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ABSTRACT

We present an algorithm that exploits symmetry in graphs to improve

search for maximum independent sets. In particular, we expedite search on

graphs arising from coding theory by search tree pruning in a branch and

bound algorithm.

In the context of coding theory, graphs are constructed relative to

some pre-specified error such that independent sets correspond to error-correcting

codes. Accordingly, optimal codes correspond exactly to maximum indepen-

dent sets. We present computational results for two specific types of coding

errors. In each case we are able to demonstrate for the first time that the best

known solution is in fact the best possible solution.

We also extend our method to arbitrary graphs by using a fast heuris-

tic program for identifying graph automorphisms. This combination of sym-

metry breaking and heuristic symmetry identification represents advantageous

cooperation between exhaustive search and a heuristic method.



ACKNOWLEDGMENT

I would like to thank my advisor Brian Borchers who has tried his

hardest to make some kind of mathematician out of me.

Similarly, I must thank Oleg Makhnin for his valuable instruction and

good humor.

I express my gratitude to Drs. Bill Stone and Bixiang Wang for sitting

on my thesis committee.

I would like to thank Danielle and Christian Lucero for adopting me

here in Socorro and making sure I was well taken care of.

Likewise I thank Norelle “Norul” Shlanta for keeping me fed and

making sure I didn’t procrastinate too badly with my course work.

Also thanks to Aaron Wilson for being willing to argue with me,

although I suspect he couldn’t not have.

Most of all, thanks to my partner Shira Katseff, for everything.

This thesis was typeset with LATEX1 by the author.

1 LATEX document preparation system was developed by Leslie Lamport as a special
version of Donald Knuth’s TEX program for computer typesetting. TEX is a trademark of
the American Mathematical Society. The LATEX macro package for the New Mexico Institute
of Mining and Technology thesis format was adapted from Gerald Arnold’s modification of
the LATEX macro package for The University of Texas at Austin by Khe-Sing The.

ii



TABLE OF CONTENTS

LIST OF FIGURES iv

1. PRELIMINARIES 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Definitions From Graph Theory . . . . . . . . . . . . . . . . . . 1

1.3 Branch-and-Bound for MIS . . . . . . . . . . . . . . . . . . . . 3

1.4 The Lovasz ϑ Bound . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Error-correcting Codes . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Augmenting Branch-and-Bound with Additional Information . . 17

2. EXPLOITING SYMMETRY TO SOLVE SLOANE’S MIS CHAL-

LENGE GRAPHS 20

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Symmetry in 1et and 1tc Error Graphs . . . . . . . . . . . . . . 24

2.3 Computational Results . . . . . . . . . . . . . . . . . . . . . . . 27

3. APPLICATIONS TO ARBITRARY GRAPHS 33

3.1 Finding Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . 33

4. Conclusions 39

Bibliography 41

iii



LIST OF FIGURES

1.1 Example of an undirected graph. . . . . . . . . . . . . . . . . . 4

1.2 Branch-and-Bound binary search tree . . . . . . . . . . . . . . 5

1.3 Graph for branch-and-bound example. . . . . . . . . . . . . . . 7

1.4 Branch-and-Bound Example . . . . . . . . . . . . . . . . . . . . 9

1.5 The 1tc confusion graph for n = 4. . . . . . . . . . . . . . . . . 15

1.6 The 1et confusion graph for n = 4. . . . . . . . . . . . . . . . . 16

1.7 Checking for nodes with neighborhoods that are cliques. . . . . 19

2.1 Branch-and-bound example graph revisted. . . . . . . . . . . . . 21

2.2 Example graph revisited to illustrate orbits and symmetry. . . . 22

2.3 Branch-and-Bound Example With Symmetry Breaking and Con-

straint Propagation . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Factor of Savings From Identifying Symmetry . . . . . . . . . . 30

2.5 Computational Results for 1tc.2048 and 1et.2048 . . . . . . . . 31

iv



This thesis is accepted on behalf of the faculty of the Institute by the following

committee:

Brian Borchers, Advisor

Paul Richard Hahn Date



CHAPTER 1

PRELIMINARIES

1.1 Introduction

The principles behind the symmetry-exploiting branch-and-bound al-

gorithm presented in this thesis are quite straightforward. That said, fully

appreciating the details of the algorithm – what it achieves and how – involves

bringing together elements from various corners of mathematics that many

readers will not have had occasion to visit recently. With this in mind, we

begin with a not insignificant “preliminaries” section devoted to bringing the

reader up to speed on the ideas and notation that will be necessary in explain-

ing what new contributions the present manuscript offers. Subsequent sections

are then devoted to detailing these contributions.

1.2 Definitions From Graph Theory

In what follows, the combinatorial objects of primary interest will be

undirected graphs. Recall that an undirected graph is given by the ordered pair

(V , E), where V is a finite set of vertices and E is a set of edges consisting of

two-element subsets of V [7]. In what follows we will denote an edge using the

notation (x, y) to mean {x, y} ⊆ E .

Relative to some graph G = (V , E) we have the following definitions.

Definition 1.1. An independent set is a subset I ⊆ V such that (x, y) /∈ E

1
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for every x, y ∈ I.

Definition 1.2. A maximal independent set is an independent set I such

that for every x ∈ V − I, I ∪ {x} is not an independent set. In other words,

a maximal independent set is an independent set that cannot be enlarged by

adding another vertex from V.

