two were related to each other.  Figure 4.13 is a scatter plot of the students

who either left or persisted in good academic standing along with their class boundary.

Any points that lay below the line represent the misclassified students.

Figure 4.13

In Figure 4.13, the bulk of the points lay above the line.  These correctly classified points

correspond to the 0.826 sensitivity of the model.

Recall that the specificity of the model was 0.607.  The model was not as

successful at predicting who would do poorly academically. The following figure is a

scatter plot of the students who either persisted or left in poor academic standing along
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with the class boundary line.  On this graph, any points that lay above the line were

misclassified.

Figure 4.14

Finally, the coefficients of the logistic regression model can be used to reveal how

the likelihood of the outcome changes as the predictor variables change.  Referring to

section 4.2.2 the notion of odds ratio will be used again.  The odds ratio of a student who

has a high school GPA 1xΔ  grade points higher than another student becomes

12.0819 xe Δ
.  This means the student is 12.0819 xe Δ

 times more likely to either persist or

leave in good academic standing, after controlling for ACT math score.  If 1xΔ  is chosen

to be half a grade point, the odds ratio becomes: 2.0819*0.5 2.83e = . Thus, a student with

half a grade point higher on his high school GPA, but with the same ACT math score as

another student is 2.83 times more likely to belong to class 1.
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Next, looking at ACT math score and controlling for high school GPA, the odds

ratio for a student with a score 2xΔ  points higher on the math portion of the ACT exam is

20.0873 xe Δ
.  Choosing 2 5xΔ = points gives: 0.0873*5 1.55e = .  Hence, a student with 5

points higher on his ACT math score, but with the same high school GPA is 1.55 times

more likely to belong to class 1.

Confidence intervals for both the coefficients, 1 2,β β  and the their odds ratios can

be found as well.  Recall from section 4.2.2 that the 95% confidence interval for iβ  is

given by:

( )ˆ ˆ1.96i iSEβ β± ,

where ˆ
iβ  is the maximum likelihood estimator of iβ .

So, the 95% confidence interval for 1β  is:

2.0819 1.96 0.1772

(1.7346, 2.4292),

± ∗
=

and the 95% confidence interval for 2β  is:

( )
0.0873 1.96 0.0204

0.0473,0.1273 .

± ∗
=

Neither of these two confidence intervals contain zero.  Therefore, with 95% confidence,

1β  and 2β  are significantly different from zero.

Confidence intervals for the odds ratios may be found by exponentiating the

endpoints of the confidence intervals for 1β  and 2β .  Thus, the 95% confidence interval

for the odds ratio for changes 1xΔ  points in high school GPA is:

( )1 21.7346 2.4292,x xe eΔ Δ
.
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If  1xΔ  is chosen to be half a grade point again, the confidence interval becomes:

( )2.3805,3.3689 .

Likewise, the 95% confidence interval for the odds ratio for changes of  2xΔ  points in

ACT math score is:

( )2 20.0473 0.1273,x xe eΔ Δ
.

If  2xΔ  is chosen to be 5 points again, then the confidence interval becomes:

 ( )1.2668,1.8898 .

Therefore, with 95% confidence, if a student raises his high school GPA by half a

grade point higher then he is between 2.3805 to 3.3689 times more likely to belong to

class 1.  Likewise, if a student raises his score on the math portion of the ACT exam by 5

points then he is between 1.2668 and 1.8898 times more likely to belong to class 1.

4.3.2 Predicting Academic Success using CART

In preparation for growing the classification tree, the prior probabilities for the

classes were set equal to the class proportions in the learning sample; 0.671 for class 1

and 0.329 for class 0.  The misclassification costs were set equal so there was no greater

penalty for one error over another.

Table 4.14 shows the results of the pruning process from the maximal tree down

to the root node.
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       Table 4.14  CART Tree Prediction Rates (Third Outcome)

Tree Number
Number of
Terminal
Nodes

Cross Validation Overall
Correct Prediction Rates

Leaning Sample Overall
Correct Prediction Rates

1 106 0.659 0.904
7 67 0.691 0.877
8 47 0.698 0.856
9 40 0.697 0.846

10 34 0.700 0.837
11 22 0.709 0.815
12 8 0.730 0.785
13 7 0.730 0.782
14 4 0.738 0.772
15 2 0.718 0.757

