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Abstract

This report describes a branch and bound code for zero�one mixed�

integer nonlinear programs with convex objective functions and constraints�

The code uses heuristics to detect subproblems which do not have inte�

gral solutions� When the code detects such a subproblem� it creates two

new subproblems instead of solving the current problem to optimality�

Computational results on sample problems show that these heuristics can

signi�cantly decrease solution times for some problems�
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Introduction

This report is concerned with zero
one mixed integer nonlinear programming
problems of the form�

�MINLP 
 min f�x�y

subject to g�x�y
 � �

x � f�� �gm

y � u

y � l

Here x is a vector ofm zero
one variables� y is a vector of n continuous variables�
and u and l are vectors of upper and lower bounds for the continuous variables
y� The objective function f and the constraint functions g are assumed to be
convex�

Mixed integer non�linear programs of this form arise in a number of applica�
tions� in areas as diverse as network design ���� ���� chemical process synthesis
��� �� ���� product marketing ���� and capital budgeting ���� ��� ���� Methods for
solving mixed integer nonlinear programming problems are surveyed in ���� ����

Branch and bound algorithms such as the ones described in ���� ��� �	�
work by explicitly enumerating possible values of the zero
one variables until
an optimal integer solution has been found� The algorithm begins by solving
the continuous relaxation of the original problem� If a zero
one variable is
fractional at optimality� the algorithm constructs two new subproblems� in which
the variable is �xed at zero and one� The algorithm continues in this fashion
by solving subproblems and creating new subproblems until an integer solution
has been found and each remaining subproblem has a higher lower bound than
the integer solution� This report describes a branch and bound algorithm which
uses the sequential quadratic programming method to solve the subproblems�
and which uses heuristics to determine when to split a subproblem into two new
subproblems�

The remainder of this report is organized as follows� In section �� we review
the sequential quadratic programming method� In section �� we describe the
heuristics that our branch and bound algorithm uses� In section �� we describe
a method for calculating a lower bound on the value of a subproblem without
solving the subproblem to optimality� In section �� we describe our branch
and bound algorithm in detail� Section � contains computational results for a
number of sample problems� Our conclusions are presented in section �� An
appendix contains the formulation of a sample problem which was constructed
for this paper�

�



� Solving the Subproblems

At each stage of the branch and bound algorithm� we must solve a nonlinear
programming problem of the form�

�NLP 
 min f�x�y

subject to g�x�y
 � �

x � e

x � �
y � u

y � l

where some of the zero
one variables in x may have been �xed at zero or one�
Since this is a convex problem� we know that if it is feasible� it has a unique
minimum� Furthermore� the Lagrangean for this problem is de�ned as�

L�x�y� �
 � f�x�y
 � �Tg�x�y


where x and y are still subject to upper and lower bounds� and the Lagrangean
multipliers � are restricted to positive values� Since the problem is convex�
the Lagrangean has a unique stationary point at x��y�� ��� where x��y� is an
optimal solution to �NLP
� and �� is a set of optimal Lagrange multipliers� and
�i is non�zero only if g�x��y�
i � ��

The method of sequential quadratic programming� described in ��� 	�� at�
tempts to �nd this stationary point and solve �NLP
 by solving a sequence of
quadratic programs with linear constraints� These quadratic subproblems are
of the form�

�QP 
 min rfTp� �

�
pT �W 
p

subject to Ap � �c

Here W is the Hessian of the Lagrangean with respect to the variables x and y�
the rows of A are the gradients of the active constraints� and c is the vector of
values of the active constraints�

It can be shown that an optimal solution to �QP
 gives a direction p which
is identical to the direction �in the x and y variables
 given by Newton�s method
applied to the problem of �nding a stationary point of the Lagrangean� Fur�
thermore� the Lagrange multipliers for �QP
 are the Lagrange multipliers that
would be obtained by an iteration of Newton�s method applied to the prob�
lem of �nding a stationary point of the Lagrangean� Thus one iteration of the
SQP method is equivalent to an iteration of Newton�s method searching for the
stationary point of the Lagrangean�

