
An Exact Parallel Algorithm for the Maximum
Satis�ability Problem

by

Judith D� Furman

Submitted in Partial Ful�llment

of the Requirements for the Degree of

Master of Science in Mathematics with Operations Research Option

New Mexico Institute of Mining and Technology

Socorro� New Mexico

August� ����

ACKNOWLEDGEMENT

I�d like to thank the members of my committee for their support� In

particular I would like to thank my advisor� Brian Borchers� for his support

and help in all aspects of my degree at New Mexico Tech� I would also like

to thank my husband� Ben� for his love� support� and many hours of reading

my rough drafts� I would also like to extend my thanks to those professors

that spent time getting to know me and who encouraged me when I struggled�

Thanks�

This thesis was typeset with LATEX
� by the author�

�LATEX document preparation system was developed by Leslie Lamport as a special version

of Donald Knuth�s TEX program for computer typesetting� TEX is a trademark of the

American Mathematical Society� The LATEX macro package for the New Mexico Institute of

Mining and Technology thesis format was adapted by Gerald Arnold from the LATEX macro

package for The University of Texas at Austin by Khe�Sing The�

ii

ABSTRACT

I present a parallel algorithm for solving the maximum satis�ability

problem� I will compare the parallel algorithm to a sequential algorithm� Both

algorithms use a two	phase approach� The �rst phase uses the GSAT heuristic

to obtain a good upper bound on the number of unsatis�ed clauses� The second

phase uses a Davis
Putnam
Loveland like algorithm to solve the problem� The

parallel algorithm uses a �master	slave� paradigm� The master process keeps a

list of subproblems and gives a slave process a new subproblem when it �nishes

its current one� E�ciency was between �
� and �
� for most problems� Linear

speedup was not achieved�

Table of Contents

Acknowledgement ii

Abstract

Table of Contents iii

List of Tables v

�� Introduction �

�� Survey of Literature �

��� Resolution �

��� Cutting Planes �

��� Davis
Putnam
Loveland �

��� Branch and Bound ��

��
 Branch and Cut ��

��� GSAT ��

��� Simulated Annealing �

��� Steepest Ascent Mildest Descent � � � � � � � � � � � � � � � � � � ��

��� Parallel Algorithms ��

����� Parallel Branch and Bound � � � � � � � � � � � � � � � � ��

����� Parallel SAT Algorithms � � � � � � � � � � � � � � � � � � ��

iii

�� A Parallel Davis�Putnam�Loveland �DPL	 Algorithm for MAX�

SAT ��

��� Davis
Putnam
Loveland with GSAT 	 A two
phase approach � � ��

��� Parallel MAX
SAT Algorithm ��

� Experimental Results and Discussion ��

��� Random Problems ��

����� Speedup and E�ciency ��

��� Benchmarks �

����� Speedup and E�ciency ��

�� Conclusions and Future Work ��

References

iv

List of Tables

��� Outline of the �master� algorithm � � � � � � � � � � � � � � � � � �

��� Outline of the �slave� algorithm � � � � � � � � � � � � � � � � � � ��

��� Characteristics of random MAX	�	SAT problems � � � � � � � � ��

��� Characteristics of random MAX	�	SAT problems � � � � � � � � ��

��� Computational Results for random MAX	�	SAT problems � � � ��

��� Computational Results for random MAX	�	SAT problems � � � ��

��
 Characteristics of MAX	SAT benchmark problems � � � � � � � ��

��� Computational Results for MAX	SAT benchmark problems � � ��

v

Chapter �

Introduction

Propositional calculus is a type of logic that involves atomic propo

sitions and various logical connectives� such as �not�� �and�� �or�� and �implies��

whereas predicate calculus also includes quanti�ers such as �for every�� and �for

some� ���� ���� We are only interested in propositional calculus when dealing

with satis�ability problems� so we will limit our discussion to propositional

calculus�

A propositional logic formula F can always be written in conjunctive

normal form as the conjunction of m clauses� where each clause is the disjunc

tion of a set of literals and each literal is either a variable or the negation of

a variable� Since a clause is the disjunction of a set of variables and a set of

negated variables� clauses can be written in the form�

C � ��yi�C� yi� � ��yi�C� yi�

where yi is a logical variable and yi is the negation of yi� A clause is true if any

of the variables in C� are true or if any of the variables in C� are false�

The satis�ability problem �SAT� is to determine whether every ele

ment in a collection of clauses can be satis�ed simultaneously� Simply stated�

can the formula C� � � � � � Ck be made true�

�

�

It has been shown that there is an algorithm for the �	SAT problem

which is linear as per the number of variables speci�ed ��
�� However� the

general satis�ability problem with � or greater variables per clause is a typical

NP
complete problem ��
� ����

The satis�ability problem can also be formulated as a �
� integer

programming problem� For each clause in the satis�ability problem� we con

struct a constraint in which the logical variable becomes a �
� variable xi� If

xi is negated in the satis�ability problem� then it is written as ��� xi� in the

constraint� For example� the clause

x� � x� � x�

becomes the constraint

��� x�� � x� � ��� x�� � �

In general� the satis�ability problem becomes an integer programming

feasibility problem of the form

min �

subject to
X

yi�C
�

j

xi �
X

yi�C
�

j

��� xi� � � j � �� ��� m

x binary

where m is the number of constraints or clauses of the SAT problem ���� If the

integer programming problem has a feasible solution� then the SAT problem is

satis�able� If not� then the problem is unsatis�able�

Now that satis�ability has been de�ned� we look at another problem�

Many problems are not satis�able� so the question one might ask of them is�

�

�How many of the clauses can be satis�ed�� This problem is the Maximum

Satis�ability problem �MAX	SAT�� The goal of MAX	SAT is to �nd a truth

assignment which satis�es the largest possible number of a given set of clauses�

This can be stated as follows� Given a set of clauses fC�� � � � � Ckg what is the

maximum number that can be true simultaneously�

Since MAX	SAT is the optimization version of the NP	complete SAT

problem� MAX	SAT falls into the class of NP	hard problems� Even though

there is an algorithm for the �	SAT problem which is linear in the number of

variables� MAX	SAT is NP	hard even if there are only � variables per clause�

The MAX	SAT problem can also be formulated as an integer pro

gramming problem ���� We introduce an auxiliary variable zj for each clause

and let zj � � if clause j is satis�ed and zj � � if clause j is not satis�ed� The

