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Abstract

Primal–dual interior point methods and the HKM method in particu-

lar have been implemented in a number of software packages for semidef-

inite programming. These methods have performed well in practice on

small to medium sized SDP’s. However, primal–dual codes have had

some trouble in solving larger problems because of the storage require-

ments and required computational effort. In this paper we describe a

parallel implementation of the primal-dual method on a shared memory

system. Computational results are presented, including the solution of

some large scale problems with over 50,000 constraints.

1 Introduction

A variety of methods for solving semidefinite programming problems have been

implemented, including primal-dual interior point methods [5, 17, 16, 18, 19, 20],

dual interior point methods [3], and augmented Lagrangian methods [7, 8, 14].
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Of the widely used software packages, CSDP, SeDuMi, SDPA, and SDPT3 all

implement primal–dual interior point methods. CSDP uses the HKM direction

with a predictor–corrector scheme in an infeasible interior point algorithm[5].

SeDuMi uses the NT search direction with a predictor–corrector scheme and

uses the self dual embedding technique[17]. Version 6.0 of SDPA uses the HKM

direction within an infeasible interior point algorithm. SDPT3 uses either the

HKM or NT direction with a predictor–corrector scheme in an infeasible interior

point algorithm[19].

There are two main differences between the codes. Some of the codes use the

HKM search direction while others use the NT search direction. The other major

difference between the codes is that some of the codes use an infeasible interior

point approach while others use a self dual embedding approach. Although

these choices can have a significant effect on the speed and accuracy of the

solutions obtained, they have little effect on the storage requirements of the

algorithms. Since storage limitations are often more important than CPU time

limitations in solving large SDP’s by primal–dual interior point methods, we

will focus primarily on storage issues. Although the discussion in this paper is

based on the implementation of the HKM method in CSDP, the results on the

asymptotic storage requirements are applicable to all of the codes listed above.

The algorithms used by all of the primal–dual interior–point codes require

the creation and Cholesky factorization of a large, dense, Schur complement

matrix. This matrix is of size m by m where m is the number of linear equality

constraints. The primal–dual codes have been developed and used mostly on

desktop PC’s, which until recently have been limited to 32–bit addressing. A 32–

bit system can address only 4 gigabytes of RAM, which is inadequate for some

of the larger problems solved in this paper. For example, the hamming 10 2

problem has 23,041 constraints, so the resulting Schur complement matrix has
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23,041 rows and columns and requires 23.6 gigabytes of memory.

There are two general approaches to overcoming this limitation. The first is

to use a computer with 64–bit addressing and more than 4 gigabytes of RAM.

With 64–bit addressing, it would theoretically be possible to access over 1019

bytes of storage and handle a problem with over a billion constraints. In practice,

64–bit workstations often have 16 to 32 gigabytes of RAM while large servers

may have 256 gigabytes or more of RAM. This allows for the solution of problems

with tens of thousands of constraints, but not for the solution of problems with

several hundred thousand or more constraints.

Another approach to dealing with the storage limitation is to distribute

the Schur complement matrix over several computers within a cluster. This

approach has been used in a parallel version of SDPA[21]. It has also been used

in the dual interior point code PDSDP[2]. One problem with this approach is

that other data structures used by the algorithm may also become too large to

handle with 32–bit addressing. Recently, the authors of SDPA have produced a

64–bit version of their code that also takes advantage of shared memory[12].

2 Analysis

In this paper we consider semidefinite programming problems of the form

max tr (CX)

A(X) = a

X � 0

(1)

3



where

A(X) =



tr (A1X)

tr (A2X)

. . .

tr (AmX)


. (2)

Here X � 0 means that X is positive semidefinite. All of the matrices Ai, X,

and C are assumed to be of size n by n and symmetric. In practice, the X and

Z matrices often have block diagonal structure with diagonal blocks of size n1,

n2, . . ., nk.

The dual of (2) is

min aT y

AT (y)− C = Z

Z � 0

(3)

where

AT (y) =
m∑

i=1

yiAi. (4)

The available software packages for semidefinite programming all solve slight

variations of this primal–dual pair. For example, the primal–dual pair used in

SDPA interchanges the primal and dual problems[20].