The optimal tree chosen by CART was remarkably similar to the final model used

to predict fall to fall persistence in good academic standing.  There were the same number

of terminal nodes and the same variables produced the splits, however the splits occurred

at lower values than before.  Recall that class 1 represented students who either persisted

or left in good academic standing and class 0 represented students who either persisted or

left in poor academic standing in this model.  Figure 4.15 shows the model along with the

learning sample classifications.
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Figure 4.15  Final CART Model (Third Outcome)

Given this model’s optimum cross validation prediction rate and its simplicity, it

was an easy decision to select it as the final model.  Since this model’s overall correct

prediction rate was 0.738 this model performs better than assigning all the students to

class 1.  The cross validation results for this model are shown in Table 4.15.

Terminal
Node 1
Class = 0

Class Cases %
0 153 68.3
1 71 31.7

N = 224

Terminal
Node 2
Class = 0

Class Cases %
0 44 59.5
1 30 40.5

N = 74

Terminal
Node 3
Class = 1

Class Cases %
0 72 27.5
1 190 72.5

N = 262

Node 3
Class = 1

ACTMath<=21.500
Class Cases %

0 116 34.5
1 220 65.5

N = 336

Terminal
Node 4
Class = 1

Class Cases %
0 44 11.3
1 346 88.7

N = 390

Node 2
Class = 1

HSGPA<= 3.525
Class Cases %

0 160 22.0
1 566 78.0

N = 726

Node 1
Class = 1

HSGPA<= 2.995
Class Cases %

0 313 32.9
1 637 67.1

N = 950

Yes No

Yes No

Yes No
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Table 4.15  CART Confusion Matrix (Third Outcome)

Actual Outcome

0 1 Total

0 164 100 264
Predicted
Outcome

1 149 537 686

Total 313 637 950

The model’s overall correct prediction rate under cross validation was

(164 537) / 950 0.738+ = .  The sensitivity of the model, or its ability to predict class 1

was 537 / 637 0.843= , and the specificity, or the model’s ability to predict class 0 was

164 / 313 0.524= .

The predictive ability of the model may be examined graphically as well.  Figure

4.16 is a scatter plot of the students who persisted from fall to fall in good academic

standing or who left before their third semester.  Any points that lay in the regions

labeled class 0 are students who were misclassified.

Figure 4.16
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The bulk of the points lay in the regions labeled Class 1.  This corresponds to the

sensitivity of 0.843 for the model. The model’s specificity, 0.524, was not as good as the

model’s sensitivity.  This becomes apparent with the scatter plot of the students who

persisted or left in poor academic standing.  Figure 4.17 shows this scatter plot along with

the CART model.

Figure 4.17

Perhaps the most useful features to CART models are the first two splits on high

school GPA.  These two splits divide students into three populations: students who will

not do well academically, students whose academic outcome is difficult to predict, and

students who will do well academically.  A substantial percentage of the students, 35.4%,

fall into the category of those whose outcome is difficult to predict.  At least the model

tells the range of high school GPAs for these students.
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4.3.3 Predicting Academic Success with Discriminant Analysis

The DA model building process began by setting the prior probabilities equal to

the class proportions in the learning sample.  Following the same procedure as before,

several models containing different subsets of variables were tested for their predictive

ability.  Table 4.16 shows the results of the different models.

Table 4.16 DA Test Models (Third Outcome)

Model Variables

Linear Model:
Learning
Sample Overall
Correct
Prediction Rate

Linear
Model:
Cross
Validation
Overall
Correct
Prediction
Rate

Quadratic
Model:
Learning
Sample Overall
Correct
Prediction Rate

Quadratic
Model:
Cross
Validation
Overall
Correct
Prediction
Rate

1 High School GPA,
ACT Composite

0.754 0.750 0.752 0.749

2 High School GPA,
ACT Math

0.757 0.757 0.757 0.755

3 High School GPA,
ACT English, ACT
Math

0.760 0.759 0.759 0.755

4 High School GPA,
ACT English,
Math, Reading
Comprehension
and Science
Reasoning

0.755 0.753 0.753 0.754

5  ACT English,
Math Reading
Comprehension
and Science
Reasoning

0.695 0.692 0.699 0.694

The linear model with the best overall correct prediction rate contained the

variables: High School GPA, ACT English, and ACT Math.  Here the coefficient on the

ACT English score was positive, however it was very small.  This coefficient was so

small that 23 ACT English points were worth one ACT Math point.  Since ACT scores

range from around 10 to 36, a difference of 23 English points to one math point indicated

that the English score was not contributing much to the model.  Despite the slightly
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higher overall correct prediction rate of this model, the variable ACT English was

dropped and the second linear model, with the two variables High School GPA and ACT

Math, was chosen as the final DA model.

