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ABSTRACT

I present a parallel algorithm for solving the maximum satis�ability

problem� I will compare the parallel algorithm to a sequential algorithm� Both

algorithms use a two	phase approach� The �rst phase uses the GSAT heuristic

to obtain a good upper bound on the number of unsatis�ed clauses� The second

phase uses a Davis
Putnam
Loveland like algorithm to solve the problem� The

parallel algorithm uses a �master	slave� paradigm� The master process keeps a

list of subproblems and gives a slave process a new subproblem when it �nishes

its current one� E�ciency was between �� and �� for most problems� Linear

speedup was not achieved�
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Chapter �

Introduction

Propositional calculus is a type of logic that involves atomic propo


sitions and various logical connectives� such as �not�� �and�� �or�� and �implies��

whereas predicate calculus also includes quanti�ers such as �for every�� and �for

some� ���� ���� We are only interested in propositional calculus when dealing

with satis�ability problems� so we will limit our discussion to propositional

calculus�

A propositional logic formula F can always be written in conjunctive

normal form as the conjunction of m clauses� where each clause is the disjunc


tion of a set of literals and each literal is either a variable or the negation of

a variable� Since a clause is the disjunction of a set of variables and a set of

negated variables� clauses can be written in the form�

C � ��yi�C� yi� � ��yi�C� yi�

where yi is a logical variable and yi is the negation of yi� A clause is true if any

of the variables in C� are true or if any of the variables in C� are false�

The satis�ability problem �SAT� is to determine whether every ele


ment in a collection of clauses can be satis�ed simultaneously� Simply stated�

can the formula C� � � � � � Ck be made true�

�



�

It has been shown that there is an algorithm for the �	SAT problem

which is linear as per the number of variables speci�ed ���� However� the

general satis�ability problem with � or greater variables per clause is a typical

NP
complete problem ��� ����

The satis�ability problem can also be formulated as a �
� integer

programming problem� For each clause in the satis�ability problem� we con


struct a constraint in which the logical variable becomes a �
� variable xi� If

xi is negated in the satis�ability problem� then it is written as ��� xi� in the

constraint� For example� the clause

x� � x� � x�

becomes the constraint

��� x�� � x� � ��� x�� � �

In general� the satis�ability problem becomes an integer programming

feasibility problem of the form

min �

subject to
X

yi�C
�

j

xi �
X

yi�C
�

j

��� xi� � � j � �� ��� m

x binary

where m is the number of constraints or clauses of the SAT problem ���� If the

integer programming problem has a feasible solution� then the SAT problem is

satis�able� If not� then the problem is unsatis�able�

Now that satis�ability has been de�ned� we look at another problem�

Many problems are not satis�able� so the question one might ask of them is�



�

�How many of the clauses can be satis�ed�� This problem is the Maximum

Satis�ability problem �MAX	SAT�� The goal of MAX	SAT is to �nd a truth

assignment which satis�es the largest possible number of a given set of clauses�

This can be stated as follows� Given a set of clauses fC�� � � � � Ckg what is the

maximum number that can be true simultaneously�

Since MAX	SAT is the optimization version of the NP	complete SAT

problem� MAX	SAT falls into the class of NP	hard problems� Even though

there is an algorithm for the �	SAT problem which is linear in the number of

variables� MAX	SAT is NP	hard even if there are only � variables per clause�

The MAX	SAT problem can also be formulated as an integer pro


gramming problem ���� We introduce an auxiliary variable zj for each clause

and let zj � � if clause j is satis�ed and zj � � if clause j is not satis�ed� The

integer programming formulation is�

min
mX

j��

zj

subject to
X

yi�C
�

j

xi �
X

yi�C
�

j

��� xi� � zj � � j � �� ��� m

x� z binary�

Satis�ability problems have been solved using various methods� Some

of the methods used are resolution ���� ��� ��� ���� the Davis
Putnam
Loveland

Procedure�DPL� ���� ��� ��� ���� Branch and Bound ���� ��� cutting planes

���� ���� and heuristic methods� some of which are GSAT ��� ��� ��� ��� ����



�

GRASP ����� and simulated annealing ���� ���� There have also been several

parallel algorithms written ��� ����

Some methods used to solve MAX	SAT problems are GSAT ��� ����

a modi�cation of Davis
Putnam
Loveland algorithm ��� a Branch and Cut

algorithm ���� simulated annealing ���� ���� and a modi�ed tabu search called

Steepest Ascent Mildest Descent ����� Also� Goemans and Williamson ���� have

described an ����
approximation algorithm for MAX	SAT problems which

uses semide�nite programming� Of the above methods� there are two complete

methods� the modi�cation of the Davis
Putnam
Loveland algorithm and the

Branch and Cut Algorithm� Cheriyan et� al� ��� also have a linear programming

approach for solving MAX	�	SAT problems� At this point in time� there are

no published parallel algorithms for the MAX	SAT problem�



Chapter �

Survey of Literature

��� Resolution

Resolution� developed by Robinson in ��� ����� is a complete sym


bolic method that has been used to solve satis�ability problems� It was designed

to solve �rst	order predicate calculus problems but has also been used to solve

propositional calculus problems� and resolution applied to propositional calcu


lus is called ground resolution ���� ����

Resolution works in the following way� Two clauses �parents� have

a resolvent when xi appears in one clause and xi appears in another clause�

Their resolvent is a clause that contains all of the literals in either of the two

parent clauses except for xi and xi� which cancel� For example the following

parents�

x� � x� � x�

and

x� � x� � x�

produce the resolvent�

x� � x� � x��

Note that the resolvent follows logically from the conjunction of the parent

clauses� Another routine used together with resolution is called absorption� A





�

clause Ck is said to be absorbed by another Ci if all the literals in Ck appear in