Definition 1.3. A maximum independent set (MIS) is an independent set

M such that |M | ≥ |I| for every independent set I on G, where |· | denotes set

cardinality.

We take particular note of two facts. First, for any given graph there

may be many maximal independent sets with cardinality strictly less than that

of a maximum independent set. Second, there may also be more than one

maximum independent set, though by definition all will have the same cardi-

nality. Indeed, these two facts contribute to the difficulty of finding maximum

independent sets.

Formally we can characterize the difficulty of this problem in the lan-

guage of computational complexity as discussed in [4, 11]. In particular we can

look at the recognition problem associated with finding maximum independent

sets:

Given a graph G = (V , E) and an integer k, does G have an

independent set of size k?

For arbitrary k and G this problem has no known polynomial-time algorithm, an

algorithm which runs in O(|V|c) time for some fixed c. Exhaustive search would
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of course yield our answer, but such a process clearly takes time exponential

in the number of vertices. In fact, this problem is known to be NP -complete,

meaning that there can only be a polynomial time algorithm for its solution in

the unlikely event that P = NP [4, 11]. Of course, this is one of the outstanding

problems of contemporary mathematics. For all practical purposes, the MIS

recognition problem takes a great deal of time to solve with certainty.

This caveat “with certainty” bears emphasis. For, on the one hand,

there are fast procedures or heuristics for finding large maximal independent

sets [6]. On the other hand, while oftentimes it turns out that these sets are

also maximum independent sets, proving the matter requires significantly more

time.

In the next section we consider a class of algorithms that tries to

capitalize on the efficiency of heuristics in an effort to speed up the process of

exhaustive search.

1.3 Branch-and-Bound for MIS

Consider some fixed enumeration of V , (v1, v2, v3, ...vm), where m =

|V|. We define an assignment on this ordered set as follows.

Definition 1.4. Given a graph G = (V , E), an assignment is a partition of

V into two non-intersecting subsets, P0 and P1.

To each such assignment we may then correspond a bit string of length m, de-

noting set membership by 1’s and 0’s. We thus create a string x = x1x2x3...xm

with the property that xi = 0 if vi ∈ P0 and xi = 1 if vi ∈ P1. This correspon-

dence makes clear the exponential nature of our problem and provides a simple
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way to think about exhaustive search for maximum independent sets: we just

enumerate all possible x’s and check for those corresponding to the cases where

P1 is an independent set.

Next, we consider a search tree over all partial assignments.

Definition 1.5. Given a graph G = (V , E), a partial assignment is a parti-

tion of V into three non-intersecting subsets, P0 and P1 and U (for “unfixed”).

Such a tree has height m, with 2m+1 − 1 total nodes 1, and has a last

row containing all 2m assignments on V . In the following diagrams we provide

a simple example graph and the corresponding partial assignment binary tree.

v1 v2

v4 v3

Figure 1.1: Example of an undirected graph.

1The present manuscript adopts the convention that vertices of a branch and bound search
tree will be referred to as “nodes” to distinguish them from vertices of an arbitrary graph G.
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_   _   _   _ 
 v1 v2 v3 v4 

0 _ _ _ 1 _ _ _

00 _ _ 01 _ _ 10 _ _ 11 _ _

100 _ 101 _ 110 _ 111 _000 _ 001 _ 010 _ 011 _

1000 1001 1010 10110000 0001 0010 0011 0100 0101 0110 0111 1100 1101 1110 1111

Figure 1.2: Branch-and-Bound binary search tree

Full assignments which correspond to independent sets are noted as ovals; filled
ovals indicate those of maximum size. Boxed nodes represent partial assign-
ments whose ‘1’ elements already are not independent.

Given 1.2 this representation, branch-and-bound proceeds in two steps,

as the name suggests. Branching refers to navigating our search tree, moving

down one level to the next partial assignment. The bounding step refers to

somehow calculating a bound on the best solution given the partial solution

represented by the current node. If the bound is suboptimal relative to an

already known solution, we needn’t branch on this node; such nodes are said

to be fathomed. Likewise, we fathom nodes corresponding to infeasible partial

assignments.

Once every node has either been branched on or fathomed, we can

conclude our search. This process will either identify a maximum independent

set or else it will conclusively show that our previously known solution was

in fact optimal[11]. Additionally, it is possible to prove upper bounds on our

maximum independent sets by assuming a hypothetical solution of a given

size. Essentially this technique lies to the algorithm, claiming to have an initial

solution of some size. In this case, it is clear that the algorithm will not
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conclusively show that our previously known solution was optimal (since it

does not necessarily exist), but it does show that any possible solution is no

bigger than that value. This strategy corresponds to using branch-and-bound

to answer the MIS decision problem for a given value k.

Using branch-and-bound this way points up a general aspect of our

discussion so far, which is that the branch-and-bound is a family of algorithms;

particular implementations differ in terms of (a) the bounds they use, (b) what

order branching occurs (which can be different for different parts of the tree),

and/or (c)where our initial solution comes from.

The branch-and-bound algorithm used in the present research uses

previously known solutions given in [13], branches in a breadth-first man-

ner, and uses a semi-definite programming relaxation to calculate the upper-

bound[1, 2]. We describe the derivation of that bound in the following section.

First, we illustrate the above notation and algorithm by considering

the following example.