Our code uses a routine called E��VCF from the NAG library ���� to solve
�NLP
� This routine uses a version of the SQP method in which the solution to
�QP
 is used as a search direction� The routine picks a step size that minimizes
an augmented Lagrangean �merit function��
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The E��VCF routine calls user supplied subroutines that compute the objec�
tive function� constraint functions� and their gradients� The E��VCF subroutine
will execute until it reaches a limit on the number of iterations� it �nds an op�
timal solution� or it encounters an error condition� If the routine has reached
the limit on iterations� the user can restart the routine from where it left o��

� Heuristics for Detecting Fractional Solutions

Since the sequential quadratic programming algorithm generates estimates of
the variables x� we can examine them after each iteration to see if a variable is
converging to a fractional value� This leads to heuristics for determining early
in the solution of the subproblem that the optimal solution will have fractional
zero
one variables�

Our experimental code examines the values of the zero
one variables after
every second iteration of the sequential quadratic programming algorithm� �The
E��VCF routine won�t stop after just one iteration� It must run for at least
two iterations at a time�
 If the current solution is not feasible with respect to
both the linear and non�linear constraints� then no determination is made� If
the current solution is feasible� and the value of xi is between ����� and ������
and the di�erence between the previous value of xi and the new value of xi is
less than a small tolerance �� and the new value of xi is closer to the old value of
xi than it is to either � or �� than the code declares xi fractional� The current
version of the code uses a tolerance of ���� which was chosen after experimenting
with several di�erent values of ��

The experimental code uses a very simple rule for selecting the branching
variable� Of the variables which are considered fractional� the experimental
code chooses the most fractional variable �i�e� the variable which has value
closest to ���
 to branch on� In choosing the next subproblem to work on� the
experimental code picks the subproblem with the smallest estimated optimal
value� This estimate is simply the objective value of the parent subproblem if it
was solved to optimality� or the objective value at the last iteration if the parent
subproblem was not solved to optimality�

� Generating Lower Bounds

In the branch and bound algorithm� when an early decision to break the current
subproblem into two new subproblems is made� a lower bound on the values of
the two new subproblems is required� This bound can be used later to fathom
the subproblems if a better integer solution is found�

Given a set of Lagrange multipliers �� we can use Lagrangian duality to
�nd a lower bound for the optimal value of the current subproblem� This lower
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bound is given by solving the nonlinear programming problem�

�DUAL
 min f�x�y
 � �Tg�x�y

subject to x � e

x � �
y � u

y � l

where again� some of the zero
one variables may be �xed at zero or one�
This is a nonlinear programming problemwith simple bound constraints that

can easily be solved by a quasi�Newton method� Furthermore� if the multipliers
� are close to optimality� the minimum value of �DUAL
 should be close to
the optimal value of �NLP
� However� this lower bounding procedure is likely
to fail to give an improved lower bound if the Lagrange multipliers are not
well chosen� For this reason� our algorithm doesn�t attempt to use this lower
bounding procedure until the Lagrange multipliers have had time to converge
to their optimal values� If the lower bounding scheme fails� our algorithm will
continue to work on the current subproblem until lower bounding succeeds or
until an optimal solution has been found�

Our experimental code uses the NAG routine E��KBF to solve �DUAL
�
The initial guess is simply the current estimated solution x and y to the current
subproblem� The Lagrangean function and its gradient are calculated automat�
ically from the user supplied objective and constraint functions�

� The Branch and Bound Algorithm

Our branch and bound algorithm for solving mixed integer nonlinear programs
is as follows�

Algorithm �

�� Call a user supplied routine to do any initialization needed by the routines
which compute the constraint and objective functions�

�� Put the NLP relaxation of the problem into the branch and bound tree as
the root�

�� While there are unexamined subproblems in the branch and bound tree

�a� Pick a subproblem from the branch and bound tree� If all subproblems
in the branch and bound tree have a higher lower bound than a known
integer solution� then go to step ��

�b� Repeat the following steps until one of the conditions is satis	ed�

i� Take S steps of the SQP algorithm�
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ii� If the subproblem is infeasible� then drop it from consideration�
Go back to step ��

iii� If the solution is optimal and the zero
one variables are all either
zero or one� then we have found an integer solution� Record the
value of this solution and go back to step ��

iv� If the solution is optimal and a zero
one variable is fractional�
then split the current subproblem into two new subproblems with
the fractional variable 	xed alternately at zero and one� The
objective value of the current subproblem provides a lower bound
for the two new subproblems�

v� If a zero
one variable appears to be converging to a fractional
value� and the current solution is feasible with respect to the lin

ear and non
linear constraints� then consider splitting the current
subproblem�

� If the current objective value is close to the lower bound for
this problem� then branch without attempting to 	nd a new
lower bound�

� If it appears that the Lagrange multipliers are close to their
optimal values� then use the lower bounding procedure de

scribed in section � to 	nd a lower bound� If this succeeds�
then branch� If the lower bounding procedure fails� go back
to step ���b��

� Otherwise� go back to step ���b��

�� The optimal solution is simply the best integer solution found up to this
point�

In step ��b��i
� the algorithm performs S steps of the SQP algorithm� S
is a parameter that can be adjusted� If we set S to a very large value� then
the algorithm will solve each subproblem to optimality within S steps or detect
infeasibility� but it will never use the heuristics to detect a fractional variable�
This is a conventional branch and bound algorithm for �MINLP
� If S is set to
a smaller value� the heuristics will come into play� Because of a restriction in
the E��VCF subroutine� we were only able to use values of S that were greater
than one� Our experimental code uses the smallest possible value S � ��

In step �
b
�ii
 of our algorithm� we have to determine whether the cur�
rent subproblem is infeasible� The E��VCF routine will automatically detect
infeasibility with respect to the linear constraints� However� if a subproblem is
infeasible with respect to one or more of its nonlinear constraints� the E��VCF
routine does not automatically detect the condition� Instead� the routine will
return with an indication that it stopped after it could not �nd an improved
point� This could be because the problem was infeasible� or it could be that
the SQP routine was simply having trouble �nding a feasible point� In this
situation� we examine the current solution� If the current solution is close to
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feasibility �within ���
� then we restart the SQP algorithm in hopes of even�
tually �nding a feasible solution� If the SQP algorithm fails a second time� we
declare the subproblem infeasible�

In step �
b
�v
 we need to determine whether the subproblem is feasible�
If the current solution is within �� of feasibility with respect to each of the
linear and non�linear constraints� then we assume that the current subproblem
is feasible� If the algorithm errs in considering a problem feasible� then it is
possible that the algorithm could create two additional subproblems� which
would in turn be infeasible� Although this would slow the algorithm down� it
wouldn�t prevent the algorithm from �nding the correct solution� In practice�
this hasn�t been a problem�

We also need to determine in step �
b
�v
 whether or not to use the lower
bounding procedure� A lower bound for the current subproblem is inherited
from the parent subproblem� In some cases� �xing a variable at zero or one
causes no change in the optimal objective value� and there is little point in
attempting to �nd an improved lower bound� Thus if we have a feasible point
with an objective value within �� of the current lower bound� we skip the lower
bounding procedure�

The experimental code makes use of three user supplied subroutines� The
�rst routine� SETUPP� is used to initialize the continuous relaxation of the
problem� SETUPP returns the total number of variables� number of integer
variables� a matrix for any linear constraints� and feasibility tolerances for the
linear and nonlinear constraints� A second routine� OBJFUN� calculates the
objective function and its gradient� The third routine� CONFUN� calculates
the non�linear constraint functions and their gradients� These routines are then
linked with the experimental code to create a program for solving the actual
problem�

� Computational Results

We tested the experimental code on a number of problems taken from the litera�
ture� Sample problems one through four were taken from a paper by Duran and
Grossman ���� The �rst three of these problems come from the chemical engi�
neering problem of designing a chemical processing system� The fourth problem
comes from the area of product marketing ���� The third and fourth problems
also appear in ����� Our �fth sample problem is example problem �ve from a
paper by Floudas� Aggarwal� and Ciric ���� �Other problems in this paper were
non�convex�
 Our sixth sample problem is example four from a paper by Kocis
and Grossman ����� This problem is a convex version of a chemical process
design problem that was non�convex in its original formulation� The seventh
problem is a topological network design problem which is described in detail in
the appendix� A summary of the problems is presented in Table ��

Two versions of the experimental code were developed� In the �rst version�
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the heuristics and lower bounding procedure are used after every other iteration
of the SQP method� In the second version� the heuristics are not used� These
codes were run under AIX on an IBM ��������S� The total number of SQP
iterations� total number of subproblems created� total number of subproblems
solved� and CPU times were recorded for each code on each problem� The CPU
times were measured with the CPUTIME subroutine of the Fortran run�time
library� Unfortunately� our experience has been that these CPU times are only
accurate to about ��� since repeated runs of the code show slight but consistent
variations in the CPU time� This could be caused by an inaccuracy in the timing
routines or by cache e�ects� These computational results are presented in Tables
� and ��

In several cases� there are slight di�erences between the two codes in how
many subproblems were created and later solved� This can be explained by
slightly di�erent choices of the branching variables that were sometimes made
by the two codes�

The code with heuristics worked about as well as the code without heuristics
on the smaller problems� This is not surprising� since on these problems� the
SQP method needed an average of � to � iterations to solve a subproblem� and
there was little opportunity for the heuristics to come into play� On the more
di�cult problems � and �� the SQP algorithm required more iterations to solve
each subproblem� and the heuristics could be used successfully� For example�
on problem �� the code without heuristics used an average of �� iterations on
each subproblem that it solved� while the code with heuristics used an average
of only �� iterations per subproblem�

The paper by Paules and Floudas ���� includes computational results for
our problems � and � which can be compared to our results� These problems
were solved by both generalized Bender�s decomposition �GBD
 and an outer
approximation algorithm on an IBM
���� computer similar to the computer
used in our study� On problem �� GBD required ����� CPU seconds while the
outer approximation algorithm required ���� CPU seconds� In contrast� our
branch and bound codes needed only about � CPU second to solve the problem�
On problem �� GBD required over 	�� CPU seconds to solve the problem� The
outer approximation algorithm required between ����� and ����� CPU seconds
depending on the starting point� Our codes both solved the problem in about
�� CPU seconds�

� Summary and Conclusions

Our computational results indicate that the heuristics used in this experimental
code were sometimes successful in reducing the number of iterations of the SQP
method needed to solve the MINLP�s� On some problems there was little or
no improvement� while on other problems the code with heuristics reduced the
number of SQP iterations by as much as ���� In general� the heuristics worked
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better when a large number of SQP iterations were required for each subproblem�
Thus there is some reason to hope that the heuristics might work well on larger
mixed integer nonlinear programming problems�

	



Problem Zero
One Vars Continuous Vars Linear Constraints Nonlinear Constraints
� � � � �
� � � �� �
� 	 � �� �
� �� � � ��
� � � � �
� �� �� �� �
� �� ��� �� �

Table �� Characteristics of the sample problems

Problem SQP Iters Nodes Created Problems Solved CPU Time Optimal Value
� �� � � ��� �������
� �� �� � ��� �������
� �� �� �� ��� �	�����
� ��� ��� 	� �	�� 	����	�
� �� �� � ��� ������	
� ��� �� �� 	�� �	����
� �	�� ��� ��� 	��� �����	�

Table �� Computational results for the code without heuristics

Problem SQP Iters Nodes Created Problems Solved CPU Time Optimal Value
� �� � � ��� �������
� �� �� � ��� �������
� �� �� �� ��� �	�����
� ��� �� 	� �	�� 	����	�
� �� �� � ��� ������	
� �� �� �� ��� �	����
� ���	 ��� ��� ���	 �����	�

Table �� Computational results for the code with heuristics
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Appendix� Example Problem 	

Our seventh example problem is a small network design problem for a data
communications network involving �ve cities �New York� Los Angeles� Chicago�
Philadelphia� and Houston�
 The distances between these cities and the popu�
lations of the cities were obtained from the ���� World Almanac and Book of
Facts ����� The total �ow between pairs of cities was made proportional to the
product of the populations� These �ows are given in Table �� The cost of a
link between two cities was made equal to the distance between the two cities
in miles� These distances are given in Table ��

City New York Los Angeles Chicago Houston Philadelphia
New York � ����� ����� ����� ����	

Los Angeles ����� � ����� ����� �����
Chicago ����� ����� � ����� �����
Houston ����� ����� ����� � �����

Philadelphia ����	 ����� ����� ����� �

Table �� Flows Between Cities

City New York Los Angeles Chicago Houston Philadelphia
New York � ��	� 	�� ���	 ���

Los Angeles ��	� � ���� ���	 ����
Chicago 	�� ���� � ���� ��	
Houston ���	 ���	 ���� � ���	

Philadelphia ��� ���� ��	 ���	 �

Table �� Distances Between Cities

The problem is to choose a set of links between cities and a routing of
the data such that the total queueing delay is minimized subject to a budget
constraint� Problems of this type are discussed in ��� �� ��� To formulate this
problem� we number the nodes from � to �� and Let xij be � if the arc �i�j
 is
in the network and � if the arc is not in the network� We�ll assume that the
communications links are bidirectional� so we will always have xij � xji� Let
fij be the �ow between nodes i and j� Let fsij be the �ow on arc �i�j
 of data
destined for node s�

Each link will have a nominal capacity of ��� in each direction� However�
since the queueing delay would be in�nite if the �ow was at full capacity� we�ll
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introduce a capacity constraint of ���� This can be written as�
nX
s��

fsij � ���xij

There are �� of these constraints� with one for each direction on each link�
Let F s

i be the total �ow of data from node i to node s for i �� s� The network
�ow constraint at node i for data destined for node s can be written as�X

arcs �i�j


fsij �
X

arcs �j�i


fsji � F s
i

For our �ve city problem� there are �� such constraints�
Finally� we have a budget constraint�X

i�j

cijxij � 	���

Here cij is the mileage between cities i and j� This constraint limits the network
to a total of 	��� miles of links� �Without it� the optimal solution would involve
every possible link�


The objective is to minimize the total queueing delay in the network� This
delay can be approximated by the sum over all arcs of the queueing delay on an
individual arc� which is given by D�fij
 � fij����fij 
� where fij �

Pn

s�� f
s
ij is

the total �ow on arc �i� j
� and � is the normalized capacity of the link� Unfor�
tunately� this function has a singularity which could cause numerical problems�
To avoid this� we use the function�

D�fij 
 �

�
fij���� fij
 if fij � ���
� � ����fij � ���
 � �����fij � ���
� Otherwise

This alternative function matches the original function for all feasible �ows
�where fij � ���
� and is continuous and twice di�erentiable for all values of fij�

Thus the problem can be written as�

�NET 
 min
P
arcs �i�j
D�fij


subject to
Pn

s�� f
s
ij � ���xij for all arcs �i�j
P

arcs �i�j
 f
s
ij �
P
arcs �j�i
 f

s
ji � F s

i for all nodes i �� sP
i�j cijxij � 	���

fsij � � for all i� j� s
xij � xji for all i �� j
xij � f�� �g for all i �� j

In this form� the problem has �� zero�one variables� ��� continuous variables�
�� linear constraints� and a nonlinear objective function� The optimal solution
has a total queueing delay of �����	�� It uses links between New York and
all four of the other cities� a link between Houston and Chicago� and a link
between Houston and Los Angeles� This solution uses ���� miles of the 	���
mile budget�
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