Ci� For example� the clause x��x� would be absorbed by the clause x��x��x��

Because of this redundancy� we can remove absorbed clauses�

The resolution algorithm contains three steps that are executed iter


atively� The �rst step is to determine if any clause in our set S is the empty

clause� in which case the problem is not satis�able� and we can stop� At the

second step� we remove all absorbed clauses� By checking for absorption and

removing absorbed clauses� we ensure that the procedure terminates ����� The

third step requires that we generate all resolvents with parents in the set of

clauses S� If no resolvents exist� then the problem is satis�able� Otherwise�

we delete any clause from S which is absorbed by any of the new resolvents to

simplify the problem� Then� we add the new resolvents to the set of clauses S

and start over at step ��

For example in the given set of clauses

x�

x�

x� � x�

the �rst two clauses resolve to an empty clause� Thus the set of clauses is not

satis�able�

However� the set of clauses

x� � x�

x� � x�



�

produce the resolvent

x�

giving us the new set of clauses

x� � x�

x� � x�

x�

Since there are no more resolution possibilities� the problem is satis�able� It has

been shown that resolution with absorption is a logically complete algorithm

�����

The drawback to using resolution is the time complexity of the method�

Researchers have shown that� using resolution� running time is not only expo


nential in the number of variables in the worst case� but it also tends to become

rapidly impractical in practice as the size of the problem increases �����

��� Cutting Planes

Resolution has connections to an integer programming approach called

cutting planes� The integer programming formulation of the satis�ability and

the maximum satis�ability problem can be solved in several ways� one of which

is by cutting planes�

Resolvents in an inference problem form a subset of the class of

Chvatal cuts for linear programming relaxation problems ���� ���� Chvatal

cutting planes are formed by taking positive linear combinations of the con


straints� and rounding the coe�cients of the new constraints in a way that



�

ensures that integer feasible solutions are not cut o�� These cuts are used

to further reduce the convex hull of the solution� where the convex hull is a

bounded polyhedron� or polytope� which contains the solutions to the linear

programming problem� In our case this will be an integral polytope� These

cuts are used to further de�ne this polytope and narrow the search area� If the

linear programming relaxation of the integer programming problem �x � ��

is solved� and we obtain a non	integer solution� then we must somehow �cut�

that solution out� Cutting planes accomplish this� This procedure solves the

linear programming relaxation of the integer programming problem and adds

cutting planes until the linear programming relaxation problem produces an

integer solution� If no feasible solution is reached� then the set of constraints

is unsatis�able�

The following is an example of how resolvents form a subset of the

class of Chvatal cuts for the linear programming relaxation problem ����� We

saw earlier that the two clauses

x� � x� � x�

and

x� � x� � x�

produced the resolvent

x� � x� � x��

The �rst two clauses are equivalent to the following two constraints respectively

x� � ��� x�� � x� � �



�

and

��� x�� � ��� x�� � x� � ��

If we add the two constraints together� we get the following inequality� which

is a Chvatal cut�

� � ���� x�� � x� � x� � ��

Upon simplifying we get

���� x�� � x� � x� � ��

We can drop the factor of � from the ���x�� term because if x� was equal to ��

then one of the other variables must equal � to make the inequality true� and

if x� was equal to �� then the inequality is satis�ed whether or not we have the

factor of �� So� we are left with�

��� x�� � x� � x� � ��

If we convert this inequality� which is a Chvatal cutting plane� to logical form�

we get

x� � x� � x�

which was the resolvent obtained from the �rst resolution example� So from

this example� we can see that resolvents form a subset of the class of Chvatal

cutting planes�

��� Davis�Putnam�Loveland

One of the oldest and most popular exact methods for solving SAT

problems is the Davis	Putnam	Loveland procedure ����� The algorithm begins



��

with a set of clauses� S� The algorithm proceeds with several subroutines�

although one of the subroutines used is optional� The optional algorithm can

help to further simplify the problem�

There is one subroutine of importance when solving this problem� It

is unit clause resolution or forward chaining� Firstly� a unit clause is a clause

which contains only one variable� In unit clause resolution� pick any unit clause

u in the set� S� of clauses� If none exist� then exit the subroutine� Otherwise�

force u to be true by removing any clauses that contain u and removing the

occurrence of u from any clauses� Repeat the procedure until all unit clauses

have been found� If there are any empty clauses� then S is unsatis�able� If

there are no clauses left� then S is satis�able�

If there are clauses left� then we use a second �optional� subroutine

called monotone variable �xing ����� In monotone variable �xing� we look for

monotone variables� which are variables that appear negated in every occur


rence or posited in every occurrence� If xi is a monotone variable that is negated

in every occurrence� then we set xi � FALSE and remove all the clauses con


taining xi� If xi is posited in every occurrence� then set xi � TRUE and remove

all clauses containing xi� If there are none� then exit the subroutine�

The main routine starts with the set of clauses� S� and applies unit

clause resolution and monotone variable �xing� Although monotone variable

�xing is optional� it is useful in helping to simplify the problem� If there are no