Let G = (V , E) with V = (v1, ..., v12) and

E = { (v1, v2), (v1, v8), (v1, v9),
(v2, v9), (v2, v10), (v2, v3),
(v3, v10), (v3, v4), (v4, v10),
(v4, v11), (v4, v5), (v5, v11),
(v5, v6), (v6, v11), (v6, v12),
(v6, v7), (v7, v12), (v7, v8),
(v8, v12), (v8, v9), (v9, v12),
(v9, v10), (v10, v11), (v11, v12) }

as illustrated in the following figure.
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v1
v2

v8

v9 v10

v3

v12 v11

v4

v5
v6

v7

Figure 1.3: Graph for branch-and-bound example.

We note for future reference the obvious symmetry in this example,

bilaterally both horizontally and vertically and through rotations of ninety

degrees (relative to picture above).

For use in the branch-and-bound algorithm, the set V is usually in-

dexed by an integer between one and |V|. Which number is assigned to which

vertex is arbitrary. In what follows, we use labels corresponding to the dia-

gram above. Similarly, the order in which we enumerate the vertices in our

algorithm is also arbitrary, and for this example we do so in ascending order.

For example, the partial assignment “010 - - - - - 00 - -” indicates that we

have set v2 into our independent set and excluded all of its neighbors, with the

membership status of the remaining vertices undetermined. Such representa-

tions of partial assignments are quite convenient and we will refer to them as

assignment strings. In such situations we say that {v1, v2, v3, v9, v10} are fixed

and the remaining vertices are unfixed. To utilize our previous notation, we

say that an assignment string has a 0 in position i if vertex vi ∈ P0, and a 1 if
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vi ∈ P1. We use a “-” to denote vi ∈ U (equivalently vi /∈ P0 ∪ P1) just as in

figure 1.2.

Our initial solution, determined by inspection, is {v1, v3, v5, v7}. Ac-

cordingly, when an upper bound is less than or equal to the size of this set

(4), we can fathom the corresponding node. For our bound, we rely on the

arithmetical observation that given a partial assignment, any independent set

“grown” from that assignment can never exceed the number of vertices already

in our independent set, plus the number of unassigned vertices. That is, the

expression |P1|+ |V − (P0 ∪ P1)| gives our bound 2.

We shall additionally augment the branch and bound process by au-

tomatically fixing to zero neighbors of vertices fixed at one; this is equivalent

to fathoming nodes corresponding to assignments that violate the definition of

an independent set (by including adjacent vertices). This procedure is referred

to as constraint propagation and ensures that we never bother branching on

partial assignments that are not independent sets. Such cases correspond to

the boxed partial assignments in figure 1.2.

The diagram on the following page illustrates the algorithm as it works

its way down the search tree. (We display only the left half of the tree here.)

At each step we present the bound and indicate fathomed nodes by grayed

boxes.

2Using this bound we can see that every branching step that sets the branched-upon vertex
out of the set will decrease by exactly one. Accordingly, we save a bit of computational effort
if we simply don’t branch in that direction (to the right in our figure) from nodes with a
bound of one greater than our known solution (in this particular case that number is 5).
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1.4 The Lovasz ϑ Bound

As mentioned, at each node in the search tree we must calculate an

upper bound on our MIS. The method by which we chose to do so derives

from a relaxation of the maximum independent set problem. By relaxation we

mean that we impose less restrictive constraints than are found in the actual

problem, which entails that any optimal solution to the “relaxed” problem is

at least as good as the optimal solution to the original problem.

To be specific, let x be the characteristic vector of an independent

set on graph G. That is, x is a 0-1 vector of length |V| such that xi = 1 if

and only if vertex i is in the independent set.3 Since x is 0-1, we have that∑
i xi = xT x, which equals the size of our independent set. We then consider

the matrix X = 1
xT x

xxT which simple computation can show has the following

properties.

i. tr(X) = 1

ii. X � 0

iii. Xi,j = 0 ∀(i, j) ∈ E

iv. tr(JX) = xT x where J is a matrix of all ones.

Here X � 0, read “X is positive semidefinite”, means that yT Xy ≥ 0 for all

real-valued vectors y not equal to the zero vector.

3In particular, this string is the same as the string described in our discussion of branch
and bound enumeration, only here we requiring that P1 be an independent set and we are
treating this string as a vector.
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Accordingly, if we drop the restriction that x ∈ {0, 1}|V| and that

X = 1
xT x

xxT we arrive at the following semidefinite programing relaxation.

max tr (JX) s.t.
tr(X) = 1

Xi,j = 0 ∀(i, j) ∈ E
X � 0

(1.1)

The upper bound arrived at by this optimization is called the Lovasz ϑ bound,

after the author of [8], where the properties of this bound were first explored.

There and in subsequent research many different, but ultimately equivalent,

formulations have been demonstrated [3, 5, 8, 9]. The particularly intuitive

formulation presented above suffices for our purposes and is, in fact, the very

one our branch-and-bound code utilizes.

We mention specifically that this bound is substantially stronger than

the naive bound featured in our previous example. On that same example,

using the Lovasz bound found the MIS in a single stage, at the root node.

1.5 Error-correcting Codes

In the present discussion a code word will be a bit string of some fixed

length. This restriction is justified since such a two-character alphabet is suffi-

cient to encode anything we might imagine, as modern computing technology

vividly demonstrates. Coding theory as an area of mathematical research is

motivated by the fact that when transmitting such code words, the bit string

that we send is not always the same as the bit string that is received at the

other end. The presence of such transmission errors naturally raises the ques-

tion of how we might correctly infer the true – sent – message from the received
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– possibly error-riddled – one.