integer programming formulation is�

min
mX

j��

zj

subject to
X

yi�C
�

j

xi �
X

yi�C
�

j

��� xi� � zj � � j � �� ��� m

x� z binary�

Satis�ability problems have been solved using various methods� Some

of the methods used are resolution ���� ��� ��� ���� the Davis
Putnam
Loveland

Procedure�DPL� ���� ��� ��� ���� Branch and Bound ���� ��� cutting planes

���� ���� and heuristic methods� some of which are GSAT ��
� ��� ��� ��� ����

�

GRASP ����� and simulated annealing ���� ���� There have also been several

parallel algorithms written ��� ����

Some methods used to solve MAX	SAT problems are GSAT ��
� ����

a modi�cation of Davis
Putnam
Loveland algorithm �
�� a Branch and Cut

algorithm ���� simulated annealing ���� ���� and a modi�ed tabu search called

Steepest Ascent Mildest Descent ����� Also� Goemans and Williamson ���� have

described an ��
��
approximation algorithm for MAX	SAT problems which

uses semide�nite programming� Of the above methods� there are two complete

methods� the modi�cation of the Davis
Putnam
Loveland algorithm and the

Branch and Cut Algorithm� Cheriyan et� al� ��� also have a linear programming

approach for solving MAX	�	SAT problems� At this point in time� there are

no published parallel algorithms for the MAX	SAT problem�

Chapter �

Survey of Literature

��� Resolution

Resolution� developed by Robinson in ���
 ����� is a complete sym

bolic method that has been used to solve satis�ability problems� It was designed

to solve �rst	order predicate calculus problems but has also been used to solve

propositional calculus problems� and resolution applied to propositional calcu

lus is called ground resolution ���� ����

Resolution works in the following way� Two clauses �parents� have

a resolvent when xi appears in one clause and xi appears in another clause�

Their resolvent is a clause that contains all of the literals in either of the two

parent clauses except for xi and xi� which cancel� For example the following

parents�

x� � x� � x�

and

x� � x� � x�

produce the resolvent�

x� � x� � x��

Note that the resolvent follows logically from the conjunction of the parent

clauses� Another routine used together with resolution is called absorption� A

�

clause Ck is said to be absorbed by another Ci if all the literals in Ck appear in

Ci� For example� the clause x��x� would be absorbed by the clause x��x��x��

Because of this redundancy� we can remove absorbed clauses�

The resolution algorithm contains three steps that are executed iter

atively� The �rst step is to determine if any clause in our set S is the empty

clause� in which case the problem is not satis�able� and we can stop� At the

second step� we remove all absorbed clauses� By checking for absorption and

removing absorbed clauses� we ensure that the procedure terminates ����� The

third step requires that we generate all resolvents with parents in the set of

clauses S� If no resolvents exist� then the problem is satis�able� Otherwise�

we delete any clause from S which is absorbed by any of the new resolvents to

simplify the problem� Then� we add the new resolvents to the set of clauses S

and start over at step ��

For example in the given set of clauses

x�

x�

x� � x�

the �rst two clauses resolve to an empty clause� Thus the set of clauses is not

satis�able�

However� the set of clauses

x� � x�

x� � x�

�

produce the resolvent

x�

giving us the new set of clauses

x� � x�

x� � x�

x�

Since there are no more resolution possibilities� the problem is satis�able� It has

been shown that resolution with absorption is a logically complete algorithm

�����

The drawback to using resolution is the time complexity of the method�

Researchers have shown that� using resolution� running time is not only expo

nential in the number of variables in the worst case� but it also tends to become

rapidly impractical in practice as the size of the problem increases �����

��� Cutting Planes

Resolution has connections to an integer programming approach called

cutting planes� The integer programming formulation of the satis�ability and

the maximum satis�ability problem can be solved in several ways� one of which

is by cutting planes�

Resolvents in an inference problem form a subset of the class of

Chvatal cuts for linear programming relaxation problems ���� ���� Chvatal

cutting planes are formed by taking positive linear combinations of the con

straints� and rounding the coe�cients of the new constraints in a way that

�

ensures that integer feasible solutions are not cut o�� These cuts are used

to further reduce the convex hull of the solution� where the convex hull is a

bounded polyhedron� or polytope� which contains the solutions to the linear

programming problem� In our case this will be an integral polytope� These

cuts are used to further de�ne this polytope and narrow the search area� If the

linear programming relaxation of the integer programming problem �x � ��

is solved� and we obtain a non	integer solution� then we must somehow �cut�

that solution out� Cutting planes accomplish this� This procedure solves the

linear programming relaxation of the integer programming problem and adds

cutting planes until the linear programming relaxation problem produces an

integer solution� If no feasible solution is reached� then the set of constraints

is unsatis�able�

The following is an example of how resolvents form a subset of the

class of Chvatal cuts for the linear programming relaxation problem ����� We

saw earlier that the two clauses

x� � x� � x�

and

x� � x� � x�

produced the resolvent

x� � x� � x��

The �rst two clauses are equivalent to the following two constraints respectively

x� � ��� x�� � x� � �

�

and

��� x�� � ��� x�� � x� � ��

If we add the two constraints together� we get the following inequality� which

is a Chvatal cut�

� � ���� x�� � x� � x� � ��

Upon simplifying we get

���� x�� � x� � x� � ��

We can drop the factor of � from the ���x�� term because if x� was equal to ��

then one of the other variables must equal � to make the inequality true� and

if x� was equal to �� then the inequality is satis�ed whether or not we have the

factor of �� So� we are left with�

��� x�� � x� � x� � ��

If we convert this inequality� which is a Chvatal cutting plane� to logical form�

we get

x� � x� � x�

which was the resolvent obtained from the �rst resolution example� So from

this example� we can see that resolvents form a subset of the class of Chvatal

cutting planes�

��� Davis�Putnam�Loveland

One of the oldest and most popular exact methods for solving SAT

problems is the Davis	Putnam	Loveland procedure ����� The algorithm begins

��

with a set of clauses� S� The algorithm proceeds with several subroutines�

although one of the subroutines used is optional� The optional algorithm can

help to further simplify the problem�

There is one subroutine of importance when solving this problem� It

is unit clause resolution or forward chaining� Firstly� a unit clause is a clause

which contains only one variable� In unit clause resolution� pick any unit clause

u in the set� S� of clauses� If none exist� then exit the subroutine� Otherwise�

force u to be true by removing any clauses that contain u and removing the

occurrence of u from any clauses� Repeat the procedure until all unit clauses

have been found� If there are any empty clauses� then S is unsatis�able� If

there are no clauses left� then S is satis�able�

If there are clauses left� then we use a second �optional� subroutine

called monotone variable �xing ����� In monotone variable �xing� we look for

monotone variables� which are variables that appear negated in every occur

rence or posited in every occurrence� If xi is a monotone variable that is negated

in every occurrence� then we set xi � FALSE and remove all the clauses con

taining xi� If xi is posited in every occurrence� then set xi � TRUE and remove

all clauses containing xi� If there are none� then exit the subroutine�

The main routine starts with the set of clauses� S� and applies unit

clause resolution and monotone variable �xing� Although monotone variable

�xing is optional� it is useful in helping to simplify the problem� If there are no