The following table shows how the model performed under cross validation.

Table 4.17  DA Confusion Matrix (Second Outcome)

Actual Outcome

0 1 Total

0 153 71 224
Predicted
Outcome

1 160 566 726

Total 313 637 950

Again, the overall correct prediction rate was (153 566) / 950 0.757+ = .  The sensitivity

of the model, or its ability to predict class 1 was 566 / 637 0.889= .  The model’s ability

to predict class 0,  or the specificity, was 153 / 313 0.489= .  By examining these

prediction rates the differences between the two linear models, logistic regression and

linear discriminant analysis appear quite different.  The specificity of the LDA model was

0.063 higher than the LR model while the sensitivity of the LDA model was 0.118 lower

than the LR model.

 The classification rule according to the LDA model was:

assign student i to class 1 if:

1 22.1082 0.0861 8.2984x x+ ≥ ,

1

2

where  High School GPA,

and       ACT Math Score,

x

x

=
=

otherwise assign student i  to class 0.

The boundary line between the two classes according to the LDA model was:

1 22.1082 0.0861 8.2984x x+ = ,
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while the boundary line between the two classes according to the logistic regression

model  was:

1 22.0189 0.0873 8.3779x x+ = .

The following graph shows the two boundary lines plotted together:

Figure 4.18

Unlike the LDA and LR models produced to predict persistence in good academic

standing, the class boundaries found by these two models do not lie on top of one

another.  However that does not necessarily indicate that the two models are different.

By examining the graph, the slopes of the two lines appear nearly equal.  Indeed, the

slope for the class boundary of the LDA model was 0.0861/ 2.1082 0.408− = − , while the

slope for class boundary of the DA model was 0.0873 / 2.0189 0.432− = − .  The

relationship between ACT math score and high school GPA for the two models are

similar.  If the logistic regression model was shifted down so that the cut off probability
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for belonging to class 1 was 0.50 instead of 0.58 then the boundary lines for the two

models would appear as follows:

Figure 4.19

This also alludes to the flexibility of the class boundary line.  The boundary line

may be shifted vertically to achieve a better prediction of one class over another by

changing the cut-off probability.  This change only affects the intercept of the boundary

line, not its slope.  For example, if the boundary line is shifted down then high school

GPA and ACT math scores needed to be labeled as belonging to class 1 are also lowered.

Therefore, students who do not meet the “low” standards are definitely liable to not

persist or leave in good academic standing, which in turn raises the model’s specificity.

The same is true of raising the class boundary line.  Students who have very good high

school GPAs and ACT math scores probably will continue to do well academically.
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Therefore, if the class boundary of a model were raised then the sensitivity of the model

would increase accordingly.  What made these two models very similar was not the levels

of boundary lines but the slope of the boundary lines.  The relative contribution of

predictor variables for each model was nearly the same.  That is for the LDA model,

every one point ACT math score was worth 0.0408 point high school GPA, and for the

LR model, every one point ACT math score was worth 0.0432 point high school GPA.

The two models, LR and LDA, achieved similar overall correct cross validation

prediction rates.  The overall correct cross validation prediction rate for the LR model

was 0.754, while the overall correct cross validation  prediction rate for the LDA model

was 0.757.  The differences between these models occurred in their sensitivity and

specificity rates.  There were several students who belonged to both class 1 and class 0 in

the middle of the ACT Math Score-High School GPA plane with High School GPA’s

between 3.0 and 3.5 and ACT Scores in the low 20’s.  The LR model assigned most of

the people in this range to class 0, thus increasing the model’s specificity.  On the other

hand, the LDA model assigned most of the people in the range to class 1 which increased

the models’ specificity.