To get a flavor for what this project entails, consider the naive scheme

of redundant coding. For every code word we desire to send, we send in-

stead the string that is repeated twice at each bit. For example 0010011 →

00001100001111. To see that this facilitates disambiguation, simply notice that

any time we receive a string containing a non-duplicated bit, we know imme-

diately that we must have experienced some kind of transmission error.

Of course, if we permit an unlimited number of errors of arbitrary

character, then any sent code word could be received on the other end as any

other code word. Instead, the theory of error correcting codes [14] considers

what kinds of coding schemes are most efficient at guarding against specific

sorts of errors. We can quantify efficiency by the number of code words of a

certain length necessary to allow errorless interpretation. This measure is ap-

propriate because the size of this set determines how compactly we can express

ourselves; literally it is the size of our code vocabulary.

For example, suppose the only error we encounter is that for a given

code word of length n we may have a single bit sent incorrectly – a 1 where a 0

ought to have been or vice versa. We can then ask ourselves “which subset(s)

of the 2n possible bit strings of length n can be used so as to prevent the

misinterpretation of messages?” For this particular error it can be seen that

limiting ourselves to strings with only even numbered adjacent bits (as in the

doubling scheme) prevents code word confusion, even if an error strikes. But

is this the best we can do? This question of code optimality is one we shall

return to shortly. First, we formalize the preceding discussion by introducing
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some notation.

We let r index a particular class of error and rn indicate that class

of errors over bit strings of length n. Let s be a bit string and let Tr(s)

be the set of bit strings that might be received if s was transmitted. For

example, if s = 01001 and r is the single-bit-missent error, then Tr(s) =

{01001, 11001, 00001, 01101, 01011, 01000}. (Also, we see that n = 5 in this

example.)

With this terminology in hand we can now define error-correcting

codes.

Definition 1.6. An error-correcting code Cr, relative to some error class

r, is a subset of {0, 1}n such that for every s, t ∈ Cr, Tr(s) ∩ Tr(t) = ∅.

Now it is easy to see that an optimal code is simply an error-correcting

code of maximum size. Such a formulation suggests a connection to maximum

independent sets. Indeed, the bridge between the two areas – error-correcting

code theory and graph theory – is the confusion graph which we now describe.

Definition 1.7. A confusion graph Gr, relative to error r, is an undirected

graph with 2n vertices such that (vi, vj) ∈ E if and only if T (s(vi))∩T (s(vj)) 6=

∅, where s(vi) is the code word (arbitrarily) associated with vertex vi.

From this definition, we can, on the one hand, construct the corre-

sponding confusion graph for any particular systematic error we wish to investi-

gate. On the other hand, we can see that any undirected graph on 2n vertices is

a confusion graph defining some error. This latter characterization emphasizes
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our earlier point about considering arbitrary errors: such a case corresponds to

a completely connected graph. Most importantly for our purposes, we have by

construction that optimal codes exactly corresponds to maximum independent

sets on the confusion graph denoted Grn .

Our focus at present is a collection of errors identified by Neil Sloane[13].

In particular we are interested in the so-called “1tc” and “1et” errors. These

errors can be described as follows.

Definition 1.8. A transposition error involves the transposition of any two

adjacent bits in a code word. We denote this class of errors by the tag “tc”.

By convention we place a numeral in front of our denoting tags to

indicate the number of such errors per code word that we permit; thus “1tc”

refers to the class of errors under which one such transposition is considered

per code word.

Definition 1.9. An end-around transposition error, or “et” error is a

transposition error where we additionally consider the first and last bits of a

codeword to be adjacent.

On the following pages we present the confusion graphs of 1tc and 1et

errors over code words of length four.
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0000

1111
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0100 0010

1000

1110

1101 1011

0111
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10010110

1010 1100

Figure 1.5: The 1tc confusion graph for n = 4.
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0000

1111
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0010

10001110
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0111
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1001 0110

1010

Figure 1.6: The 1et confusion graph for n = 4.
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We take special note of how these graphs can be decomposed into con-

nected components, subgraphs which are completely disjoint from one another.

In the following section we will see how this feature can be used to improve the

estimated size of our maximum independent set.

1.6 Augmenting Branch-and-Bound with Additional Information

Informally, one factor contributing to the difficulty of solving NP-

complete problems is their great generality. The well-known traveling sales-

man problem, for example, permits distance matrices of any character what-

ever. Similarly, the maximum independent set problem is defined over arbitrary

graphs. Intuitively, this openness entails that for any given algorithm, perhaps

it is possible to dream up an instance of your problem that foils it.

This way of looking at the matter suggests that the more additional

information we have about any given problem instance, the better shot we have

of solving it efficiently. Indeed, restrictions of NP-complete problems are some-

times markedly easier than their more general cousins. For example, while the

satisfiability problem for Boolean formulas in disjunctive normal form is NP-

complete, the restricted problem concerning just those formulas having exactly

two variables per clause (the 2-SAT problem) can be solved in polynomial time

[4].

This idea can be taken further still if we consider applying the prin-

ciple to all of the sub-problems that one might need to solve in the course

of solving a particular larger problem. Of course, we specifically are thinking

of branch-and-bound here. In this context, including additional information



18

can be seen as restrictions on the feasible region over which we are searching.

Explicitly adding these constraints at each iteration yields a general approach

called branch-and-cut. The “cut” here refers to the region of the solution space

that we lopped off by including an additional constraint.