clauses left� then S is satis�able� If not� then continue by selecting a variable

on which to branch� say xi� Branch by creating two subsets of clauses� S�fxig

and S�fxig� The �rst subset forces xi to be true� and the second subset forces

��

xi to be false� Upon solving these two subproblems� if either subset generates

no clauses upon applying unit resolution and monotone variable �xing� then

the original set of clauses� S� is satis�able� If both subsets generate empty

clauses when applying unit resolution and monotone variable �xing� then the

original set of clauses S is unsatis�able� For the subset�s� that still contain

clauses� we must pick a new variable on which to branch and continue until we

generate an empty set of clauses �no clauses are left after unit resolution and

monotone variable �xing� in which case either� S� is satis�able or we generate

an empty clause in which case S is unsatis�able ���� ����

��
 Branch and Bound

The integer programming formulations of SAT and MAX	SAT can

also be solved by Branch and Bound ��� ���� This method is guaranteed to

solve the problem exactly ����

Branch and bound algorithms begin by solving the linear program

ming �LP� relaxation problem� which is attained by making all the variables

continuous on ������ If a variable� xi� is found to be fractional at optimality�

then the algorithm constructs two new subproblems in which the fractional

variable� xi� is �xed at � or �� The algorithm continues solving subproblems

and creating new subproblems as they arise until all subproblems have been

eliminated from consideration ����

A subproblem can be eliminated from consideration for the following

reasons� �� it is infeasible� �� the solution to the subproblem has a higher

objective function value than the smallest known integer solution� or �� the

��

solution to the subproblem is an integer solution� After all subproblems have

been considered� the optimal solution is the best integer solution obtained while

solving subproblems ��� ����

For SAT problems� the set of clauses� S� is satis�able if and only if the

objective function of the best integer solution is �� For MAX	SAT problems�

the objective function associated with the best integer solution is the number

of unsatis�ed clauses in the best solution� Because we have enumerated all

possible subproblems� we know that the solution obtained contains no error�

��� Branch and Cut

Another exact method for solving MAX	SAT problems is branch and

cut ���� The algorithm proceeds much like branch and bound algorithms� The

algorithm begins by running GSAT to obtain an initial upper bound on the

solution�

At each node of the tree� we solve the linear programming relaxation

problem� At this point� cuts are generated� Joy� Mitchell� and Borchers ��� used

resolution cuts and odd cycle inequalities� Resolution cuts have been explained

in the resolution section� and information about odd cycle inequality cuts can be