Finally, looking at the LDA model alone, the formula for the posterior probability

of a student belonging to class 1.  This probability is given by:

( ) ( )
( ) ( )

1 1 1 2
1 2

1 1 1 2 0 0 1 2

,
1| ,

, ,

p f x x
P y x x

p f x x p f x x
= =

+

{ }
{ } { }

1 2

1 2 1 2

exp 37.0569 11.8224 1.1979

exp 37.0569 11.8224 1.1979 exp 28.7585 9.7142 1.1118

x x

x x x x

− + +
=

− + + + − + +
. (4.10)



94

An alternative but equivalent way to classify a new observation using the LDA

model is to find the posterior probability of the student belonging to class 1 and class 0

and then assign the student the class that yields the largest posterior probability.  It is

more informative to have the probability of a student belonging to a given class than a

simple binary prediction.  This way it can be seen exactly how likely the student is to

belong to the class to which he was assigned.
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5. GOAL Program

In 1996, NMT began the Group Opportunities for Activities and Learning (GOAL)

program in an effort to improve student retention among new freshmen.  The program

was designed to help new freshmen acclimate to living away from home and to provide

these students with extra academic support.  In order to participate in the GOAL program,

prospective new freshmen needed to fill out an application and submit an essay

explaining why they wanted to take part in the program.  Students who showed this

initiative to join GOAL were accepted.  GOAL students lived on the same floor of their

dormitory and they took their core freshmen courses together.  This was to help students

form friendships and study groups.  The ratio of resident advisors to GOAL students in

the dormitory was raised.  These resident advisors were responsible for planning social

activities as well as helping form study sessions and looking out for students who might

be having academic problems so that the struggling student could be offered extra help

early on.  The GOAL students were also required to take a special class to help them

improve their study habits, learn time management skills, and to introduce them to

resources on the campus.

In recent years there has been some inquiry about the effectiveness of the GOAL

program.  Has it truly helped the students who participated in it?  This is particularly

difficult to determine since the participants in the program were self-selected.  However,

with the classification models it is possible to predict how well the GOAL students would

be expected to do given their high school GPA and ACT math scores and compare the

prediction to how well they actually performed.
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Since the purpose of the GOAL program was to retain students and to help them do

well academically, the logistic model used to predict persistence in good academic

standing was chosen to estimate these students probability of belonging to class 1.  In

order to make the comparison of how well the students actually performed versus how

well they were predicted to perform, first the logistic model was used to find the

individual probabilities of each student persisting in good academic standing based upon

their high school GPA and ACT math score.  These probabilities were calculated using

equation 4.1.  The total number of students predicted as belonging to class 1 in the GOAL

group was the sum of the individual probabilities.  This predicted number of students

persisting in good academic standing was compared to the actual number of those who

belonged to this class.

There were two years of GOAL students in the data set, 1996 and 1997.  The results

for these two years were very different.  In 1996, the first year of the GOAL program, 53

students participated and only 20 actually persisted in good academic standing.

However, given the credentials of the group as a whole and using the logistic model,

26.59 of these students were predicted as persisting in good academic standing.

On the other hand, the 1997 GOAL students did better than what was expected of

them.  That year, 56 students participated in the program and 36 persisted in good

academic standing.  According to the logistic model, 32.69 of the students were predicted

as persisting in good academic standing.

The actual performance of these students was examined to see if their good and bad

results were statistically significant. There is no theoretical distribution for the class

assignment process of these students.  Therefore, the natural variation of the assignment
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process was examined by simulation.  In the simulation, each student’s probability of

persisting in good academic standing was compared to a Uniform(0,1) random number.

If the probability was higher than the number generated then the student was assigned to

class 1; otherwise he was assigned to class 0.  Uniform(0,1) random numbers vary

uniformly between zero and one, as the name implies.  Therefore, if a student has a high

probability of belonging to class 1 then the uniform random number generated is likely to

be lower than the student’s probability, which would cause the student to be assigned to

class 1.  The opposite is true of students with low probabilities of belonging to class 1.

By assigning students to class 1 in this manner, we can find confidence limits on the total

number of students expected to belong to class 1 for the two groups of GOAL students.

After 1000 iterations counting the number of 1996 GOAL students assigned to class 1

by simulation, the 5th and the 95th percentile were (21, 32).  Since the interval does not

contain 20, it can be concluded that the 1996 GOAL students did do worse than expected

at the 90% confidence level since 90% of the data fall between the 5th and 95th percentile.

The performance of the 1997 GOAL students was not that easily determined.  After 1000

iterations counting the number of 1997  GOAL students assigned to class 1 by

simulation, the 5th and 95th percentile were (27, 38).  There were 36 students who

belonged to class 1 in the 1997 GOAL program.  The performance of this group is close

to being significantly better than expected.