clauses left� then S is satis�able� If not� then continue by selecting a variable

on which to branch� say xi� Branch by creating two subsets of clauses� S�fxig

and S�fxig� The �rst subset forces xi to be true� and the second subset forces



��

xi to be false� Upon solving these two subproblems� if either subset generates

no clauses upon applying unit resolution and monotone variable �xing� then

the original set of clauses� S� is satis�able� If both subsets generate empty

clauses when applying unit resolution and monotone variable �xing� then the

original set of clauses S is unsatis�able� For the subset�s� that still contain

clauses� we must pick a new variable on which to branch and continue until we

generate an empty set of clauses �no clauses are left after unit resolution and

monotone variable �xing� in which case either� S� is satis�able or we generate

an empty clause in which case S is unsatis�able ���� ����

��
 Branch and Bound

The integer programming formulations of SAT and MAX	SAT can

also be solved by Branch and Bound ��� ���� This method is guaranteed to

solve the problem exactly ����

Branch and bound algorithms begin by solving the linear program


ming �LP� relaxation problem� which is attained by making all the variables

continuous on ������ If a variable� xi� is found to be fractional at optimality�

then the algorithm constructs two new subproblems in which the fractional

variable� xi� is �xed at � or �� The algorithm continues solving subproblems

and creating new subproblems as they arise until all subproblems have been

eliminated from consideration ����

A subproblem can be eliminated from consideration for the following

reasons� �� it is infeasible� �� the solution to the subproblem has a higher

objective function value than the smallest known integer solution� or �� the
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solution to the subproblem is an integer solution� After all subproblems have

been considered� the optimal solution is the best integer solution obtained while

solving subproblems ��� ����

For SAT problems� the set of clauses� S� is satis�able if and only if the

objective function of the best integer solution is �� For MAX	SAT problems�

the objective function associated with the best integer solution is the number

of unsatis�ed clauses in the best solution� Because we have enumerated all

possible subproblems� we know that the solution obtained contains no error�

��� Branch and Cut

Another exact method for solving MAX	SAT problems is branch and

cut ���� The algorithm proceeds much like branch and bound algorithms� The

algorithm begins by running GSAT to obtain an initial upper bound on the

solution�

At each node of the tree� we solve the linear programming relaxation

problem� At this point� cuts are generated� Joy� Mitchell� and Borchers ��� used

resolution cuts and odd cycle inequalities� Resolution cuts have been explained

in the resolution section� and information about odd cycle inequality cuts can be

read in Joy� Mitchell� and Borchers ���� After cuts have been made� bounding is

applied by �xing variables �i�e� monotone variable �xing�� If there remain any

fractional variables after cuts have been applied and variables �xed� branching

is performed as in branch and bound� Two new subproblems are created and

solved in the above fashion� This procedure is continued until no fractional

variables appear at any node�



��

Like branch and bound� the objective function value of the best integer

solution gives the information that we need about our MAX	SAT solution�

��� GSAT

Other than exact methods� heuristics may also be used to gain solu


tions to SAT and MAX	SAT problems� Heuristics are techniques which seek

good �i�e� near	optimal� solutions at a reasonable computational cost without

being able to guarantee either feasibility or optimality� or even in many cases

to state how close a feasible solution is to optimality ����

One such method used to solve SAT and MAX	SAT problems is

GSAT ���� �� ��� ��� ��� ��� GSAT is a local search heuristic� meaning

that it can �nd locally optimal solutions which may or may not be globally

optimal� The algorithm is as follows� Pick a random solution with which to

begin� Determine how many clauses are satis�ed by this random solution� To

pick the next solution we do the following� For each variable� determine how

many clauses would be satis�ed and how many would be unsatis�ed by  ipping

the variable from true to false or from false to true� Flip the variable which

gives the greatest net increase in the number of satis�ed clauses� If more than

one variable gives the same maximum amount of increase� randomly pick a

variable� from that set� to  ip� By randomly choosing the variable to  ip we

should not generate the same solution over and over again� The number of

clauses satis�ed is updated with this information and the  ip is calculated by

changing appropriate values in the data structures�

This algorithm  ips Max�Flips number of variables before the algo
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rithm gives up and restarts� and it is normally restarted Max�Tries number of

