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Abstract

This paper describes an experimental code that has been developed

to solve zero�one mixed integer linear programs� The experimental code

uses a primal�dual interior point method to solve the linear programming

subproblems that arise in the solution of mixed integer linear programs

by the branch and bound method� Computational results for a number

of test problems are provided�
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Introduction

Mixed integer linear programming problems are often solved by branch and

bound methods� Branch and bound codes� such as the ones described in ���

��� ���� normally use the simplex algorithm to solve linear programming sub�

problems that arise� In this paper� we describe an experimental branch and

bound code for zero�one mixed integer linear programming problems that uses

an interior point method to solve the LP subproblems�

This project was motivated by the observation that interior point methods

tend to quickly �nd feasible solutions with good objective values� but take a

relatively long time to converge to an accurate solution� For example� �gure �

shows the sequence of dual objective values generated during the solution of a

sample LP by the primal�dual method� After �ve iterations� the solution is dual

feasible and a lower bound is available� After ten iterations� the dual solution

has an objective value within �� of the optimal objective value� However�

it takes eighteen iterations to solve the problem to optimality� Furthermore�

the solution estimates generated by an interior point method tend to converge

steadily to an optimal solution� Figure � shows the sequence of values of the

variable x�� for the sample LP� After about ten iterations� it becomes apparent

that x�� is converging to a value near 	���

Within a branch and bound algorithm� accurate solutions to the LP sub�

problems are often not needed� Any dual solution with a higher objective value

than a known integer solution provides a bound su�cient to fathom the current
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subproblem� Furthermore� if it becomes apparent that the optimal solution to

the current subproblem includes an integer variable at a fractional value� we

can branch early without solving the current subproblem to optimality� As we

shall see later� this early branching signi�cantly improves the performance of

our branch and bound code�

However� the simplex method has a signi�cant advantage over interior point

methods within a branch and bound algorithm� In the branch and bound algo�

rithm we can warm start the solution of each new subproblem with the optimal

solution from the parent subproblem� Using the simplex method� a new optimal

solution can usually be found after only a few simplex iterations� With interior

point methods� warm starts are not as e�ective�

In order to determine whether the advantages of using an interior point

method outweigh the advantages of using the simplex method� we have devel�

oped an experimental code that uses the primal�dual interior point method and

early branching� We have tested this code on a number of sample problems and

compared the performance of the code to the simplex based branch and bound

code in IBM�s Optimization Subroutine Library �OSL�� These computational

results are the �rst contribution of the paper� The second contribution of the

paper is the early branching idea� which might be applicable to other branch

and bound algorithms�

The paper is organized as follows� In section �� we describe the interior

point method that we have used to solve the subproblems� We describe the






branch and bound algorithm in section �� We present computational results for

a number of sample problems in section �� Our conclusions are presented in

section ��

� Solving the LP Subproblems

The experimental code solves problems of the form

�P � min cTx

subject to Ax � b

x � 	

x � u�

Some of the x variables are restricted to the values zero and one� Here A is

an m by n matrix� c is an n by � vector� and b is a m by � vector� Some of

the primal variables may be unbounded� For these variables� we write ui ���

We introduce slack variables s so that the constraint x � u can be rewritten as

x� s � u� together with the nonnegativity constraint s � 	�

The LP dual of this problem can be written as

�D� max bTy � uTw

subject to ATy �w � z � c

w� z � 	�

If xi is an unbounded primal variable� then we �x wi at zero and let si ���

Within the branch and bound algorithm� we will solve a number of LP

relaxations of the original problem �P�� using the primal�dual method described

�



in ������ �
�� The primal�dualmethod is summarized in the following algorithm�

Algorithm �

Given an initial primal solution x� s with x� s � 	 and x � s � u� and an

initial dual solution w� y� z� with w� z � 	� repeat the following iteration until

the convergence criterion has been met�

�� Compute ��

�� Compute � � �X��Z�S��W ��� and ���� � ��S���X���e��W �Z�e�

�� Compute the Newton�s method steps �x� �y� �s� �w� and �z using

�A�AT ��y � �b�Ax� �A���c � AT y � z � w� � �����

�x � ��AT�y � ���� � �c� AT y � z � w��

�s � ��x

�z � X����XZe � �e � Z�x�

�w � S����SWe � �e �W�s��

�� Find step sizes �p and �d that ensure x � �p�x � 	� s � �p�s � 	�

z��d�z � 	� and w��d�w � 	� If possible� make full steps with �p � �

and �d � ��

	� Let x � x � �p�x� s � s � �p�s� y � y � �d�y� w � w � �d�w� and

z � z � �d�z�
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For an initial solution� we use the method described in ����� In step �� we