The first year of GOAL students did not do well, but it is unclear if GOAL students

in following years did better than was predicted of them. It would be very beneficial to

examine the 1998 and 1999 GOAL participants to see if they performance was
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significantly better than expected.  Otherwise no conclusions can be made about the

GOAL program yet.
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6. Conclusions

Catching the waves of enthusiasm about improving freshmen retention, this study

began with many lofty goals: to find the model that could predict the elusive outcome of

fall to fall persistence, to gain insight on the factors that lead to students’ academic

success and what might influence them to remain at NMT or leave, and to find a clear

answer to the question about the GOAL program’s effectiveness.  Unfortunately, none of

these objectives were truly realized.  Nevertheless, other smaller discoveries were made

in this extensive model building process.  The failure to find a prediction model of fall to

fall persistence lead to a more careful examination of the predictor variables and the

outcome variable.  Fortunately, the dependent variables were effective at predicting

academic outcome.  The models did a fairly good job at predicting fall to fall persistence

in good academic standing and they were even more successful at predicting academic

success, whether a student persisted or left in good academic standing.  The academic

outcome models also presented the best variables at predicting academic outcome, High

School GPA and ACT Math Score.  It was already known that high school GPA was

more important than ACT scores in determining a student’s academic outcome, but with

the models it is possible to quantify this importance.  Finally, the real barrier to finding an

answer about the GOAL program’s effectiveness is just a matter of collecting more data,

which can be done easily in the future.

After the failure to find a model to predict fall to fall persistence, it became very

clear that none of the available predictor variables gave any information about what

might cause students to remain enrolled at NMT.  At first, it appeared as though fall to
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fall persistence could be modeled since the univariate analysis of the predictor variables

showed that several variables were statistically relevant to the outcome on Table 4.1.

Unfortunately, their statistical relevance probably came from the fact that most of the

students persisting from fall to fall did so in good academic standing.  Later on, it became

evident that the students who persisted in good academic standing were quite different

from the rest of the population, enough so that their outcome could be adequately

predicted.   In hindsight, these variables, such as high school GPA, college entrance exam

scores, ethnicity, sex, and the scant first semester variables do not indicate anything about

a student’s motivation to attend NMT.   The failure to find a prediction model for fall to

fall persistence, however, may not be entirely dependent on the limited information

provided by the predictor variables.

The outcome variable fall to fall persistence does not appear to be a very

worthwhile indicator of a student going on to complete of a four-year degree.  Clifford

Adelman dropped the persistence variables from his study of bachelor degree attainment

due to weak architecture.  Adelman found that there was an enormous range in how far

along students were to completing their degrees in the time from the students’ first year

of college to their second year [3].

This problem of having a very mixed population of students who completed three

semesters cropped up here too.  Looking at the new freshmen who entered in fall or

summer semesters from 1993-1995, 25.5% of these students who persisted from fall to

fall persisted in poor academic standing.  It was interesting to see what happened to these

students a little further on in their academic careers at NMT.  The persistence rates of the

freshmen who remained enrolled to their second fall semester were examined after four
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more semesters, which should, theoretically, land them near the middle of their senior

year. Of the students who persisted to their second fall semester in poor academic

standing, 41.9% went on to complete four more semesters, while 80.4% of the students

who persisted to their second fall semester in good academic standing went on to

complete four more semesters.  This result indicates that fall to fall persistence alone was

not a good indicator of freshmen remaining enrolled until their 7th semester, which should

be close to graduation.

The student populations at the end of the third semester were not so mixed when

they were separated based upon academic standing.  The independent variables, High

School GPA and ACT math score, were capable of differentiating the second and third

outcome variables, persistence in good academic standing versus any other outcome and

either persistence or withdrawal in good academic standing versus any other outcome.

This indicates that the high school GPAs and ACT math scores of the students who

belonged to class 1 of the two outcome variables, were substantially different from those

that belonged to class 0.  Although High School GPA and ACT Math Score were the best

predictor variables, there were other variables that had significantly different means for

the two classes.  This was shown in the univariate analysis in Tables 4.4 and 4.12.  The

univariate logistic regression analysis is equivalent to performing two sample t-tests for

continuous data or chi-square tests for discrete data [9].  Tables 4.4 and 4.12 show that

the variables that had significantly different means or cell counts at the 0.05 level were

High School GPA, all the various ACT scores, and Pre-Calculus.  These variables were

not included in the final models due to their correlation with ACT Math Score.  None of

the other variables had significantly different means at the 0.05 level.  However, the
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variable Sex, for the third outcome variable, persistence or withdrawal in good academic

standing, was barely not significant with a  p-value of 0.051.