read in Joy� Mitchell� and Borchers ���� After cuts have been made� bounding is

applied by �xing variables �i�e� monotone variable �xing�� If there remain any

fractional variables after cuts have been applied and variables �xed� branching

is performed as in branch and bound� Two new subproblems are created and

solved in the above fashion� This procedure is continued until no fractional

variables appear at any node�

��

Like branch and bound� the objective function value of the best integer

solution gives the information that we need about our MAX	SAT solution�

��� GSAT

Other than exact methods� heuristics may also be used to gain solu

tions to SAT and MAX	SAT problems� Heuristics are techniques which seek

good �i�e� near	optimal� solutions at a reasonable computational cost without

being able to guarantee either feasibility or optimality� or even in many cases

to state how close a feasible solution is to optimality ����

One such method used to solve SAT and MAX	SAT problems is

GSAT ���� �
� ��� ��� ��� �
�� GSAT is a local search heuristic� meaning

that it can �nd locally optimal solutions which may or may not be globally

optimal� The algorithm is as follows� Pick a random solution with which to

begin� Determine how many clauses are satis�ed by this random solution� To

pick the next solution we do the following� For each variable� determine how

many clauses would be satis�ed and how many would be unsatis�ed by ipping

the variable from true to false or from false to true� Flip the variable which

gives the greatest net increase in the number of satis�ed clauses� If more than

one variable gives the same maximum amount of increase� randomly pick a

variable� from that set� to ip� By randomly choosing the variable to ip we

should not generate the same solution over and over again� The number of

clauses satis�ed is updated with this information and the ip is calculated by

changing appropriate values in the data structures�

This algorithm ips Max�Flips number of variables before the algo

��

rithm gives up and restarts� and it is normally restarted Max�Tries number of

times� where the user speci�es the variables Max�Flips and Max�Tries� This

does not work very well for problems whose SAT structures give no clue about

the location of maximums� The reason for this is that by only ipping one

variable we are searching a local neighborhood of solutions� If we did not start

anywhere near the globally optimal solution� and the neighborhood does not

give information about the globally optimal solution� then we will not �nd the

globally optimal solution but a local one� However� it works well to �nd a local

maximum� so by starting at random solutions there is a possibility of �nding a

satisfying assignment to the SAT problem we are looking at� Still� if it returns

an assignment that does not satisfy all the clauses� we cannot conclude that the

problem is unsatis�able because heuristics cannot guarantee that the solution

found is optimal �����

For MAX	SAT the algorithm is essentially the same except we are

not just trying to determine if a formula is satis�able� but we want to know

the maximum number of clauses that can be satis�ed� So we keep track of the

number of satis�ed clauses at any given time and determine how many can be

satis�ed� Again� if we �nd NUM clauses satis�ed� then we are not guaranteed

that this is the optimal number of clauses that can be satis�ed �unless NUM

� number of clauses� in which case the formula is satis�able� because GSAT

cannot guarantee that the solution found is optimal �����

There have been several modi�cations made to GSAT to try to get

better accuracy when solving SAT and MAX	SAT problems� One modi�cation

is introducing a �random walk�� Every time we need to ip a variable� we either

�

choose a variable according to the GSAT strategy explained above or� with

some probability� p� we choose a variable occurring in some unsatis�ed clause

which we ip regardless of whether the number of satis�ed clauses increases

or decreases� This may allow us to move in a direction that will lead us to a

global maximum� rather than getting stuck in a local maximum �����

��� Simulated Annealing

Another heuristic approach to solving MAX	SAT problems is simu

lated annealing ���� ���� In this approach� we use a GSAT
like algorithm but

choose to ip variables according to an annealing schedule� Starting with a

random solution we repeatedly pick a random variable which we would like to

 ip and compute �� the change in the number of unsatis�ed clauses� If � � �

�a downhill or sideways move�� we make the ip� Otherwise� we ip the vari

able with probability e���T � where T is the parameter called the temperature�

The temperature may either be held constant� in which case the annealing cor

responds to the Metropolis algorithm� or the temperature may be decreased

slowly from a high temperature to near zero according to an annealing sched

ule� Most annealing schedules change the temperature by multiplying by some

constant factor that is less than �� If we do not make either of these moves�

then we go back and pick another variable which we would like to ip�

Another consideration has to do with how to stop the annealing algo

rithm� One way is to stop the algorithm when only sideways moves have been

made for a set number of ips� Another way is to limit the number of ips

to Max�Flips before restarting the algorithm from another random solution�

Given a �nite cooling schedule� simulated annealing is not guaranteed to �nd

��

a global optimum� i�e� an assignment that satis�es all of the clauses or in the

case of MAX	SAT it is not guaranteed to �nd the optimal number of clauses

that can be satis�ed �����

According to experimental results from Selman� Levesque� and Mitchell

����� GSAT with a random walk strategy generally performed signi�cantly bet

ter than GSAT or simulated annealing� It was reported that no temperature

could be found that performed better than GSAT on any of the problems tested�

��� Steepest Ascent Mildest Descent

Steepest Ascent Mildest Descent is a local search heuristic very similar

to what is known as Tabu search ����� The algorithm starts with an initial

solution� We make changes along the direction of steepest ascent until we

reach a local optimum� If this local optimum is better than any previous

solution� we save the new solution and its value� Then we make changes along

the direction of mildest descent where a reverse change is forbidden for a given

number of iterations� By restricting reverse changes� we hope to �climb out�

of a local maximum� thereby �nding a new one� The algorithm terminates

when no better solution has been found for a set number of iterations� which

is predetermined by the programmer�

Hansen and Jaumard ���� compared simulated annealing to steepest

ascent mildest descent �SAMD�� They found that SAMD performed better and

had a lower computing time than simulated annealing on the maximization

of quadratic �
� functions and quadratic assignment problems �less than ��

facilities�� SAMD also outperformed simulated annealing for random MAX	�	

��

SAT� MAX	�	SAT� and MAX	�	SAT problems�

��� Parallel Algorithms

The complexity of the Satis�ability problem leads to a desire to �nd

a faster method of solving problems� There are many problems which cannot

be solved exactly because there is not enough time to enumerate all possible

solutions� Hence� parallel satis�ability algorithms can lend to solving larger

problem instances� Another bene�t of parallel algorithms is that we can solve

the medium sized problems in less computational time�

Some important concepts in parallel computing involve determining

how well the parallel algorithm compares to the sequential algorithm� Two of

the most prominent methods of comparing parallel algorithms are speedup and

e�ciency� Speedup is de�ned as �the gain in computation speed achieved by

using P processors with respect to a single processor� ����� If T� is the time

required by a �good� sequential algorithm and TP is the time required by the

parallel algorithm with P processors� then the speedup� SU � can be written

as SU � T��TP � The e�ciency� E� of the parallel algorithm is de�ned as the

e�ective utilization of the computing resources� or the ratio of the speedup to

the number of processors used �E � SU�P �� Speedup does not always increase

linearly with the number of processors because there is only so much that one

can parallelize�

When writing parallel algorithms� the goal is to have an e�ciency

rating of � or very close to �� This means that the algorithm obtains linear

speedup� However� because most problems have inherently sequential pieces

��

which cannot be parallelized� linear speedup is very hard to obtain� Another

reason for not obtaining linear speedup is communications overhead involved

in the parallel code� Therefore� in order to obtain linear speedup� one must

be very careful with the amount of work done by the parallel code and the

amount of communication required to maintain the parallel workings of the

code� It would be unwise to use parallel code that runs slower than the �good�

sequential algorithm�

In parallel search algorithms� such as branch and bound� the speedup

can greatly di�er over executions� because the tree may be searched di�erently

by di�erent processors for di�erent trials ����� For example� an execution of

the parallel version of a search algorithm may obtain a solution by visiting

fewer nodes than the sequential code� or may search more nodes than the

sequential code� The above two scenarios are referred to as speedup anomalies

���� ���� The �rst scenario results in what is termed as a superlinear speedup

or acceleration anomaly� which is evident when a speedup of greater than P

is obtained� when P processors are used� The second scenario results in a

deceleration anomaly� occurring when a speedup of less than P is obtained due

to excessive work�

Parallel algorithms have been written for many related problems in

cluding� theorem proving using a divide and conquer strategy ���� local search

����� and branch and bound ���� ���� Speci�cally� parallel algorithms have been

written for the Satis�ability problem ���� ��� As of yet� there have been no doc

umented parallel algorithms written for the Maximum Satis�ability problem�

��

����� Parallel Branch and Bound

Several parallel algorithms have been written for solving branch and

bound problems ���� ���� Since there are many di�erent architectures� discus

sion of all the di�erent branch and bound algorithm is beyond the scope of this

work� For a more complete discussion� please refer to Gendron and Crainic

����� Here� we discuss a basic parallel branch and bound algorithm�

Most parallel branch and bound algorithms use the same bounding

rules as sequential algorithms� One problem with parallel branch and bound

algorithms deals with when to start the parallel processors� They cannot be

started immediately because there are very few subproblems at the start of

branch and bound� Therefore� it is necessary to perform some of the branch and

bound algorithm sequentially� It is necessary to experiment with the amount

of sequential work done to �nd the best strategy� The amount of sequential

work done is dependent upon the problem and the architecture used�

Another main issue in parallel branch and bound algorithms is in

determining how to distribute the work load� Again� this is dependent on the

architecture used� Several di�erent methods are used� Most store subproblems

in a �global� list� which is normally in shared memory� This list stores either

unsolved subproblems� solved subproblems� or a combination of both� In a

message passing system� one �or more� master process keeps track of the list

of subproblems and assigns subproblems to slave processes to be solved�

In more sophisticated implementations� the slaves can divide prob

lems� and share the subproblems with other processes� Workload balancing

also occurs when two �or more� processors share workload amongst themselves�

��

If one processor is �nished� it can take some load from a processor that is very

busy� In this way� we can eliminate processors from becoming idle�

The algorithms follow a particular procedure� First� some part of the

problem is solved sequentially� When there are enough subproblems for all

the processors� the parallel processors are �given� a subproblem�s� which they

solve� Some of the subproblems created by the parallel processors are added

to the global �or local� list� When a processor runs out of work� it returns to

the list for another problems� The routine ends when all the subproblems have

been solved� The above procedure is a very basic parallel branch and bound�

����� Parallel SAT Algorithms

As with parallel branch and bound algorithms� parallel SAT algo

rithms are very similar to their sequential counterparts� B!ohm and Specken

meyer ��� presented a fast SAT solver to a competition at the University of

Paderborn in ����"���� ���� At this competition� B!ohm and Speckenmeyer�s

sequential SAT code had the best performance of �
 algorithms� B!ohm and

Speckenmeyer have taken their fast SAT solver algorithm and parallelized it�

Although other parallel SAT codes have been written on di�erent architectures�

we will devote our attention to discussing the algorithm presented by B!ohm

and Speckenmeyer� Information about the other parallel SAT algorithms can

be found in a paper by Gu �����

B!ohm and Speckenmeyer�s parallel SAT solver is very similar to a

parallel version of the Davis	Putnam	Loveland algorithm� The algorithm they

use for choosing the next variable� is to choose the variable which appears most

��

often in the smallest clauses� The hope is to reduce small clauses to size � which