In our branch-and-bound code we make two problem-specific obser-

vations that we use to augment our search.

Firstly, we handle connected components of our graphs separately.

By this we mean that rather than formulating our Lovasz bound over the

entire graph, we do so with respect to the isolated subgraphs. This decision

clearly does not affect the outcome of our answer; however, we do benefit in the

following way. Consider a graph with two connected components, and suppose

that the Lovasz bound for each of them in isolation is 15.7 and 4.4 respectively.

Determining this bound jointly we would calculate an upper bound of 20.1 on

the size of our maximum independent set. Since a non-integer independent

set is absurd, we say that our maximum independent set is no larger than

20. But is this all we can say? By looking at the connected components

individually, we notice that a bound of 15.7 for the first component means, by

similar reasoning, that our bound is actually 15. Likewise, we can read our 4.4

bound as simply 4. Combining these results after rounding them individually

to the next lowest integer gives us a bound improved by one. Since, as we will

see later, strengthening our bound by even one vertex can take hundreds of

hours of computation, we welcome this improvement.

Secondly, we consider the case where all of a vertex’s neighbors are

connected to one another – that is, where the neighborhood of a vertex is a
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clique. This situation is indicated in the illustration below.

1

2

3

4 G

G

G

Figure 1.7: Checking for nodes with neighborhoods that are cliques.
Node 1 in this example is connected to the clique comprised of vertices 2, 3
and 4 which are themselves then attached the the larger graph. We infer that
vertex 1 can safely be included in our maximal independent set.

We note that if a vertex has this property and is not in our indepen-

dent set, then some member of its neighborhood must be. But if one member

of its neighborhood is in the set, the rest must not be, in addition to how-

ever many vertices are in that vertex’s neighborhood. On the other hand, if

our original vertex is in our independent set, then none of its neighbors can

be, but our restrictions end there. That is, we have at least as many vertices

in our independent set if we go ahead and automatically add vertices whose

neighborhoods are cliques. Accordingly, we check for this property at each

step.

In the next section we will see yet another kind of augmenting obser-

vation, which constitutes the subject of this thesis.



CHAPTER 2

EXPLOITING SYMMETRY TO SOLVE SLOANE’S
MIS CHALLENGE GRAPHS

2.1 Introduction

The key to our algorithm springs from the following definition of

symmetry for an undirected graph.

Definition 2.1. An automorphism of the graph G is an edge-preserving per-

mutation π of the vertices V of G; i.e. (vi, vj) ∈ E if and only if

(π(vi), π(vj)) ∈ E.

That is, π is a one-to-one and onto mapping π : V → V that leaves

the graph unchanged except for the labels, or names, of the vertices. In terms

of our earlier example we see that

π : V → V = {
v1 → v7

v2 → v6

v3 → v5

v4 → v4

v5 → v3

v6 → v2

v7 → v1

v8 → v8

v9 → v12

v10 → v11

v11 → v10

v12 → v9

}

20
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v1
v2

v8

v9 v10

v3

v12 v11

v4

v5
v6

v7

Figure 2.1: Branch-and-bound example graph revisted.

is an edge preserving permutation (one of many in this example). Before con-

tinuing, the following definition will prove useful.

Definition 2.2. Given a graph G = (V , E) and an automorphism π on G, an

orbit is a sequence of vertices that map into each other one after another under

iterations of π.

In the general group theoretic definition of an orbit, π can be any

group acting on an arbitrary set S. The orbit of a given element s ∈ S is then

the set of all elements to which s can be moved by elements of π.

With a particular automorphism π identified, we can make the fol-

lowing simple observation: given an orbit under our automorphism, we needn’t

consider assignments on the vertices in this orbit that are indistinguishable

from assignments that have already been considered. That is, for any indepen-

dent set I, we also have an independent set π(I). Since I and π(I) clearly have
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the same size, if our only concern is the size of the maximal independent set,

we need not consider both of them.

This observation becomes particularly useful in the context of branch-

and-bound, if we let our automorphism π act on partial assignments. A small

example should help fix this idea.

v1 v2

v4 v3

Figure 2.2: Example graph revisited to illustrate orbits and symmetry.

Consider the four-vertex graph shown above: V = {v1, v2, v3, v4},

E = {(v1, v2), (v1, v3), (v2, v4), (v3, v4)}. We note initially two orbits, each of

size two, corresponding to the automorphism

π : V → V = {
v1 → v2

v2 → v1

v3 → v4

v4 → v3

}.

Consider now the orbit (v1, v2). There are four possible assignments on this

orbit, corresponding to partial assignments on the graph of 00 - -, 11 - -, 10

- - and 01 - -. Thus we see that π(10 − −) = 01 − − and infer that in the
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course of our branch-and-bound process, it is unneccesary to check both of

these assignments.

As it turns out, we can extend this idea in two directions. Firstly we

would simply like to consider orbits of the largest size possible. Secondly, we

would like to iterate the process as much as possible. By this we mean that if a

partial assignment is unchanged by our symmetry, we want to go on to consider

yet another orbit. For example, in the little graph above the assignments 00 -

- and 11 - - are both preserved under our automorphism π. That is:

Definition 2.3. A partial assignment is compatible with an automorphism

π if we have that for all vi ∈ V, vi ∈ I if and only if π(vi) ∈ I and also vi ∈ U

if and only if π(vi) ∈ U .