In order to see how the means of these variables differed between the classes for

the second and third outcome classes, Table 6.1 is a list of the variables along with their

class means and standard deviations.

Examining the mean and standard deviation of the different classes can give a

little more insight into the importance of High School GPA and ACT Math Score.  The

mean indicates the location where the data points are centered, while the standard

deviation measures the spread of the data.  In general, around 95% of the data lay within

two standard deviations of the mean.  In order for a variable to be a good predictor, the

mean values for class 1 and class 0 of the variable must be quite different, enough so that

it is certain that the differences are not due to random variation.  A way to get a rough

estimate whether the predictor variables show some differences between the classes is to

examine how much the class means differ and if the difference is large in comparison

with the standard deviation of the two classes.  Taking both outcome variables into

account, the difference between the mean high school GPA for the two classes is around

half a point, and the class variances are also around half a point.  This is the best ratio of

mean difference to standard deviation among all the variables, which also explains High

School GPA’s status as the most important predictor variable. The next best ratio occurs

with the variable ACT Math Score.  Here, the mean differences are around two points

and the class standard deviations are around four points.  The largest class separation

appeared in these two variables.  Table 6.1 helps to show the individual potential of the
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variables’ predictive ability, however the models themselves give more information how

High School GPA and ACT Math score can work together in predicting class outcome.

Table 6.1 Second Outcome Class and Third Outcome Class Statistics
Second Outcome:
Class 1: Persistence in
Good Academic Standing;

 Class 0: any other
outcome

Third Outcome:
Class 1: Persistence or
Withdrawal in Good Academic
standing;

Class 0: Persistence or
Withdrawal in Poor Academic
Standing

      Variable

       Class 0 Class 1 Class 0 Class 1

Overall

Mean 3.104 3.544 2.970 3.527 3.343High
School
GPA St Dev 0.554 0.473 0.524 0.474 0.556

Mean 24.300 26.573 23.789 26.396 25.537ACT
Math
Score St Dev 4.169 4.015 4.217 3.979 4.238

Mean 25.069 26.692 24.677 26.579 25.953ACT
Composite

St Dev 3.672 3.512 3.719 3.487 3.674

Mean 23.734 25.097 23.300 25.053 24.476ACT
English

St Dev 4.066 4.019 4.126 4.016 4.133

Mean 26.152 27.429 25.805 27.410 26.881ACT
Reading
Comp. St Dev 5.429 5.186 5.407 5.226 5.337

Mean 25.568 26.890 25.339 26.753 26.287ACT
Science
Reason. St Dev 4.156 4.212 4.054 4.249 4.236

Mean 0.547 0.308 0.594 0.330 0.417Pre-
Calculus
(binary) St Dev --- --- --- --- ---

Mean 0.279 0.323 0.256 0.327 0.303Sex
(binary)

St Dev --- --- --- --- ---

Mean 0.707 0.745 0.687 0.747 0.727Ethnicity
(binary)

St Dev --- --- --- --- ---

Mean 0.626 0.669 0.649 0.650 0.649NM High
School
(binary) St Dev --- --- --- --- ---

Mean 0.852 0.876 0.847 0.874 0.865Major
(binary)

St Dev --- --- --- --- ---

-Coding for the binary variables;
Pre-Calculus: 1 if a student took a Pre-Calculus first semester,

        0 if a student took a Calculus or higher course first semester
Sex: 1 if female, 0 if male
Ethnicity: 1 if Caucasian, 0 Everyone else
NM High School: 1 if attended a NM High School, 0 otherwise
Major: 1 if declared major the first semester, 0 if undeclared major the first semester
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In growing the CART tree the first three most definitive splits occurred on high

school GPA and ACT math score.  The CART model also revealed how the outcomes of

students with very high or very low high school GPAs were easy to predict, and the

model gave estimates of these “high” and “low” GPAs.  The model also showed that

ACT Math Score was the best variable to try to separate the two classes in the very mixed

population that have high school GPAs somewhere between 3.0 and 3.6.