compute � using the method of ���� We consider the current solution feasible if

kb�Axk

� � kxk
� �	��

and

kc� ATy � w � zk

� � kyk� kwk� kzk
� �	���

We terminate the primal�dual algorithm and declare the current solution opti�

mal when the current solution is primal and dual feasible� and when

jcTx� �bTy � uTw�j

� � jbTy � uTwj
� �	���

This ensures that the solution is primal and dual feasible� and that the duality

gap is small relative to the objective value�

The most di�cult part of the computation is calculating �y in the primal�

dual step� As long as the constraint matrixA is sparse and has no dense columns�

we can hope that the matrix AD�AT will also be sparse� The experimental

codes take advantage of this sparsity by saving the matrix in sparse form and

making use of routines from the Yale Sparse Matrix Package �YSMP� or IBM�s

Extended Scienti�c Subroutine Library �ESSL� to solve the systems of equations

��� ��� We have found that the routines from YSMP are more e�ective on very

sparse problems� while the routines from ESSL work best on relatively dense

problems�

If the linear programming problem is primal or dual infeasible� then the

algorithm will loop without ever �nding a feasible solution� However� in our
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branch and bound algorithm it is reasonable to assume that the initial LP

relaxation of the problem will be primal and dual feasible� As a result� all of the

other subproblems in the branch and bound tree will be at least dual feasible�

and we need only detect LP subproblems which are dual unbounded and primal

infeasible�

In theory� we would know that a dual subproblem was unbounded if the

current dual solution was dual feasible� �w � 	� �z � 	� and bT�y�uT�w � 	�

However� because of numerical problems in the calculation of �w and �z� this

does not work well in practice� We have developed an alternative procedure for

detecting infeasible subproblems�

After each primal�dual iteration we compute directions � �w and ��z by

� �wi �

����
���

�wi �min��wi��zi� if ui ��

	 otherwise

and

��zi �

����
���

�zi �min��wi��zi� if ui ��

�zi otherwise

If the previous dual solution was feasible� and if bT�y�uT��w � 	� then �y� � �w

and ��z give us a direction in which the dual solution is feasible and improving�

If � �w and ��z are nonnegative� then we can move as far as we wish in this

improving direction� and the dual problem is unbounded�

Within the branch and bound algorithm� we will need to restart the primal�

dual method after �xing a zero�one variable at zero or one� We could simply

�



use the last primal and dual solutions to the parent subproblem� but very small

values of xi� si� wi or zi can lead to numerical problems� Instead� we use a warm

start procedure similar to the one described in ����� If xi or si is less than a

tolerance 	� then we set the variable to 	� and adjust the slack as needed� If wi

or zi is less than 	� and xi has an upper bound� then we add 	 to both wi and

zi� This helps to retain dual feasibility� If xi has no upper bound and zi is less

than 	� then we add 	 to zi� Our code uses 	 � 	���

� The Branch and Bound Algorithm

A  owchart of our branch and bound algorithm appears in �gure �� The algo�

rithm maintains one large data structure� This is the tree of subproblems� Each

leaf node in the tree is a record containing a description of which variables have

been �xed and the best known primal and dual solutions for that subproblem�

The dual solution consists of m�n numbers� while the primal solution consists

of n numbers� �We store only x� y and w� The values of s and z can be calcu�

lated when they are needed�� In contrast� a simplex based branch and bound

code would normally save only a list of the variables that had been �xed at zero

or one and a listing of the variables in the current basis� Thus our algorithm

uses somewhat more storage than a simplex based code�

In addition to the problem data and the branch and bound tree� the algo�

rithm maintains two variables� The upper bound ub is the objective value for

�	
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the best known integer solution� It is initialized to ��� For each subproblem�

we obtain lower bounds� lb� which can be used to fathom a subproblem when

lb � ub�

In step �� our algorithmuses a depth �rst search strategy to pick subproblems

until an integer solution has been found� From then on� it picks the remaining

subproblem with the lowest estimated objective value� These estimates are

based on pseudocosts� similar to those described in ������� ����

In step �� we use a heuristic to determine if any of the zero�one variables

appear to be converging to fractional variables� If the heuristic determines

that one of the zero�one variables is approaching a fractional value� then the

algorithm branches on the current subproblem to create two new subproblems�

The heuristic could be wrong in a number of ways� the current subproblem could

have an integer optimal solution� the current subproblem could be infeasible�

or the optimal value of the current subproblem could be higher than ub� which

would allow us to fathom the current subproblem� In each of these cases� the

algorithm would have to consider more subproblems than if it had not branched

early� However� the algorithm will eventually recover from such a mistake� since

the zero�one variables will eventually all be �xed at zero or one� and at that

point each subproblem will be solved to optimality� fathomed by lower bound�

or shown to be infeasible�

Our heuristic is based on the work of El�Bakry� Tapia� and Zhang �
�� who

have shown that for a fractional variable xi� the ratios
xk��
i

xk
i

and
sk��
i

sk
i

go to

��



one as the solution approaches optimality� Furthermore� the ratios
w
k��

i

wk

i

and

zk��
i

zk
i

go to zero as the solution approaches optimality� Although the version of

the primal�dual method used by El�Bakry� Tapia� and Zhang is slightly di�erent

from the version that we use� these ratios still provide a good heuristic indication

of whether or not a variable is tending to a fractional value�

Our version of the heuristic is as follows� First� we do not search for fractional

variables until we have a solution which is dual feasible and within �	� of

primal feasibility� Furthermore� we do not search for fractional variables if

it appears that the optimal value of the current subproblem might be large

enough to fathom the subproblem by bound� We base this decision on the

last two dual objective values� If �bTyk�� � uTwk��� � ��bT yk�� � uTwk����

�bTyk � uTwk�� � ub� then we delay searching for fractional variables in hopes

of fathoming the current subproblem by bound� Although this prevents the

algorithm from branching as early as possible� this safeguard acts to reduce the

total number of subproblems solved�

Once the above conditions are met� we declare a zero�one variable xi frac�

tional when it satis�es

j
x
k��

i

xk
i

� �j � 	��

j
s
k��

i

sk
i

� �j � 	��

wk��

i

wk

i

� 	��

s
k��

i

sk
i

� 	���

In this heuristic� we put more stress on the ratios of x and s� because we have
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found that the ratios of the w and z variables do not go to zero as quickly as

the ratios of the x and s variables go to one�

� Computational Results

We tested our experimental codes on seven sets of sample problems� The �rst

three sets of sample problems consist of randomly generated set covering prob�

lems� The fourth set of sample problems is a set of capacitated facility location

problems taken from the literature ���� Problem set �ve consists of two problems

given to us by AT!T Bell Laboratories� Problem set six consists of the problem

khb	
�
	 from the MIPLIB collection of test problems���� Problem set seven

consists of the problem misc	� from the MIPLIB collection of test problems�

Table I gives statistics on size of these test problems� For each problem�

we give the number of rows� columns� and zero�one variables� We also give

statistics on the density of the constraint matrix A� the density of A�AT � and

the Cholesky factors of A�AT after minimum degree ordering�

All computations were performed in double precision on an IBM ES"�
�	

under the AIX"��	 operating system� The experimental codes were written

in Fortran and compiled with the VS Fortran version � compiler and VAST�

preprocessor ��� �	�� CPU Times were measured with the CPUTIME subroutine

of the Fortran run�time library� These times exclude the time required to read

in the problems and to output solutions� For comparison� we also solved the

��



sample problems using routines from release � of IBM�s Optimization Subroutine

Library �OSL� �����

The optimal objective function values and solutions from OSL were given

to seven signi�cant digits� The experimental codes were designed to �nd an

optimal objective value good to about eight signi�cant digits� In all cases� the

experimental codes produced the same integer solutions as OSL� The optimal

objective values generally matched to seven signi�cant digits� although there

are slight di�erences in the seventh digit in some cases�

For each set of problems� we �rst solved the LP relaxations of the problems

using the OSL simplex routine EKKSSLV� the OSL primal�dual routine EKKB�

SLV� and our implementation of the primal�dualmethod� called SOLVELP� Fig�

ure � shows how the two implementations of the primal�dual method performed

in comparison to OSL�s simplex method� For the problems in problem sets one�

two� and three� the primal�dual codes were competitive with EKKSSLV� while

on problems sets four� �ve� six� and seven the EKKSSLV routine was faster� The

Problem Set rows columns 	�� variables density
A A�AT L

� ��	 �	�	 �	 	���� 
�		� 
����
� ��	 �	�	 �	 	���� ����� �����
� ��	 �	�	 �	 	��
� ��
�� ���	�
� �� ��� �� ����� ����� ���
�

 ��� ���� �
 ����� ���
� �����
� �	� ���� �� ����� ����� ���
�
� ��	 ��	� ��� 	���� ���
� �����

Table I� Sample problem statistics�
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Relative to EKKSSLV
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Set 7Set 6Set 5Set 4Set 3Set 2Set 1

EKKBSLV

 SOLVELP

Figure �� LP solution times� relative to OSL simplex�

OSL implementation of the primal�dual method is generally faster than our ex�

perimental implementation of the primal�dual method� This can be explained

by more sophisticated sparse matrix linear algebra routines and by OSL�s use

of the predictor�corrector scheme ����

In order to determine the e�ectiveness of the early branching heuristics�

two versions of the experimental code were developed� The �rst version of

the code� called BB� uses early branching as described in the previous section�

��



The second version of the code� called FULLBB� solves each subproblem to

optimalitywithout any early branching� Thus we can determine the e�ectiveness

of the early branching heuristics�

We then solved the sample problems with the two experimental codes and

with the OSL subroutine EKKMSLV� EKKMSLV is a sophisticated branch and

bound code that uses the dual simplex method to solve the linear programming

subproblems� Figure 
 shows the number of subproblems solved by the two

versions of the experimental code� relative to the number of subproblems solved

by EKKMSLV� In general� the two experimental codes solved about as many

subproblems as OSL� Furthermore� the version of the code with early branching

did not solve more subproblems than the version of the code without early

branching� This indicates that the use of early branching did not signi�cantly

increase the number of subproblems solved�

Problem seven is unusual� Although this problem had over a hundred zero�

one variables than any of the other test problems� EKKMSLV was able to solve

the problem with only ��� LP subproblems� The BB code solved �	� subprob�

lems� while the FULLBB code solved ��� subproblems� For this problem� it

appears that our procedure for selecting subproblems to be solved was not as

e�ective as OSL�s�

Early branching was able to reduce the number of iterations per subproblem

used by the experimental code� Figure � shows the number of iterations per

subproblem for the two experimental codes� In each case� the BB code� with

��
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early branching� used fewer iterations per subproblem� In most cases� the BB

code used signi�cantly fewer iterations per subproblem than FULLBB�

Figure � shows the total CPU time used by the experimental codes� relative

to the CPU time used by EKKMSLV� On problem sets one� two� and three� the

experimental code BB is reasonably competitive with EKKMSLV� On problem

sets four� �ve� six� and seven� OSL dominates� However� OSL�s simplex method

was sign�cantly faster than our primal�dual codes in solving the LP relaxations

of these problems� and it is not surprising that the simplex based branch and

bound code is superior�

� Conclusions

The experimental code was not competitive with OSL�s simplex based branch

and bound procedure on most of the test problems� Since the experimental

code and EKKMSLV generally solved about the same number of subproblems� it

appears that the advantage of warm starting the simplex method in EKKMSLV

outweighed the advantages of early branching in the experimental code�

However� there are a number of ways in which the experimental code could

be improved� First� the implementation of the primal�dual method could be

speeded up� In some cases� our primal�dual LP solver took twice as long to

solve the LP relaxation of a problem as OSL�s implementation of the primal�

dual method� Second� a better procedure for warm starting the primal�dual
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method could be developed� This is an area in which very little work has been

done to date� Third� improvements in the heuristics for detecting fractional

variables might be possible� Fourth� the experimental code is lacking in support

for special ordered sets� implicit enumeration� and other techniques that can

speed up the branch and bound algorithm�

Furthermore� our computational testing has been limited to relatively small

problems� The largest test problem that we have solved has fewer than �			

rows� Since interior point methods for linear programming are generally more

e�ective on larger problems� it is possible that a branch and bound code using

an interior point method would be superior to a conventional branch and bound

code on larger problems�

Although the computational results in this paper are not immediately en�

couraging� we feel that progress in interior point methods for linear program�

ming or the need to solve larger mixed integer programming problems will make

further research worth while�

The second contribution of this paper was the early branching technique�

In most cases� the code with early branching solved about the same number

of subproblems as the code without early branching� At the same time� the

code with early branching used signi�cantly fewer iterations per subproblem�

As a result� the experimental code with early branching was signi�cantly faster

than the code without early branching� The early branching idea might also be

applicable to branch and bound algorithms for other problems� such as mixed

��



integer nonlinear programming problems�
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