In analyzing the computational complexity of primal–dual methods, we will

focus on the time per iteration of the algorithms. In practice, the number of

iterations required grows very slowly with the size of the problem, and vari-

ations in problem structure seem to be more significant than problem size in

determining the number of iterations required.

The algorithms used by the various primal–dual codes all involve the con-

struction and Cholesky factorization of a symmetric and positive definite Schur

complement matrix of size m by m in each iteration of the algorithm.
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For the HKM method, the Schur complement matrix, O, is given by

O =
[
A(Z−1A1X), A(Z−1A2X), . . . , A(Z−1AmX)

]
. (5)

For dense X, Z, and Aj , the m products Z−1AjX can be computed in O(mn3)

time. Given Z−1AjX, computing A(Z−1AjX) requires O(mn2) time. In the

worst case, for fully dense constraint matrices, the construction of the Schur

complement matrix takes O(mn3 + m2n2) time.

In practice the constraint matrices are often extremely sparse. This spar-

sity can be exploited in the construction of the Schur complement matrix [11].

For sparse constraint matrices with O(1) entries, Z−1AjX can be computed in

O(n2) time. Computing all m products Z−1AjX takes O(mn2) time. Once the

products have been computed, the A() operations can be computed in O(m2)

additional time. The resulting Schur complement matrix is typically fully dense.

Computing the Cholesky factorization of the dense Schur complement matrix

takes O(m3) time.

In addition to the construction and factorization of the Schur complement

matrix, the algorithms also require a number of operations on the X and Z ma-

trices, such as matrix multiplications, Cholesky factorization, and computation

of eigenvalues. These operations require O(n3) time. When the matrices have

block diagonal structure, this becomes O(n3
1 + . . . + n3

k).

The overall computational complexity of iterations of the primal-dual algo-

rithm is dominated by different operations depending on the particular structure

of the problem. For many problems, m� n, and constraint matrices are sparse.

In this case, the O(m3) operation of factoring the Schur complement matrix be-

comes dominant. On the other hand, when n is large compared to m, and

the problem does not have many small blocks, the O(n3) time for other opera-

tions on the X and Z matrix can be dominant. In cases where there are dense
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constraints, the construction of the Schur complement matrix can become the

bottleneck.

Storage requirements are at least as important as the computational com-

plexity. In practice, the size of the largest problems that can be solved often

depends more on available storage than on available CPU time. In the worst

case, storage for problem data including C, a, and the constraint matrices can

require O(mn2) storage. However, in practice most constraints are sparse, with

O(1) entries per constraint, so that the constraint matrices take O(m) storage.

The C matrix, which often is dense, requires O(n2) storage in the worst case.

The Schur complement matrix is typically fully dense for SDP problems and

requires O(m2) storage. This is in contrast to primal–dual methods for linear

programming, where the Schur complement matrix is typically quite sparse. The

X matrix is typically fully dense and requires O(n2
1+ . . .+n2

k) storage. The dual

matrix Z may be either sparse or dense, and requires O(n2
1 + . . . n2

k) storage in

the worst case. There are typically several block diagonal work matrices used

by the algorithm. For example, the storage requirements for CSDP include a

total of 11 matrices of size and block diagonal structure of X. The approximate

storage requirements, ignoring lower order terms, for CSDP are

Storage (Bytes) = 8(m2 + 11(n2
1 + . . . + n2

k)). (6)

The results on computational complexity and storage requirements summa-

rized in this section shed useful light on the question of how the performance and

storage requirements of primal–dual interior point methods for SDP scale with

problem size. In the typical case of sparse constraint matrices, with m � n,

running time will grow as O(m3), and storage required will grow as O(m2).

This growth is relatively tame, so that as computers become more powerful, we

should be able to make progress in solving larger problems.
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3 A Parallel Version of CSDP

In this section, we describe a 64-bit parallel version of CSDP implemented on a

shared memory system. This code is based on CSDP 5.0. The code is written in

ANSI C with additional OpenMP directives for parallel processing [9]. We also

assume that parallelized implementations of BLAS and LAPACK are available

[4, 1]. The code is available under both the GNU Public License (GPL) and the

Common Public License (CPL). Hans Mittelmann at Arizona State University

has also made the code available through NEOS [10].