One of the benefits of the LR and LDA models was that the relationship between

high school GPA and ACT math score could be examined.  The slope of the class

boundary lines of the model is the conversion factors of ACT Math to High School GPA.

One whole high school GPA point is quite large, since high school GPA normally ranges

from 2.0 to 4.0, so instead one quarter of a high School GPA point was used in

comparison to one ACT Math point.  Table 6.2 shows the number of ACT math points

needed to be equivalent to one quarter of a high school GPA point along with how much

one ACT math point is worth in terms of high school GPA.

6.2 High School GPA and ACT Math Score
1
4  High School GPA point is

worth  X  ACT Math points
1 ACT Math point is worth  Y

High School GPA pointsModel

X Y
LR used to Predict Persistence in
Good Academic Standing

4.83 0.0518

LDA used to Predict Persistence
in Good Academic Standing

4.68 0.0534

LR used to Predict Persistence or
Withdrawal in Good Academic
Standing

5.78 0.0432

LDA used to Predict Persistence
or Withdrawal in Good Academic
Standing

6.12 0.0408

Approximately five points on the math portion of the ACT exam are worth one

quarter of a point High School GPA.  According to designers of the ACT exam a
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difference of five points is worth a significant amount.  The math portion of the exam is

organized into sections of four points, 16-19, 20-23,…,33-36.  The test is designed so that

the math abilities can be easily assessed given the section where the student’s score fell.

The difference between abilities of a student who scores in one section lower than

another is substantial [2].  Since the sections are in four point intervals, if two students

have a difference of five points then their scores lay in two different intervals, possibly

separated by an interval.  This implies that their math abilities are considerably different.

The coefficients in the models were reported to four decimal points.  This does

not help to find an easy-to-remember prediction rule.  However, if the coefficients were

rounded to one digit then the LR and LDA models become equivalent.  This becomes

apparent after scaling the coefficient on High School GPA to equal 2.  The LR and LDA

class boundary lines once this scaling has been done are shown below.  (Again High

School GPA 1x=  and ACT Math Score 2x= .)

Fall to Fall Persistence in Good Academic Standing:

LR: 1 22 0.1035 9.2723x x+ =

LDA: 1 22 0.1068 9.3657x x+ =

Good Academic Standing:

LR: 1 22 0.0865 8.2995x x+ =

LDA: 1 22 0.0853 8.2236x x+ =

If the coefficients for these lines were rounded to the nearest digit then the boundary line

for determining fall to fall persistence in good academic standing would be:

1
1 2102 9x x+ = ,

and the boundary line for determining good academic standing would be:
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1
1 2102 8x x+ = .

The prediction rates of these two class boundary lines can be examined with the learning

set of data.  Table 6.3 shows how well the line 1
1 2102 9x x+ = separated students who

persisted in good academic standing versus everyone else.  The classification rule

assigned students to class 1 if 1
1 2102 9x x+ ≥ , otherwise they were assigned to class 0.

Class 1 consists of students who persisted in good academic standing and class 0 contains

everyone else.

Table 6.3 Confusion Matrix for Rounded Coefficient Model (Second Outcome)

Actual  Outcome

0 1 Total

0 274 126 400
Predicted
Outcome

1 159 391 550

Total 433 517 950

This model with rounded coefficients worked fairly well on the data set with an overall

correct prediction rate of (274 391) / 950 0.70+ = , a sensitivity of 391/ 517 0.76= , and a

specificity of 274 / 433 0.63= .

Table 6.4 show the predictive ability of the classification rule that labels a student

as either persisting or leaving in good academic standing if 1
1 2102 8x x+ ≥ , otherwise the

student is labeled as either leaving or persisting with poor academic standing.
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Table 6.4 Confusion Matrix for Rounded Coefficient Model (Third Outcome)

Actual  Outcome

0 1 Total

0 124 48 172
Predicted
Outcome

1 189 589 778

Total 313 637 950

This model had an overall correct prediction rate of (124 589) / 950 0.75+ = , a sensitivity

of 589 / 637 0.92=  and as specificity of 124 / 313 0.40= .  This model labeled most

students as persisting or leaving in good academic standing which caused the sensitivity

to be much higher than the specificity.  The prediction rates of these two models with

rounded coefficients were reported in case someone wanted to use them in the future.

  Finally, the models in this study can be used as a tool in assessing the

effectiveness of freshmen programs at NMT.  The models predict how well the students

in the freshmen programs ought to do given their background, which can be compared to

how well they actually did.  Then simulation can be used to see if the difference in the

predicted and actual outcome is statistically significant.