times� where the user speci�es the variables Max�Flips and Max�Tries� This

does not work very well for problems whose SAT structures give no clue about

the location of maximums� The reason for this is that by only  ipping one

variable we are searching a local neighborhood of solutions� If we did not start

anywhere near the globally optimal solution� and the neighborhood does not

give information about the globally optimal solution� then we will not �nd the

globally optimal solution but a local one� However� it works well to �nd a local

maximum� so by starting at random solutions there is a possibility of �nding a

satisfying assignment to the SAT problem we are looking at� Still� if it returns

an assignment that does not satisfy all the clauses� we cannot conclude that the

problem is unsatis�able because heuristics cannot guarantee that the solution

found is optimal �����

For MAX	SAT the algorithm is essentially the same except we are

not just trying to determine if a formula is satis�able� but we want to know

the maximum number of clauses that can be satis�ed� So we keep track of the

number of satis�ed clauses at any given time and determine how many can be

satis�ed� Again� if we �nd NUM clauses satis�ed� then we are not guaranteed

that this is the optimal number of clauses that can be satis�ed �unless NUM

� number of clauses� in which case the formula is satis�able� because GSAT

cannot guarantee that the solution found is optimal �����

There have been several modi�cations made to GSAT to try to get

better accuracy when solving SAT and MAX	SAT problems� One modi�cation

is introducing a �random walk�� Every time we need to  ip a variable� we either



�

choose a variable according to the GSAT strategy explained above or� with

some probability� p� we choose a variable occurring in some unsatis�ed clause

which we  ip regardless of whether the number of satis�ed clauses increases

or decreases� This may allow us to move in a direction that will lead us to a

global maximum� rather than getting stuck in a local maximum �����

��� Simulated Annealing

Another heuristic approach to solving MAX	SAT problems is simu


lated annealing ���� ���� In this approach� we use a GSAT
like algorithm but

choose to  ip variables according to an annealing schedule� Starting with a

random solution we repeatedly pick a random variable which we would like to

 ip and compute �� the change in the number of unsatis�ed clauses� If � � �

�a downhill or sideways move�� we make the  ip� Otherwise� we  ip the vari


able with probability e���T � where T is the parameter called the temperature�

The temperature may either be held constant� in which case the annealing cor


responds to the Metropolis algorithm� or the temperature may be decreased

slowly from a high temperature to near zero according to an annealing sched


ule� Most annealing schedules change the temperature by multiplying by some

constant factor that is less than �� If we do not make either of these moves�

then we go back and pick another variable which we would like to  ip�

Another consideration has to do with how to stop the annealing algo


rithm� One way is to stop the algorithm when only sideways moves have been

made for a set number of  ips� Another way is to limit the number of  ips

to Max�Flips before restarting the algorithm from another random solution�

Given a �nite cooling schedule� simulated annealing is not guaranteed to �nd
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a global optimum� i�e� an assignment that satis�es all of the clauses or in the

case of MAX	SAT it is not guaranteed to �nd the optimal number of clauses

that can be satis�ed �����

According to experimental results from Selman� Levesque� and Mitchell

����� GSAT with a random walk strategy generally performed signi�cantly bet


ter than GSAT or simulated annealing� It was reported that no temperature

could be found that performed better than GSAT on any of the problems tested�

��� Steepest Ascent Mildest Descent

Steepest Ascent Mildest Descent is a local search heuristic very similar

to what is known as Tabu search ����� The algorithm starts with an initial

solution� We make changes along the direction of steepest ascent until we

reach a local optimum� If this local optimum is better than any previous

solution� we save the new solution and its value� Then we make changes along

the direction of mildest descent where a reverse change is forbidden for a given

number of iterations� By restricting reverse changes� we hope to �climb out�

of a local maximum� thereby �nding a new one� The algorithm terminates

when no better solution has been found for a set number of iterations� which

is predetermined by the programmer�

Hansen and Jaumard ���� compared simulated annealing to steepest

ascent mildest descent �SAMD�� They found that SAMD performed better and

had a lower computing time than simulated annealing on the maximization

of quadratic �
� functions and quadratic assignment problems �less than ��

facilities�� SAMD also outperformed simulated annealing for random MAX	�	
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SAT� MAX	�	SAT� and MAX	�	SAT problems�

��� Parallel Algorithms

The complexity of the Satis�ability problem leads to a desire to �nd

a faster method of solving problems� There are many problems which cannot

be solved exactly because there is not enough time to enumerate all possible

solutions� Hence� parallel satis�ability algorithms can lend to solving larger

problem instances� Another bene�t of parallel algorithms is that we can solve

the medium sized problems in less computational time�

Some important concepts in parallel computing involve determining

how well the parallel algorithm compares to the sequential algorithm� Two of

the most prominent methods of comparing parallel algorithms are speedup and

e�ciency� Speedup is de�ned as �the gain in computation speed achieved by

using P processors with respect to a single processor� ����� If T� is the time

required by a �good� sequential algorithm and TP is the time required by the

parallel algorithm with P processors� then the speedup� SU � can be written

as SU � T��TP � The e�ciency� E� of the parallel algorithm is de�ned as the

e�ective utilization of the computing resources� or the ratio of the speedup to

the number of processors used �E � SU�P �� Speedup does not always increase

linearly with the number of processors because there is only so much that one

can parallelize�

When writing parallel algorithms� the goal is to have an e�ciency

rating of � or very close to �� This means that the algorithm obtains linear

speedup� However� because most problems have inherently sequential pieces



��

which cannot be parallelized� linear speedup is very hard to obtain� Another

reason for not obtaining linear speedup is communications overhead involved

in the parallel code� Therefore� in order to obtain linear speedup� one must

be very careful with the amount of work done by the parallel code and the

amount of communication required to maintain the parallel workings of the

code� It would be unwise to use parallel code that runs slower than the �good�

sequential algorithm�

In parallel search algorithms� such as branch and bound� the speedup

can greatly di�er over executions� because the tree may be searched di�erently

by di�erent processors for di�erent trials ����� For example� an execution of

the parallel version of a search algorithm may obtain a solution by visiting

fewer nodes than the sequential code� or may search more nodes than the

sequential code� The above two scenarios are referred to as speedup anomalies

���� ���� The �rst scenario results in what is termed as a superlinear speedup

or acceleration anomaly� which is evident when a speedup of greater than P

is obtained� when P processors are used� The second scenario results in a

deceleration anomaly� occurring when a speedup of less than P is obtained due

to excessive work�

Parallel algorithms have been written for many related problems in


cluding� theorem proving using a divide and conquer strategy ���� local search

����� and branch and bound ���� ���� Speci�cally� parallel algorithms have been

written for the Satis�ability problem ���� ��� As of yet� there have been no doc


umented parallel algorithms written for the Maximum Satis�ability problem�
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����� Parallel Branch and Bound