collapse during unit clause tracking� This should help the code to run faster�

The data structures used are designed so that access is fast�

One of the distinguishing elements of B!ohm and Speckenmeyer�s work

is that they use a workload balancing scheme that seems to work very well�

Workload balancing comes into play when a processor does not have enough

work to do� Workload balancing is performed with the following steps� ��

each processor calculates the amount of work that it has# �� the last processor

adds the amount of work over all processors# �� the last processor calculates

the optimal load that each processor should have �within some tolerance�# ��

each processor then calculates the overload# and
� depending on the amount

of overload or lack thereof will determine if load is sent or received and which

neighbor to send to or receive from�

The algorithm proceeds with the following steps� The input is divided

into subproblems and distributed to all the processors� Each processor actually

runs two processes in parallel� One of the processes performs the fast sequen

tial code for solving the subproblems� The other process is a balancer� The

�worker� processor communicates with the �balancer� processor when it needs

more work� or when the �balancer� wants to give the �worker� more work�

Periodically� the �balancer� estimates the workload of its �worker�� Based on

this information� the workload balancing procedure is performed� Also commu

nicated to the �balancer� process are updated solutions or whether it is time

to quit�

Experiments were performed on random k	SAT formulas� for k � ��

��

�� and �� The ratio of clauses to variables was varied� and it was found that

the code obtained very near to linear speedup�

Chapter �

A Parallel Davis�Putnam�Loveland �DPL� Algorithm for
MAX�SAT

��� Davis�Putnam�Loveland with GSAT � A two�phase approach

Another method for solving the MAX	SAT problem is a two	phase

algorithm which combines a heuristic technique to �nd a good solution and

then uses an exact method to enumerate all possible choices� The code written

by Borchers and Furman �
� �rst uses the GSAT procedure to obtain a good

upper bound ub on the number of unsatis�ed clauses in an optimal solution

and then uses a modi�cation of the Davis	Putnam	Loveland procedure that

enumerates all possible truth assignments�

In this procedure� we have a partially speci�ed truth assignment in

which some subset of the variables have been set to values of true and false�

If this solution produces a better upper bound on the number of unsatis�ed

clauses� then we update ub as the new record solution� We must also keep track

of unsat� the number of clauses left unsatis�ed by the current solution�

If unsat � ub then the current partial solution cannot be further

extended to yield a solution better than the current incumbent solution� We

discard this partial solution and backtrack to another partial solution� We

backtrack by �nding the variable that was set to false most recently� set it to

true� and then continue processing�

��

��

If unsat � ub�� then we perform unit clause tracking� A unit clause

is one in which all but one of the literals are �xed at false� or �xed at true if

they are negated� Any literals left in a unit clause can be �xed at true �or false

if they are negated� to make the clause true� If not� then unsat would increase

to a value greater than ub� After unit clause tracking� we update the value for

ub�

After unit clause tracking� we perform monotone variable �xing� A

monotone variable is one which appears negated or posited in every occurrence�

If xi is monotone and posited in every occurrence� then set xi to true and remove

all clauses containing xi� If xi is monotone and negated in every occurrence�

then set xi to false and remove all clauses containing xi� Exit the routine when

there are no more monotone variables�

If unsat � ub then we must continue processing by adding another

logical variable to the current partial solution� Since this variable must be tried

at both true and false� this creates two new subproblems� which we refer to

as �branching�� The algorithm executes this branching by �rst selecting the

clauses with the smallest number of un�xed literals and then by selecting the

un�xed variable which appears in the largest number of these clause� We then

continue to the next iteration of the algorithm�

��� Parallel MAX�SAT Algorithm

This parallel MAX	SAT code uses the �master	slave� paradigm� The

basic algorithm that is used is the two phase Davis	Putnam	Loveland algo

rithm �dpl� �
�� which was described earlier in Section ���� A brief sketch of

�

Step � Spawn slave tasks
Step � Send the following to the slaves�

number of variables
number of clauses
an array with the problem

Step � Receive best num sat� from the slaves� GSAT routine
Step � Send slaves the following�

a set of six variables occurring in the most clauses
the best of the GSAT solutions

Step
 Loop until all subproblems have been sent out�
receive the following information from a slave�

number of clauses left unsatis�ed in an optimal solution
number of branches performed by the subproblem

send a new subproblem to the slave
Step � Wait for the slaves to send information about all outstanding subproblems
Step � Process the last information about subproblems received from the slaves
Step � Send exiting signal to the slaves
Step � Print out results and quit

Table ���� Outline of the �master� algorithm

the master and slave �modules� are listed in Tables ��� and ��� respectively�

This code is run in a parallel environment� called PVM� Researchers

in conjunction with Oak Ridge National Laboratories developed PVM� or Par

allel Virtual Machine ���� PVM allows a diverse collection of machines to sim

ulate the parallel environment� The machines appear as one large distributed	

memory computer� PVM supplies routines that allow function tasks to start

up other tasks and to communicate with one another� Applications can be

parallelized by using the message passing constructs which are similar to those

in most distributed	memory machines ����

��

Step � Start up the slave task
Step � Receive information from the master

number of clauses
number of variables
an array with the problem

Step � Read the array into the structure used for solving problems
Step � Run the GSAT routine and report �ndings
Step
 Run dpl on an initial subproblem and report �ndings to the master
Step � Loop until told to stop by the master

Receive a new subproblem
Run dpl and report �ndings to master

Step � Exit the parallel environment

Table ���� Outline of the �slave� algorithm

In the master program� slaves are spawned in the PVM environment�

Initial information like the number of clauses� the number of variables� and an

array with the problem are reported to the slave processes� The slaves then run

the GSAT heuristic� When the slaves are done with their GSAT computations�

the master combines the knowledge received and sends the slaves the best

number of clauses satis�ed as well as a list of n variables� which will be used in