Notice that since our enumeration for branch-and-bound (that is, the

ordering of our assignment string) is arbitrary, we can preferentially search

through partial assignments so as to deliberately encounter compatible partial

assignments.

Using these techniques it is possible to reduce the size of our search

tree during branch-and-bound. Presently we demonstrate by applying these

ideas to our earlier example. Notice in particular that we grow our tree in

increments equal to the size of our orbit. Let us call this number b, which in

our example is equal to 2. We note at this time that growing or navigating our

search tree in “chunks” like this is equivalent to searching only unique partial

assignments at level b in our full tree.

A quick comparison of the search trees should illustrate the improve-

ment; for parity we show only one half of the search tree as before.
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_ _ _ _ _ _ _ _ _ _ _ _ 
 9,12,10,11,1,7,2,6,3,5,8,4 

 Bound = 12

1 0 0 _ 0 _ 0 _ _ _ 0 _ 
 Bound = 7 ...

1 0 0 1 0 _ 0 0 _ 0 0 0 
 Bound = 4

1 0 0 0 0 _ 0 _ _ _ 0 _ 
 Bound = 6

1 0 0 0 0 1 0 0 _ _ 0 _ 
 Bound = 5

1 0 0 0 0 0 0 _ _ _ 0 _ 
 Bound = 5

1 0 0 0 0 0 0 1 _ 0 0 _ 
 Bound = 4

1 0 0 0 0 1 0 0 1 _ 0 0 
 Bound = 4

Figure 2.3: Branch-and-Bound Example With Symmetry Breaking and Con-
straint Propagation

In the next chapter we consider how much computational savings can

be attained by employing these techniques and present our actual computa-

tional results.

2.2 Symmetry in 1et and 1tc Error Graphs

As it turns out, Sloane’s graphs have many symmetries. In particu-

lar, because their construction is given by a simple set-theoretic rule, we can

analytically derive automorphisms with respect to the underlying vertex labels,

the n-bit code words. In general we have the following theorem.
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Theorem 2.1. For a confusion graph G = (V , E), if some permutation π com-

mutes with T , then π is an automorphism on G.1

Proof. Recall that T (s) returns the possible set of received code words when

code word s is sent (relative to error r) and that s(vi) is the code word associated

with vertex vi in our confusion graph. The theorem then claims that for coding

confusion graphs, if π(T (s(vi)) = T (π(s(vi))) for all vi (if π and T commute),

then π is a automorphism on our confusion graph.

For coding graphs we have that (vi, vj) ∈ E if and only if T (s(vi)) ∩

T (s(vj)) 6= ∅. So if π(T (s(vi))) = T (π(s(vi))) for all i we have

π(T (s(vi))∩T (s(vj)))) = π(T (s(vi)))∩π(T (s(vj))) = T (π(s(vi)))∩T (π(s(vj))).

Since π(A) = ∅ if and only if A = ∅ for all sets A, our result follows.

Using this result, we are able to demonstrate particular automorphism

groups over our coding graphs. First we look at the 1et error described earlier.

We first describe the bit-shift permutation.

Definition 2.4. The rotation permutation, denoted here as ρ, is a mapping

from strings s = s1s2s3...sn → s′ = sns1s2...sn−1. If one considers a string as

a value-index pair, for every tuple, ρ takes index i → i + 1 (mod n).

Theorem 2.2. The 1et error commutes with the rotation permutation.

1We have dropped r and n from our subscripts for sake of neatness; it is understood that
the error class r is predefined and entirely described by the graph G and that n is a fixed
integer.
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Proof. Define t
(k)
1et(s) to be a permutation of the indices of the string s such that

i → i + 1 (mod n) if i = k
i → i− 1 (mod n) if i = k + 1
i → i otherwise

Then we can write T1et(s) = {t(k)
1et(s) for k ∈ {1, 2, . . . n}}. Since ρ(s) permutes

the indices of s such that i → i + 1 (mod n), a simple substitution shows that

t
(k)
1et(ρ(s)) = ρ(t

(k−1 (mod n))
1et (s)).

Since T1et(s) contains t
(k)
1et(s) for all k ∈ {1, 2, . . . n} we see that

T1et(ρ(s)) = ρ(T1et(s))).

This automorphism has an orbit of size n and because of its relatively

large size, which grows with the length of the code words, the symmetry finding

method is quite helpful for 1et graphs.

The ρ permutation is not an automorphism with respect to 1tc graphs,

because by not permitting the “wrap around” transposition, we must get rid

of the modulus in the corresponding definition and as a result, the above proof

no longer works. In fact, finding a counterexample is a simple matter. For

the string 001 we find that T1tc(ρ(001)) = {010, 100} while ρ(T1tc(001)) =

{100, 001}.

Instead, for the 1tc error and corresponding confusion graphs, we use

a smaller-orbit automorphism.
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Definition 2.5. The string flip permutation, denoted here as σ , flips the

string around by permuting the indices (i) of the a string s such that i →

n− i + 1.

It is easy to see that since the string flip permutation preserves adjacency, it

commutes with the single transposition error. Similarly, the orbit is just of size

two, since flipping a string around twice gets you back to the original string,

i.e. n− (n− i + 1) + 1 = i.

2.3 Computational Results

Being a relatively flexible framework, it can be a tricky matter to

characterize improvements to a branch-and-bound algorithm. For example,

one must weigh the advantage of a sharper bound against the computational

effort to achieve that bound. On the one hand, a tighter bound might lead

to more fathoming and so offset the per-node evaluation time it might add.