Several parallel algorithms have been written for solving branch and

bound problems ���� ���� Since there are many di�erent architectures� discus


sion of all the di�erent branch and bound algorithm is beyond the scope of this

work� For a more complete discussion� please refer to Gendron and Crainic

����� Here� we discuss a basic parallel branch and bound algorithm�

Most parallel branch and bound algorithms use the same bounding

rules as sequential algorithms� One problem with parallel branch and bound

algorithms deals with when to start the parallel processors� They cannot be

started immediately because there are very few subproblems at the start of

branch and bound� Therefore� it is necessary to perform some of the branch and

bound algorithm sequentially� It is necessary to experiment with the amount

of sequential work done to �nd the best strategy� The amount of sequential

work done is dependent upon the problem and the architecture used�

Another main issue in parallel branch and bound algorithms is in

determining how to distribute the work load� Again� this is dependent on the

architecture used� Several di�erent methods are used� Most store subproblems

in a �global� list� which is normally in shared memory� This list stores either

unsolved subproblems� solved subproblems� or a combination of both� In a

message passing system� one �or more� master process keeps track of the list

of subproblems and assigns subproblems to slave processes to be solved�

In more sophisticated implementations� the slaves can divide prob


lems� and share the subproblems with other processes� Workload balancing

also occurs when two �or more� processors share workload amongst themselves�
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If one processor is �nished� it can take some load from a processor that is very

busy� In this way� we can eliminate processors from becoming idle�

The algorithms follow a particular procedure� First� some part of the

problem is solved sequentially� When there are enough subproblems for all

the processors� the parallel processors are �given� a subproblem�s� which they

solve� Some of the subproblems created by the parallel processors are added

to the global �or local� list� When a processor runs out of work� it returns to

the list for another problems� The routine ends when all the subproblems have

been solved� The above procedure is a very basic parallel branch and bound�

����� Parallel SAT Algorithms

As with parallel branch and bound algorithms� parallel SAT algo


rithms are very similar to their sequential counterparts� B!ohm and Specken


meyer ��� presented a fast SAT solver to a competition at the University of

Paderborn in ����"���� ���� At this competition� B!ohm and Speckenmeyer�s

sequential SAT code had the best performance of � algorithms� B!ohm and

Speckenmeyer have taken their fast SAT solver algorithm and parallelized it�

Although other parallel SAT codes have been written on di�erent architectures�

we will devote our attention to discussing the algorithm presented by B!ohm

and Speckenmeyer� Information about the other parallel SAT algorithms can

be found in a paper by Gu �����

B!ohm and Speckenmeyer�s parallel SAT solver is very similar to a

parallel version of the Davis	Putnam	Loveland algorithm� The algorithm they

use for choosing the next variable� is to choose the variable which appears most
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often in the smallest clauses� The hope is to reduce small clauses to size � which

collapse during unit clause tracking� This should help the code to run faster�

The data structures used are designed so that access is fast�

One of the distinguishing elements of B!ohm and Speckenmeyer�s work

is that they use a workload balancing scheme that seems to work very well�

Workload balancing comes into play when a processor does not have enough

work to do� Workload balancing is performed with the following steps� ��

each processor calculates the amount of work that it has# �� the last processor

adds the amount of work over all processors# �� the last processor calculates

the optimal load that each processor should have �within some tolerance�# ��

each processor then calculates the overload# and � depending on the amount

of overload or lack thereof will determine if load is sent or received and which

neighbor to send to or receive from�

The algorithm proceeds with the following steps� The input is divided

into subproblems and distributed to all the processors� Each processor actually

runs two processes in parallel� One of the processes performs the fast sequen


tial code for solving the subproblems� The other process is a balancer� The

�worker� processor communicates with the �balancer� processor when it needs

more work� or when the �balancer� wants to give the �worker� more work�

Periodically� the �balancer� estimates the workload of its �worker�� Based on

this information� the workload balancing procedure is performed� Also commu


nicated to the �balancer� process are updated solutions or whether it is time

to quit�

Experiments were performed on random k	SAT formulas� for k � ��



��

�� and �� The ratio of clauses to variables was varied� and it was found that

the code obtained very near to linear speedup�



Chapter �

A Parallel Davis�Putnam�Loveland �DPL� Algorithm for
MAX�SAT

��� Davis�Putnam�Loveland with GSAT � A two�phase approach

Another method for solving the MAX	SAT problem is a two	phase

algorithm which combines a heuristic technique to �nd a good solution and

then uses an exact method to enumerate all possible choices� The code written

by Borchers and Furman �� �rst uses the GSAT procedure to obtain a good

upper bound ub on the number of unsatis�ed clauses in an optimal solution

and then uses a modi�cation of the Davis	Putnam	Loveland procedure that

enumerates all possible truth assignments�

In this procedure� we have a partially speci�ed truth assignment in

which some subset of the variables have been set to values of true and false�

If this solution produces a better upper bound on the number of unsatis�ed

clauses� then we update ub as the new record solution� We must also keep track

of unsat� the number of clauses left unsatis�ed by the current solution�

If unsat � ub then the current partial solution cannot be further

extended to yield a solution better than the current incumbent solution� We

discard this partial solution and backtrack to another partial solution� We

backtrack by �nding the variable that was set to false most recently� set it to

true� and then continue processing�

��
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If unsat � ub�� then we perform unit clause tracking� A unit clause