the Davis	Putnam	Loveland routine� The n variables chosen are those which

occur in the largest number of clauses� These n variables allow the problem to

be split into �n subproblems�

Now we enter a loop where we receive results from the slaves com

putations and assign new subproblems to slaves until all �n subproblems have

been assigned� Subproblems are assigned to slaves that have completed their

current subproblem and have reported their information �number of unsatis�ed

clauses and number of branches traversed� to the master process� When all �n

��

subproblems have been assigned� the master waits for the slaves to �nish their

last subproblem� collects the information �number of unsatis�ed clauses and

number of branches traversed� when they are done� and sends them a termi

nating signal� After all information is collected� the master makes the �nal

calculations� and then quits�

The slave process receives start up information from the master and

becomes part of the parallel virtual machine environment� The slave receives

the number of clauses� the number of variables� and an array containing the

problem from the master� The slave then reads the problem into the structures

used in the algorithm�

After reading in the problem� the algorithm performs the GSAT

heuristic as described earlier in Section ���� The best solution obtained from

GSAT is relayed to the master who in turn sends information used in the

Davis	Putnam	Loveland �dpl� routine� such such as the best number of clauses

satis�ed and the set of n variables which are chosen by the master�

To begin the algorithm� the master sends a signal to the slave� This

signals either more work or completion of work �termination�� If the signal

is for termination� the slave exits the PVM environment� If the signal is for

more work� the slave enters into a loop� Inside the loop� the slave requests

and receives a new subproblem chosen by the master process� The slave sets

up this new subproblem by setting the appropriate variables and performs

the Davis	Putnam	Loveland routine� When it is done� it reports the number

of unsatis�ed clauses in the best solution as well as the number of branches

traversed to the master� It then receives a new signal� The loop continues

��

receiving new subproblems and solving them until the slave receives a signal of

termination� At this point� the slave exits the PVM environment�

This algorithm runs in exponential time as per the number of variables

speci�ed� In the worst case� �num vars branches will be searched�

Chapter 	

Experimental Results and Discussion

In this section� we compare the parallel MAX	SAT algorithm de

scribed in Chapter � and a sequential Davis	Putnam	Loveland algorithm�

which was described in Section ���� Both algorithms were written in C� The

parallel code was run on a collection of seven ���DX�"�� PC�s under LINUX�

connected in a LAN via ethernet� PVM was used to create links between the

seven machines� thereby creating the virtual parallel environment� The code

was tested on both random and benchmark problems� The time reported is

elapsed time in seconds� We use elapsed time� because the code runs ���

e�ciently on the PC machines� For the parallel code� we use n � ��

�� Random Problems

We are interested in solving MAX	�	SAT and MAX	�	SAT prob

lems� According to Crawford and Auton ���� ���� a ratio of � variable to ���
�

clauses will produce hard MAX	�	SAT problems� A MAX	SAT problem be

comes di�cult when it has many unsatis�able clauses� By hard maximum sat

is�ability problems� we mean that if the ratio of clauses to variables is smaller

than ���
� for MAX	�	SAT problems then the problem is likely to be sat

is�ed� If the ratio is larger than ���
� for MAX	�	SAT� then the problem is

almost certainly unsatis�able� For this paper� we wish to create hard maximum

��

��

satis�ability problems� So� we will use ratios of � variable to � clauses and �

variable to ��
 clauses for the MAX	�	SAT problems� And we will use ratios of

� variable to
 clauses and � variable to
�
 clauses for MAX	�	SAT problems�

We will set the number of variables to �
 and ���� With these above factors

a �� factorial design will be performed for both the MAX	�	SAT problems

and MAX	�	SAT problems with e�ciency being used as the response� We

are interested in determining what factors a�ect the e�ciency of the parallel

algorithm�

Lists of the random MAX	�	SAT and MAX	�	SAT problems and

their characteristics are given in Tables ��� and ����

���� Speedup and E�ciency

Computational results for the random MAX	�	SAT and MAX	�	

SAT problems are given in Tables ��� and ����

The �� factorial design for MAX	�	SAT problems was computed at

a �
� con�dence level� and the following results were obtained� The e�ect for

the number of variables was ������
 � ����
���� The e�ect for the ratio of

variables to clauses was ������
 � ��������� And the two	way interaction was

������
 � ��������� Because the �rst con�dence interval does not include ��

we conclude that the number of variables is signi�cant� Thus� e�ciency tends

to increase as the number of variables is increased� However� since the e�ect for

the ratio of variables to clauses and the two	way interaction con�dence intervals

included �� we can draw no conclusions about either of the two e�ects�

The �� factorial design for MAX	�	SAT problems was computed at

��

Problem Variables Clauses Optimal Solution

rand�
� �
no
� �
 �
� �
rand�
� �
no
� �
 �
� �
rand�
� �
no
� �
 �
� �
rand�
� �
no
� �
 �
� �
rand�
� �
no

 �
 �
� �
rand�
� ��

no
� �
 ��� �
rand�
� ��

no
� �
 ���

rand�
� ��

no
� �
 ��� �
rand�
� ��

no
� �
 ��� �
rand�
� ��

no

 �
 ��� �
rand�
� �
no
� ��� ��� �
rand�
� �
no
� ��� ��� �
rand�
� �
no
� ��� ��� �
rand�
� �
no
� ��� ���

rand�
� �
no

 ��� ��� �
rand�
� ��

no
� ��� �
� ��
rand�
� ��

no
� ��� �
� �
rand�
� ��

no
� ��� �
� ��
rand�
� ��

no
� ��� �
� ��
rand�
� ��

no

 ��� �
� ��

Table ���� Characteristics of random MAX	�	SAT problems

��

Problem Variables Clauses Optimal Solution

rand�
�

no
� �
 ��
 �
rand�
�

no
� �
 ��
 �
rand�
�

no
� �
 ��
 �
rand�
�

no
� �
 ��
 �
rand�
�

no

 �
 ��
 �
rand�
�
�

no
� �
 ��� �
rand�
�
�

no
� �
 ���

rand�
�
�

no
� �
 ��� �
rand�
�
�

no
� �
 ��� �
rand�
�
�

no

 �
 ��� �
rand�
�

no
� ���
�� �
rand�
�

no
� ���
�� �
rand�
�

no
� ���
�� �
rand�
�

no
� ���
�� �
rand�
�

no

 ���
�� �
rand�
�
�

no
� ���

� �
rand�
�
�

no
� ���

� �
rand�
�
�

no
� ���

� �
rand�
�
�

no
� ���

� �
rand�
�
�

no

 ���

�

Table ���� Characteristics of random MAX	�	SAT problems

��

Problem parallel sequential
time �sec�� branches time �sec�� branches E�ciency

rand�
� �
no
� � ��� � ��
 �����
rand�
� �
no
� � � � � ���
�
rand�
� �
no
�
 ���� � ��� �����
rand�
� �
no
� �� ������ �
 ����� �����
rand�
� �
no

 ��
� � ��
� �����
rand�
� ��

no
� �� ��
��� ��� ���
�
 ����

rand�
� ��

no
�
 ���� � ���� �����
rand�
� ��

no
� � ����� �
 ��
�� ���
�
rand�
� ��

no
�
 ��
�� � ���� ���
�
rand�
� ��

no

 �
���� �� ����� �����
rand�
� �
no
� � ����� � ���� �����
rand�
� �
no
� � ���� � ���� �����
rand�
� �
no
� �

����� ��� �
���� �����
rand�
� �
no
� �� ����� �� ����� �����
rand�
� �
no

 � ����� � ���� �����
rand�
� ��

no
� ��
� ������� ���� �
����� �����
rand�
� ��

no
� � ���� � ���
 �����
rand�
� ��

no
� ��� �
����� ���� ��
���� �����
rand�
� ��

no
� ���� ���
��
� ����
 ��
����� ����

rand�
� ��

no

 �
��
������� �
�
� ����
�
� �����

Table ���� Computational Results for random MAX	�	SAT problems

��

Problem parallel sequential E�ciency
time �sec�� branches time �sec�� branches

rand�
�

no
��cnf �
�
 �� �����
rand�
�

no
��cnf � ��
� � ���� �����
rand�
�

no
��cnf � ���� � ���� �����
rand�
�

no
��cnf � ���
 � ���� �����
rand�
�

no

�cnf � ����
 ��� �����
rand�
� �
no
��cnf �� ������ ��� ������ ���
�
rand�
� �
no
��cnf �� ������ ���
�
��� �����
rand�
� �
no
��cnf �� ������ ��� �
���
 �����
rand�
� �
no
��cnf �� ������ �� ����� ��
�
rand�
� �
no

�cnf �� ������ ��� ������ ��
��
rand�
�

no
��cnf � ���
 �� ���
 ����

rand�
�

no
��cnf � ���� �� ���� ����

rand�
�

no
��cnf �� �

�� �� ����� �����
rand�
�

no
��cnf � ���
 �� ���� �����
rand�
�

no

�cnf �� ����� �� ����� ��
��
rand�
� �
no
��cnf ��� ������ ���
����� �����
rand�
� �
no
��cnf ����� ��
������ ����� ��������� ��
��
rand�
� �
no
��cnf ��� ������ ��� ������ ���
�
rand�
� �
no
��cnf �
� ���
�� ��� ���
�� �����
rand�
� �
no

�cnf ���� ������� ���� ������� ���
�

Table ���� Computational Results for random MAX	�	SAT problems

�

a �
� con�dence level� and the following results were obtained� The e�ect for

the number of variables was ������
 � ��������� The e�ect for the ratio of

variables to clauses was
������
 � ������� And the two	way interaction was

���
��
 � �����
��� Because the con�dence interval for the ratio of variables

to clauses included �� we can draw no conclusions about this e�ect� Because

the con�dence intervals of the other two e�ects do not include �� we conclude

that the number of variables and the two	way interaction are both signi�cant�

Thus� e�ciency tends to decrease as the number of variables and the ratio of

variables to clauses are increased simultaneously� However� e�ciency tends to

increase as the number of variables alone increases�

We are not con�dent that these �
� con�dence intervals are very ac

curate� considering that only �ve replications were made at each design point�

Also� the e�ciency values over the �ve replications seem to be more expo

nentially distributed than normally distributed� For better accuracy in both

e�ciency and the factorial design� �
 	 �
 more replications should be run for

each design point�

�� Benchmarks

The benchmark problems were chosen so that there would be a diverse

set of structured problems which are unsatis�able� The characteristics of the

benchmark problems used can be found in Table ��
� The benchmark problems

are structured problems from real applications� These problems come from

DIMACS� The SSA problem is an instance from circuit fault analysis� The

dubois problems are instances from the gensathard�c code� The jnh problems

are a set of random instances generated to be di�cult by rejecting unit clauses

��

Problem Variables Clauses Optimal Solution

aim
���
� �
no
� ��� ��� �
aim
���
� �
no
� ��� ��� �
dubois�� �� ��� �
dubois�� �� ��� �
dubois�� �� ��� �
dubois�� �� ��� �
hole� �� ��� �
hole� �� ��
 �
hole�� ���
�� �
jnh�� ��� �
� �
jnh�� ��� �
� �
jnh��� ��� ��� �
jnh��� ��� ��� �
jnh��� ��� ��� �
jnh��� ��� ��� �
ssa����
��� ��
 ���� �

Table ��
� Characteristics of MAX	SAT benchmark problems

and setting the density to a hard value� The hole problems are instances of the

pigeon hole problem� And lastly� the aim problems are arti�cially generated

�	SAT instances�

���� Speedup and E�ciency

Computational results for the benchmark problems can be found in

Table ���� Looking at the e�ciency ratings� we observe that the parallel code is

not ���� e�cient in all but one instance� The e�ciency uctuated from ��� �

to ��
�� There seems to be a trend in terms of e�ciency between the di�erent

classes of problems� For example� the dubois problems all had an e�ciency

��

Problem parallel sequential
time �sec�� branches time �sec�� branches E�ciency

aim
���
� �
no
� ��� ��������
��� �������� �����
aim
���
� �
no
� �
�
�
���� ���� �����
� ���

dubois�� �� ���
��� �
� �����

 ��
��
dubois��
�� �
��
��� ��
� �������� ��
��
dubois�� �

� ������
�� ����� ��������� ��
�

dubois�� ���� ����
���� ����� �����
�
� ��

�
hole� �
��
� �
 ����� �����
hole� �� �
���� ��� ������ �����
hole��
�� ���
��� ��
� ������� �����
jnh�� � ���� �� ��� ����

jnh�� �� ���� ��
�� ���
�
jnh��� � �� � �� �����
jnh��� � �� �� ��� �����
jnh��� �� ������ ��� ���

 �����
jnh��� ��
���� �� ����
 �����
ssa����
��� ��� �
��� ��
�� ���
� �����

Table ���� Computational Results for MAX	SAT benchmark problems

of about

�� while the jnh problems had an e�ciency closer to ���� This

di�erence could be a result of the di�erence in the types of problems and their

structure�

Chapter

Conclusions and Future Work

The e�ciency for most problems was between �
� and �
�� There

are several possible reasons for this lack of e�ciency� One reason would be that

the harder subproblems are solved late in the algorithm process� This would

cause one or two processors to run for a long time while other processors were

idle� It is also possible that the choice of six variables should have been dynamic