In summary, there were several main conclusions that have come out of this

study.  First, either very different variables are needed to predict fall to fall persistence or

some other measure of persistence must be used in order to find a student retention

model.  Although persistence alone could not be predicted, high school GPA and ACT

math score can be used to predict academic outcome.  Not surprisingly, High School

GPA was the most important predictor of post secondary academic outcome among these

freshmen.  Finally, the models did estimate how important high school GPA was to the

outcomes and they also revealed how high school GPA relates to ACT math score.
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Appendix A.  Logistic Regression Cut-Off Probabilities

The logistic regression model allows for changes in the number of false positive

and false negative predictions by altering the cut-off probability.  The following two

tables report various cut-off probabilities and the resulting overall correct prediction rate,

sensitivity, specificity, false positive rate and false negative rate on the learning sample.

The overall correct prediction rate is the number of the correct predictions divided by the

total number of predictions.  The sensitivity is the number of students correctly assigned

to class 1 divided by the total number of students who actually belong to class 1.  The

specificity is the number of students correctly assigned to class 0 divided by the total

number of students who actually belong to class 0.  The false positive rate is the number

of students incorrectly assigned to class 1 divided by the sum of students incorrectly and

correctly assigned to class 1.  Finally, the false negative rate is the number of students

incorrectly assigned to class 0 divided by the sum of students incorrectly and correctly

assigned to class 0.

Table A.1  Logistic Regression Model for Predicting Fall to Fall Persistence in Good
                 Academic Standing

Cut-Off
Probability

Overall
Correct

Sensitivity Specificity False Positive False Negative

0.38 67.1 89.2 40.6 35.8 24.1
0.40 67.6 87.4 43.9 35.0 25.5
0.42 68.7 85.7 48.5 33.5 26.1
0.44 69.4 83.8 52.2 32.3 27.1
0.46 70.4 82.6 55.9 30.9 27.1
0.48 70.1 79.3 59.1 30.2 29.5
0.50 70.0 76.0 62.8 29.1 31.3
0.52 69.5 73.1 65.1 28.5 33.0
0.54 69.2 70.4 67.7 27.8 34.3
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Table A.2 Logistic Regression Model for Predicting Good Academic Standing
Cut-Off

Probability
Overall
Correct

Sensitivity Specificity False Positive False Negative

0.50 75.6 88.7 48.9 22.1 32.0
0.52 75.4 87.3 51.4 21.5 33.5
0.54 75.4 85.1 55.9 20.3 35.2
0.56 75.8 84.1 58.8 19.4 35.4
0.58 75.8 82.5 62.0 18.5 36.4
0.60 75.4 81.3 63.6 18.1 37.4
0.62 74.8 78.8 66.8 17.2 39.2
0.64 74.3 76.9 69.0 16.6 40.5
0.66 72.9 73.3 72.2 15.7 42.9
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Appendix B.  Results Using a Reduced Data Set from Raising the Minimum High
                           School Grade Point Average

The current admission requirements for new freshmen entering New Mexico Tech

include having at least a 2.5 high school GPA and at least a score of 21 on the ACT

Composite.  The minimum high school GPA was recently raised from a 2.0 to a 2.5.  The

changes to this new student population have not been observed yet.  With the models and

the data set, it is possible to estimate the outcome of students who meet the current

admission requirements, but who do not meet the requirements to be labeled as belonging

to class 1 for the second and third outcome variables.

In the data set, 822 of the students met the current admission requirements.  Of

these students, 325 were classified as not persisting in good academic standing according

to the logistic regression classification rule given by Equation 4.2.  In this group of 325,

62.5% actually did not persist in good academic standing.  Using the CART model

described by Figure 4.6, 354 students were classified as not persisting in good academic

standing.  In this new group, 67.5% were correctly classified.

For the third outcome variable, class 0 consisted of students who either left in

poor academic standing or persisted in poor academic standing.  Using the logistic

regression classification rule for the third outcome variable, Equation 4.9, 196 students

who meet the current admission requirements were assigned to class 0.  Of these students,

60.2% were correctly classified.  Finally the CART model described by Figure 4.15 was

used and 220 students were assigned to class 0.  Here, the outcome of 64.0% of the 220

students was correctly predicted.
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