is one in which all but one of the literals are �xed at false� or �xed at true if

they are negated� Any literals left in a unit clause can be �xed at true �or false

if they are negated� to make the clause true� If not� then unsat would increase

to a value greater than ub� After unit clause tracking� we update the value for

ub�

After unit clause tracking� we perform monotone variable �xing� A

monotone variable is one which appears negated or posited in every occurrence�

If xi is monotone and posited in every occurrence� then set xi to true and remove

all clauses containing xi� If xi is monotone and negated in every occurrence�

then set xi to false and remove all clauses containing xi� Exit the routine when

there are no more monotone variables�

If unsat � ub then we must continue processing by adding another

logical variable to the current partial solution� Since this variable must be tried

at both true and false� this creates two new subproblems� which we refer to

as �branching�� The algorithm executes this branching by �rst selecting the

clauses with the smallest number of un�xed literals and then by selecting the

un�xed variable which appears in the largest number of these clause� We then

continue to the next iteration of the algorithm�

��� Parallel MAX�SAT Algorithm

This parallel MAX	SAT code uses the �master	slave� paradigm� The

basic algorithm that is used is the two phase Davis	Putnam	Loveland algo


rithm �dpl� ��� which was described earlier in Section ���� A brief sketch of
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Step � Spawn slave tasks
Step � Send the following to the slaves�

number of variables
number of clauses
an array with the problem

Step � Receive best num sat� from the slaves� GSAT routine
Step � Send slaves the following�

a set of six variables occurring in the most clauses
the best of the GSAT solutions

Step  Loop until all subproblems have been sent out�
receive the following information from a slave�

number of clauses left unsatis�ed in an optimal solution
number of branches performed by the subproblem

send a new subproblem to the slave
Step � Wait for the slaves to send information about all outstanding subproblems
Step � Process the last information about subproblems received from the slaves
Step � Send exiting signal to the slaves
Step � Print out results and quit

Table ���� Outline of the �master� algorithm

the master and slave �modules� are listed in Tables ��� and ��� respectively�

This code is run in a parallel environment� called PVM� Researchers

in conjunction with Oak Ridge National Laboratories developed PVM� or Par


allel Virtual Machine ���� PVM allows a diverse collection of machines to sim


ulate the parallel environment� The machines appear as one large distributed	

memory computer� PVM supplies routines that allow function tasks to start

up other tasks and to communicate with one another� Applications can be

parallelized by using the message passing constructs which are similar to those

in most distributed	memory machines ����
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Step � Start up the slave task
Step � Receive information from the master

number of clauses
number of variables
an array with the problem

Step � Read the array into the structure used for solving problems
Step � Run the GSAT routine and report �ndings
Step  Run dpl on an initial subproblem and report �ndings to the master
Step � Loop until told to stop by the master

Receive a new subproblem
Run dpl and report �ndings to master

Step � Exit the parallel environment

Table ���� Outline of the �slave� algorithm

In the master program� slaves are spawned in the PVM environment�

Initial information like the number of clauses� the number of variables� and an

array with the problem are reported to the slave processes� The slaves then run

the GSAT heuristic� When the slaves are done with their GSAT computations�

the master combines the knowledge received and sends the slaves the best

number of clauses satis�ed as well as a list of n variables� which will be used in

the Davis	Putnam	Loveland routine� The n variables chosen are those which

occur in the largest number of clauses� These n variables allow the problem to

be split into �n subproblems�

Now we enter a loop where we receive results from the slaves com


putations and assign new subproblems to slaves until all �n subproblems have

been assigned� Subproblems are assigned to slaves that have completed their

current subproblem and have reported their information �number of unsatis�ed

clauses and number of branches traversed� to the master process� When all �n
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subproblems have been assigned� the master waits for the slaves to �nish their

last subproblem� collects the information �number of unsatis�ed clauses and

number of branches traversed� when they are done� and sends them a termi


nating signal� After all information is collected� the master makes the �nal

calculations� and then quits�

The slave process receives start up information from the master and

becomes part of the parallel virtual machine environment� The slave receives

the number of clauses� the number of variables� and an array containing the

problem from the master� The slave then reads the problem into the structures

used in the algorithm�

After reading in the problem� the algorithm performs the GSAT

heuristic as described earlier in Section ���� The best solution obtained from

GSAT is relayed to the master who in turn sends information used in the

Davis	Putnam	Loveland �dpl� routine� such such as the best number of clauses

satis�ed and the set of n variables which are chosen by the master�

To begin the algorithm� the master sends a signal to the slave� This

signals either more work or completion of work �termination�� If the signal

is for termination� the slave exits the PVM environment� If the signal is for

more work� the slave enters into a loop� Inside the loop� the slave requests

and receives a new subproblem chosen by the master process� The slave sets

up this new subproblem by setting the appropriate variables and performs

the Davis	Putnam	Loveland routine� When it is done� it reports the number

of unsatis�ed clauses in the best solution as well as the number of branches

traversed to the master� It then receives a new signal� The loop continues
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receiving new subproblems and solving them until the slave receives a signal of