On the other hand, a tighter bound, despite being an improvement, might fail

to impact the frequency of fathoming. Additionally, certain modifications to

a branch and bound algorithm might be quite sensitive to order of branching

or another essentially free parameters. Determining how these choices interact

with a particular graph is not necessarily, therefore, a systematic matter. That

said, we can venture some statements, and, naturally, empirical improvement

cannot be ignored: our method has solved problems that had previously gone

unsolved.

The most straightforward way to quantify the improvement in our

algorithm is to consider how many assignments we do not have to consider
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under our symmetry arguments that otherwise might have occupied the al-

gorithm. This analysis is imperfect for the sorts of reasons discussed in the

previous paragraph. In particular, this measure of improvement is making the

assumption that all our nodes would eventually have been visited. This is a

patently untrue assumption, as it completely ignores the bounding aspect of

the process. More insidiously, this approach requires beginning the tree at level

b, the length of our orbit. Should we, in fact, have realized significant pruning

of our tree at levels prior to this, our method can actually be out-performed

by unmodified branch-and-bound. With these shortcomings in mind, however,

we can provide an upper bound on the improvement we hope to see.

The fundamental trick to our approach, and also to analyzing it, is

to take advantage of the fact that the order of the nodes in our binary tree is

arbitrary. By ordering them relative to the orbits under an automorphism π we

are able to regulate the dynamics of our partial assignments under iterations

of π. In particular, listing them by orbit, one after another, in order, guaran-

tees that the partial assignment string is shifted by one bit to the right (with

wrap around) at each iteration of π. Thus ordered, we can ask the following

question: how many of these partial assignments represent unique underlying

assignments?

It turns out that this question has already been studied in some detail

[15]. Typically the question is phrased like this: what is the number of distinct

necklaces that can be made out of a fixed number of just two kinds of beads,

disallowing flipping the necklace over? The equivalence should be clear: the

number of beads is equal to b, the size of our orbit, and our beads are ones and
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zeros. The formula for this number is given by

Z(b) =
1

b

∑
d|b

φ(d)2b/d
(2.1)

where φ(b) is Euler’s totient function defined as the number of positive integers

less than n that are relatively prime to n.

So, beginning at level b, searching through all assignments would re-

quire that we search each of the 2b root nodes and the associated binary trees

below them. Taking into account the underlying symmetry we find that we

need only consider Z(b) out of the 2b total subtrees. The ratio between these

two numbers is the factor of our savings in terms of orbit size b. The plot

Table 2.1: Theoretical Savings Estimate
b Z(b) 2b/Z(b)
2 3 1.33
3 4 2.00
4 6 2.66
5 8 4.00
6 14 4.57
7 20 6.40
8 36 7.11
9 60 8.53

10 108 9.48
11 188 10.89

below shows that this relationship is strongly linear; in fact it shows that the

anticipated savings is approximately a factor of b. As it happens, this theoret-

ical estimate matches quite closely the actual improvements we witnessed on

Sloane’s 1et.2048 and 1tc.2048 graphs. The relevant details are depicted in the

following charts.
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Table 2.2: Computational Savings for 1et.2048
MIS Bound Time w/o Sym. Time. w/ Sym. Factor of Savings

66 42559 5869 7.25
65 381406 78539 4.86
64 3335056 266083 12.53

(optimal) 63 29710171 1029860 28.84

These plots make apparent that the larger orbit found in the 1et

graphs allows for greater savings, consistent with the theoretical prediction that

the savings will be proportional to orbit length. In fact, our savings exceeded

this estimate in both cases. We realized a savings factor of approximately

1.8 versus the theoretical 1.33 on the 1tc graph, and approximately 29 versus

the theoretical 11 on the 1et graph. (We note also that in the 1tc graph for

the looser approximations the symmetry scheme actually takes more time; this

reflects the overhead involved with using separate starting files, etc.)

Some of this improvement over the theoretical estimate comes from

the fact that of the 188 unique assignments on our size 11 orbit, only 6 of them

correspond to independent sets.



CHAPTER 3

APPLICATIONS TO ARBITRARY GRAPHS

3.1 Finding Symmetries

We close now with a look at how our results might be applied to

arbitrary graphs. As we have mention above, one aspect of what makes NP-

complete problems so difficult is the extreme generality of their statement.

Accordingly, we might expect that making the symmetry techniques used here

more general would likewise be difficult. Indeed, it turns out that finding

symmetries in arbitrary graphs is itself a difficult problem.

In general, this problem is called the graph isomorphism problem. Its

decision problem reads:

Given graphs G1 = (V1, E1) and G2 = (V2, E2) does there exist a

mapping f : V1 → V2 such that (x, y) ∈ E1 iff (f(x), f(y)) ∈ E2?

Clearly finding an automorphism is just the case where G1 = G2, (which is

only interesting if we exclude the identity permutation).

The graph isomorphisms problem is obviously in NP, since given a

particular mapping, checking if it satisfies the criteria is a straightforward mat-

ter. Furthermore, while the problem is hard, it is not known whether or not it is

NP-complete. In fact, this problem is used to define its own complexity class of

33
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GI-complete problems, a class that is thought to be disjoint from NP-complete

and P [12].