rather than restricted� as it was� to a selection of those six variables which

occurred in the most clauses� This selective choice of variables results in the

number of branches searched by the parallel algorithm exceeding the number

searched by the sequential algorithm� A good example of this is dubois��� The

parallel code took ����������� branches while the sequential code took only

����������� branches�

E�ciency of the smaller random problems was between
� and ����

as opposed to �
� $ �
� for larger random problems� This was expected

because of the loss in e�ciency due to communications overhead and the fact

that the sequential code is as fast as it is�

One thing should be noted about every problems that was run� GSAT

obtained the optimal solution�

Future work should include more work in the load balancing portion of

the algorithm� In particular� it should include dynamic load balancing instead

��

��

of static load balancing� By this I mean that the master program should

begin by running a part of the sequential algorithm� in order to generate some

subproblems� When enough subproblems have been generated� the master

sends the subproblems to the slaves to be solved� When a slaves has competed

its work� the master should query the slaves and �nd out how much work each

has� Then� the master will take work from one or more of the slaves and give

that work the the slave who is �nished�

References

��� J� Beasley� K� Dowsland� F� Glover� M� Laguna� C� Peterson� C� Reeves�

and B� Soderberg� Modern Heuristic Techniques for Combinatorial Prob�

lems� Halsted Press� New York� �����

��� A� Beist� A� Beguelin� J� Dongarra� W� Jiang� R� Manchek� and V� Sun

deram� PVM� Parallel Virtual Machine� A Users� Guide and Tutorial

for Networked Parallel Computing� The MIT Press� Cambridge� Mas

sachusetts� �����

��� C� E� Blair� R� G� Jeroslow� and J� K� Lowe� Some Results and Exper

iments in Programming Techniques for Propositional Logic� Computers

and Operations Research� ���
�����	��
� �����

��� M� B!ohm and E� Speckenmeyer� A Fast Parallel SAT
Solver$E�cient

Workload Balancing� Annals of Mathematics and Arti�cial Intelligence�

���
�

�
� Brian Borchers and Judith Furman� A two
phase exact algorithm for

MAX	SAT and weighted MAX	SAT Problems� Submitted to Journal of

Combinatorial Optimization� �����

��� Brian Borchers� Steven W� Joy� and John E� Mitchell� A Branch and Cut

Algorithm for MAX	SAT and Weighted MAX	SAT� To Appear in Pro�

ceedings of The DIMACS Workshop on the Satis�ability Problem� Theory

and Practice� �����

��

��� M� Buro and H�K Buning� Report on a SAT Competition� EATCS Bul�

letin� ������	�
�� �����

��� Wen
Tsuen Chen and Lung
Lung Liu� A Parallel Approach for Theorem

Proving in Propositional Logic� Information Sciences� �����	��� �����

��� J� Cheriyan� W� H� Cunningham� L� Tun%cel� and Y� Wang� A Linear

Programming and Rounding Approach to MAX �
SAT� In Second DI�

MACS Implementation Challenge� Cliques� Coloring� and Satis�ability�

D	 S	 Johnson and M	 A	 Trick
eds�� DIMACS Series in Discrete Math�

ematics and Theoretical Computer Science� AMS� �

�� �����

���� J�M� Crawford and L�D� Auton� Experimental Results on the Crossover

Point in Satis�ability Problems� AAAI�
�� pages ��	��� �����

���� J�M� Crawford and L�D� Auton� Experimental Results on the Crossover

Point in Random �SAT� Arti�cial Intelligence� ����"������ March �����

���� M� Davis and H� Putnam� A Computing Procedure for Quanti�cation

Theory� Journal of the ACM� �����	��
� �����

���� J� Eckstein� Parallel Branch and Bound Algorithms for General Mixed In

teger Programming on the CM	
� Technical Report TMC
�
�� Thinking

Machines Corporation� ��
 First Street� Cambridge� MA� ������ Septem

ber �����

���� G� Gallo and G� Urbani� Algorithms for Testing the Satis�ability of Propo

sitional Formulae� Journal of Logic Programming� ���
	��� �����

��

��
� Michael R� Garey and David S� Johnson� Computers and Intractability� A

Guide to the Theory of NP�Completeness� W� H� Freeman and Company�

New York� �����

���� B� Gendron and T�G� Crainic� Parallel Branch and Bound Algorithms�

Survey and Synthesis� Operations Research� �������	����� �����

���� Michel X� Goemans and David P� Williamson� Improved Approximations

Algorithms for Maximum Cut and Satis�ability Problems Using Semidef

inite Programming� Journal of the ACM� ������
	���
� ���
�

���� A� Grama and V� Kumar� Parallel Search Algorithms for Discrete Op

timization Problems� ORSA Journal on Computing� �������
	��
� Fall

���
�

���� J� Gu� Parallel Algorithms for Satis�ability Problem� In Dimacs Series

in Discrete Mathematics and Theoretical Computer Science� volume ���

pages ��
	���� ���
�

���� P� Hansen and B� Jaumard� Algorithms for the Maximum Satis�ability

Problem� Computing� ������	���� �����

���� F� Harche� J�N� Hooker� and G�L� Thompson� A Computational Study

of Satis�ability Algorithms for Propositional Logic� ORSA Journal on

Computing� ��������	��
� Fall �����

���� J� N� Hooker� A Quantitive Approach to Logical Inference� Decision

Support Systems� ���
	��� �����

��

���� J� N� Hooker� Resolution vs� Cutting Plane Solution of Inference Problems�

Some Computational Experience� Operations Research Letters� ������	��

�����

���� J�N� Hooker� Solving the Incremental Satis�ability Problem� Journal of

Logic Programming� �
����	���� �����

��
� Yuejun Jiang� Henry Kautz� and Bart Selman� Solving Problems with

Hard and Soft Constraints Using a Stochastic Algorithm for MAX	SAT�

Presented at the �st International Joint Workshop on Ariti�cial Intelli

gence and Operations Research� June ���
�

���� D� Loveland� Automated Theorem�Proving� A Logical Basis� North Hol

land� New York� �����

���� C� H� Papadimitriou and M� Yannakakis� Optimization� Approximation�

and Complexity Classes� Journal of Computers and System Sciences�

�����
	���� �����

���� Mauricio G� C� Resende and Thomas A� Feo� A GRASP for Satis�ability�

To appear in �Cliques� Coloring� and Satis�ability� Second DIMACS Im

plementation Challenge�� David S� Johnson and Michael A� Trick �eds���

DIMACS Series in Discrete Mathematics and Theoretical Computer Sci

ence� ���
�

���� J�A� Robinson� A Machine
Oriented Logic Based on the Resolution Prin

ciple� Journal of the Association for Computing Machinery� ��������	���

January ���
�

��

���� B� Selman and H� Kautz� Domain
Independant Extensions to GSAT� Solv

ing Large Structured Satis�ability Problems� In Proceedings of IJCAI�

Murray Hill� NJ ������ �����

���� B� Selman� H�A� Kautz� and B� Cohen� Local Search Strategies for Satis�

ability Testing� DRAFT of paper presented at Second DIMACS Challenge

Workshop on Cliques� Coloring� and Satis�ability� Rutgers University� Oc

tober �����

���� B� Selman� H� Levesque� and D� Mitchell� A New Method for Solving Hard

Satis�ability Problems� In Proceedings of the Tenth National Conference

on Arti�cial Intelligence
AAAI�
��� San Jose� CA� pages ���	���� July

�����

���� Bart Selman and Henry A� Kautz� An Empirical Study of Greedy Local

Search for Satis�ability Testing� In Proceedings of the Eleventh National

Conference on Arti�cial Intelligence
AAAI�
��� Washington� DC� pages

��	
�� �����

��

This thesis is accepted on behalf of the faculty of the Institute by the following

committee�

Advisor

Date