termination� At this point� the slave exits the PVM environment�

This algorithm runs in exponential time as per the number of variables

speci�ed� In the worst case� �num vars branches will be searched�



Chapter 	

Experimental Results and Discussion

In this section� we compare the parallel MAX	SAT algorithm de


scribed in Chapter � and a sequential Davis	Putnam	Loveland algorithm�

which was described in Section ���� Both algorithms were written in C� The

parallel code was run on a collection of seven ���DX�"�� PC�s under LINUX�

connected in a LAN via ethernet� PVM was used to create links between the

seven machines� thereby creating the virtual parallel environment� The code

was tested on both random and benchmark problems� The time reported is

elapsed time in seconds� We use elapsed time� because the code runs ���

e�ciently on the PC machines� For the parallel code� we use n � ��


�� Random Problems

We are interested in solving MAX	�	SAT and MAX	�	SAT prob


lems� According to Crawford and Auton ���� ���� a ratio of � variable to ����

clauses will produce hard MAX	�	SAT problems� A MAX	SAT problem be


comes di�cult when it has many unsatis�able clauses� By hard maximum sat


is�ability problems� we mean that if the ratio of clauses to variables is smaller

than ���� for MAX	�	SAT problems then the problem is likely to be sat


is�ed� If the ratio is larger than ���� for MAX	�	SAT� then the problem is

almost certainly unsatis�able� For this paper� we wish to create hard maximum

��
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satis�ability problems� So� we will use ratios of � variable to � clauses and �

variable to �� clauses for the MAX	�	SAT problems� And we will use ratios of

� variable to  clauses and � variable to � clauses for MAX	�	SAT problems�

We will set the number of variables to � and ���� With these above factors

a �� factorial design will be performed for both the MAX	�	SAT problems

and MAX	�	SAT problems with e�ciency being used as the response� We

are interested in determining what factors a�ect the e�ciency of the parallel

algorithm�

Lists of the random MAX	�	SAT and MAX	�	SAT problems and

their characteristics are given in Tables ��� and ����


���� Speedup and E�ciency

Computational results for the random MAX	�	SAT and MAX	�	

SAT problems are given in Tables ��� and ����

The �� factorial design for MAX	�	SAT problems was computed at

a �� con�dence level� and the following results were obtained� The e�ect for

the number of variables was ������ � �������� The e�ect for the ratio of

variables to clauses was ������ � ��������� And the two	way interaction was

������ � ��������� Because the �rst con�dence interval does not include ��

we conclude that the number of variables is signi�cant� Thus� e�ciency tends

to increase as the number of variables is increased� However� since the e�ect for

the ratio of variables to clauses and the two	way interaction con�dence intervals

included �� we can draw no conclusions about either of the two e�ects�

The �� factorial design for MAX	�	SAT problems was computed at
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Problem Variables Clauses Optimal Solution

rand�
� �
no
� � �� �
rand�
� �
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� � �� �
rand�
� �
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� � �� �
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� �
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� � �� �
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� �
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 � �� �
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� ��
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� � ��� �
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� ��
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� � ��� 
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� ��
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� � ��� �
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� ��
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� � ��� �
rand�
� ��
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 � ��� �
rand�
� �
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� ��� ��� �
rand�
� �
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� ��� ��� �
rand�
� �
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� ��� ��� �
rand�
� �
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� ��� ��� 
rand�
� �
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 ��� ��� �
rand�
� ��
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� ��� �� ��
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� ��
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� ��� �� �
rand�
� ��
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� ��� �� ��
rand�
� ��
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� ��� �� ��
rand�
� ��
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 ��� �� ��

Table ���� Characteristics of random MAX	�	SAT problems
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Problem Variables Clauses Optimal Solution
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� � �� �
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� � �� �
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 � �� �
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� �
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� � ��� �
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� �
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 � ��� �
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� ��� �� �
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� ��� �� �
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� 
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� ��� �� �
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� 
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� ��� �� �
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� 
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 ��� �� �
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� �
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� ��� � �
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� �
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� ��� � �
rand�
� �
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� ��� � �
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� �
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� ��� � �
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� �
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 ��� � 

Table ���� Characteristics of random MAX	�	SAT problems
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Problem parallel sequential
time �sec�� branches time �sec�� branches E�ciency
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� �
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� � ����� � ���� ����
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� ��
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 � ���� �� ����� �����
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� �
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� � ����� � ���� �����
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� �
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� � ���� � ���� �����
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� �
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� � ����� ��� ����� �����
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� �
no
� �� ����� �� ����� �����
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� �
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 � ����� � ���� �����
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� ��
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� ��� ������� ���� ������ �����
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� ��
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� � ���� � ��� �����
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� ��
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� ���� ������ ���� ������� ����
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 ��� ������� ��� ������ �����

Table ���� Computational Results for random MAX	�	SAT problems
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Problem parallel sequential E�ciency
time �sec�� branches time �sec�� branches
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��cnf � ��� �� ��� ����
rand�
� 
no
��cnf � ���� �� ���� ����
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��cnf �� ��� �� ����� �����
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��cnf � ��� �� ���� �����
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�cnf �� ����� �� ����� ����
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� �
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��cnf ��� ������ ��� ����� �����
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� �
no
��cnf ����� �������� ����� ��������� ����
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� �
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��cnf ��� ������ ��� ������ ����
rand�
� �
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� �
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�cnf ���� ������� ���� ������� ����

Table ���� Computational Results for random MAX	�	SAT problems
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a �� con�dence level� and the following results were obtained� The e�ect for

the number of variables was ������ � ��������� The e�ect for the ratio of

variables to clauses was 
������ � ������� And the two	way interaction was


����� � �������� Because the con�dence interval for the ratio of variables

to clauses included �� we can draw no conclusions about this e�ect� Because

the con�dence intervals of the other two e�ects do not include �� we conclude

that the number of variables and the two	way interaction are both signi�cant�

Thus� e�ciency tends to decrease as the number of variables and the ratio of

variables to clauses are increased simultaneously� However� e�ciency tends to

increase as the number of variables alone increases�

We are not con�dent that these �� con�dence intervals are very ac


curate� considering that only �ve replications were made at each design point�

Also� the e�ciency values over the �ve replications seem to be more expo


nentially distributed than normally distributed� For better accuracy in both

e�ciency and the factorial design� � 	 � more replications should be run for

each design point�


�� Benchmarks

The benchmark problems were chosen so that there would be a diverse

set of structured problems which are unsatis�able� The characteristics of the

benchmark problems used can be found in Table ��� The benchmark problems

are structured problems from real applications� These problems come from

DIMACS� The SSA problem is an instance from circuit fault analysis� The

dubois problems are instances from the gensathard�c code� The jnh problems

are a set of random instances generated to be di�cult by rejecting unit clauses
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Problem Variables Clauses Optimal Solution

aim
���
� �
no
� ��� ��� �
aim
���
� �
no
� ��� ��� �
dubois�� �� ��� �
dubois�� �� ��� �
dubois�� �� ��� �
dubois�� �� ��� �
hole� �� ��� �
hole� �� �� �
hole�� ��� �� �
jnh�� ��� �� �
jnh�� ��� �� �
jnh��� ��� ��� �
jnh��� ��� ��� �
jnh��� ��� ��� �
jnh��� ��� ��� �
ssa����
��� �� ���� �

Table ��� Characteristics of MAX	SAT benchmark problems

and setting the density to a hard value� The hole problems are instances of the

pigeon hole problem� And lastly� the aim problems are arti�cially generated

�	SAT instances�


���� Speedup and E�ciency

Computational results for the benchmark problems can be found in

Table ���� Looking at the e�ciency ratings� we observe that the parallel code is

not ���� e�cient in all but one instance� The e�ciency  uctuated from ��� �

to ���� There seems to be a trend in terms of e�ciency between the di�erent

classes of problems� For example� the dubois problems all had an e�ciency
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Problem parallel sequential
time �sec�� branches time �sec�� branches E�ciency

aim
���
� �
no
� ��� �������� ��� �������� �����
aim
���
� �
no
� �� ����� ���� ������ ���
dubois�� �� ������ �� ����� ����
dubois�� �� ������ ��� �������� ����
dubois�� �� �������� ����� ��������� ���
dubois�� ���� �������� ����� ������� ���
hole� � ��� � ����� �����
hole� �� ����� ��� ������ �����
hole�� �� ������ ��� ������� �����
jnh�� � ���� �� ��� ����
jnh�� �� ���� �� �� ����
jnh��� � �� � �� �����
jnh��� � �� �� ��� �����
jnh��� �� ������ ��� ��� �����
jnh��� �� ���� �� ���� �����
ssa����
��� ��� ���� ���� ���� �����

Table ���� Computational Results for MAX	SAT benchmark problems

of about �� while the jnh problems had an e�ciency closer to ���� This

di�erence could be a result of the di�erence in the types of problems and their

structure�
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Conclusions and Future Work

The e�ciency for most problems was between �� and ��� There

are several possible reasons for this lack of e�ciency� One reason would be that

the harder subproblems are solved late in the algorithm process� This would

cause one or two processors to run for a long time while other processors were

idle� It is also possible that the choice of six variables should have been dynamic

rather than restricted� as it was� to a selection of those six variables which

occurred in the most clauses� This selective choice of variables results in the

number of branches searched by the parallel algorithm exceeding the number

searched by the sequential algorithm� A good example of this is dubois��� The

parallel code took ����������� branches while the sequential code took only

����������� branches�

E�ciency of the smaller random problems was between � and ����

as opposed to �� $ �� for larger random problems� This was expected

because of the loss in e�ciency due to communications overhead and the fact

that the sequential code is as fast as it is�

One thing should be noted about every problems that was run� GSAT

obtained the optimal solution�

Future work should include more work in the load balancing portion of

the algorithm� In particular� it should include dynamic load balancing instead

��



��

of static load balancing� By this I mean that the master program should

begin by running a part of the sequential algorithm� in order to generate some

subproblems� When enough subproblems have been generated� the master

sends the subproblems to the slaves to be solved� When a slaves has competed

its work� the master should query the slaves and �nd out how much work each

has� Then� the master will take work from one or more of the slaves and give

that work the the slave who is �nished�
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