Fortunately, it seems that in practice the problem is tractable, and

it is only on a relatively pathological subset of graphs that graph isomorphism

stymies known methods. This fact thus suggests the following straightforward

plan for tackling arbitrary graphs with our symmetry-expoiting branch-and-

bound:

1. Check G for automorphisms.

2. Design a branching scheme using orbits from one of these automorphism

(as described earlier).

To check the practicability of this method we tested it on Sloane’s

1et.2048 graph as well as a few benchmark graphs. It is interesting to look first

at the results for our 1et graph, for which we have an analytically determined

symmetry that we have already seen yields a ×28 speed-up. Here we list

a maximally sized orbit founding using Brendan McKay’s excellent NAUTY

(No AUtomorphism, Yes?) algorithm [10] as well as one under the rotation

automorphism.

Using this size 22 orbit we know that Z(22) = 190, 746. As with the

11 orbit case, many of the unique assignments are infeasible; in this case, of

the 190,746 unique assignments we find that only 3,527 of them correspond

to independent sets. However, using these start files in our branch-and-bound

code was only marginally faster than running the code alone when we tested

it to a bound of 66: using our size-22 orbit took 10 hours, 36 minutes and 26
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Table 3.1: Orbits in 1et.2048
NAUTY Orbit Rotation Orbit

00000110111 00000110111
00000111011 10000011011
00001101110 11000001101
00001110110 11100000110
00011011100 01110000011
00011101100 10111000001
00110111000 11011100000
00111011000 01101110000
01100000111 00110111000
01101110000 00011011100
01110000011 00001101110
01110110000 00000110111
10000011011
10000011101
10110000011
10111000001
11000001101
11000001110
11011000001
11011100000
11100000110
11101100000
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seconds to achieve a bound of 66, whereas straight branch-and-bound took 11

hours, 49 minutes and 19 seconds. This is only 1.125 times faster compared

to over 7 times faster with the smaller orbit. This vividly demonstrates the

trade-off involved with beginning branch-and-bound at a lower level of the tree;

we can see that between level 11 and 22 our code was able to fathom significant

numbers of nodes. Moreover, in these comparisons we have not included the

not insubstantial amount of time it requires to isolate the appropriate starting

assignments.

The final question that remains is whether or not we can expect to

find helpful symmetries in arbitrary graphs. To investigate this, we considered

the complement graphs of DIMACS benchmark graphs for the maximum clique

problem. Notice that maximum cliques corresponds exactly to maximum in-

dependent sets in the complement graphs. We consider only graphs with less

than 5,000 edges, due to memory constraints of our semidefinite programming

solver. Utilizing newer limited-memory methods for semidefinite optimization

will expand the applicability of the methods so-far discussed. Using NAUTY,

we produced the following table.
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Table 3.2: DIMACS Benchmark Graphs
Graph Name |Max Orbit| #

david 1 -
DSJC125.5 1 -
DSJC125.9 1 -
DSJC250.9 1 -

DSJR500.1c 2 1
huck 8 1
jean 7 1

miles1000 3 2
miles1500 6 2

myciel3 5 2
myciel4 5 4
myciel5 5 8
myciel6 5 16

queen5 5 8 1
queen6 6 8 3
queen7 7 8 3

queen8 12 4 24
queen8 8 8 6
queen9 9 8 7

Clearly many of these graphs have symmetries. Whether or not these

symmetries confer any computational benefit is another matter. Indeed, we find

that our branch-and-bound without symmetry deals with these graphs handily,

as shown below. On the single graph that took any substantial amount of time

– DSJC250.9 – there turns out to be no symmetry to exploit.
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Table 3.3: DIMACS Benchmark Graphs
Graph Name Nodes Processed Seconds

david 1 5
DSJC125.5 29 23
DSJC125.9 271 18
DSJC250.9 626061 1860

DSJR500.1c 33 70
huck 111 46
jean 117 17

miles1000 1 17
miles1500 1 5

myciel3 1 0
myciel4 1 0
myciel5 1 0
myciel6 1 7

queen5 5 1 3
queen6 6 1 0
queen7 7 1 0

queen8 12 1 4
queen8 8 1 0
queen9 9 1 1

These results and our earlier results from the Sloane’s graphs demon-

strate that the savings available from considering symmetry range from sub-

stantial to non-existent.
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Conclusions

A first remark is that the asymptotic complexity of branch-and-bound

for the MIS problem on these graphs is still exponential. Even though we were

able to realize a 28-fold improvement in some cases, this constant factor savings

will be dwarfed as we move to consider ever larger graphs.

With that caveat in mind, however, there are three basic conclusions

one can draw from this work.

Firstly, symmetry can be useful in decreasing the necessary search

space when solving combinatorial optimization problems. Our main achieve-

ment has been to prove the size of the maximum independent set in Sloane’s

1et.2048 and 1tc.2048 graphs from coding theory.

Our second conclusion is that the applicability of this technique is

limited to cases where symmetry obtains and the graph is otherwise difficult.

Comparing Sloane’s graphs to our DIMACS sample graphs suggests that this

will more likely be the case when the graphs are produced according to some

underlying rule. Our DIMACS experimentation demonstrates that one cannot

expect to find useful symmetry in generic graphs.

Finally, we showed that the NAUTY heuristic of Brendan McKay

successfully identifies symmetry in arbitrary graphs and that this information

can easily be parlayed into a branching scheme that prevents redundant search.
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This is an important point because it means that if indeed we have graphs that

are likely to have symmetry, we need not rely on our own cleverness to locate

these patterns.
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