Most 64–bit computers use a computational model in which integers are

stored as 32–bit numbers while long integers and pointers to data structures

are stored as 64–bit quantities. In converting the existing 32–bit code to 64–

bit form it was necessary to search carefully for any places in the code where

it was assumed that pointers were 32–bit quantities. For well written C code,

such errors are not common and they can easily be fixed when found. A second

issue was that 32–bit integers were used in some places as indices into large

arrays that could exceed 232 entries. These integer variables were retyped as

long integer variables.

CSDP makes extensive use of routines from the BLAS and LAPACK libraries

to implement matrix multiplication, Cholesky factorization, and other linear al-

gebra operations. Since most vendors already provide highly optimized parallel

implementations of these libraries, there was no need for us to reimplement the

linear algebra libraries.

Outside of the BLAS and LAPACK routines, the major computationally

intensive part of the code involves the creation of the Schur complement matrix.

Although the C compilers that we used to compile this code were capable of

automatically parallelizing loops, this automatic parallelization is often not as

efficient as explicitly specifying the parallelization.
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Our initial attempt to parallelize this code involved the use of automatic

compiler parallelization. Tables 1 and 2 show the run times and parallel ef-

ficiencies for a small collection of test problems. For each problem, the time

spent computing the elements of the Schur complement matrix, the Cholesky

factorization of the Schur complement matrix, and other operations are given.

Speedups were computed for each phase of of the computation and parallel ef-

ficiencies were obtained by dividing each speedup by the number of processors.

In the control10 problem, the computation of the elements of the Schur com-

plement matrix dominates the total solution time. Unfortunately, this scales

very poorly with the number of processors, so that overall performance scales

poorly. In the maxG51 problem, other operations dominate the total solution

time. The time to perform these operations scales poorly with the number of

processors. In the theta6 problem, the time to compute the Cholesky factor-

ization of the Schur complement matrix is somewhat time consuming but not

completely dominant. Although the Cholesky factorization scales well with the

number of processors, the computation of elements of the Schur complement

matrix and other operations do not scale well, and the overall performance of

the code on these problems is poor.

It is clear from these initial results that although the Cholesky factorization

scales well, it is necessary to improve the parallelization of the computation of

the elements of the Schur complement matrix and other operations. For this

reason, the serial routine for the creation of the Schur complement matrix from

CSDP was rewritten in explicitly parallel form using OpenMP directives. In

this version of the code, individual processors are assigned to work on horizontal

strips of the Schur complement matrix, with each processor computing a block of

16 rows of the matrix before moving on to another block. Similar modifications

were made to other routines in CSDP.
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The software was developed and tested on both a four processor Sunfire V480

server at Arizona State University and on an IBM p690 system with 1.3 GHz

processors at the National Center for Supercomputer Applications (NCSA). The

results reported here are based on computations performed at NCSA.

A collection of test problems was selected from the DIMACS library of mixed

semidefinite-quadratic-linear programs, the SDPLIB collection of semidefinite

programming problems, and from problems that have been solved in other pa-

pers [2, 6, 13, 15, 21].

Tables 3 and 4 show run times and parallel efficiencies for the solution of the

test problems using one to sixteen processors. In these tables, m is the number

of constraints, and nmax is the size of the largest block in the X matrix. Run

times are given in seconds.

The table of parallel efficiencies shows some superlinear speedup anomalies.

Superlinear speedups can occur because the system makes more cache memory

available as additional processors are used. Also, there are sometimes differences

in the number of iterations required by the algorithm. For example, on problem

CH4, most runs required 30 iterations, but with one processor, 32 iterations

were required. This results in anomalous parallel efficiencies of over 100%.

In these results, we see that the performance of both the Cholesky factoriza-

tion and the construction of the Schur complement matrix scale well with the

number of processors. However, the performance of other operations does not

scale as well, and in cases where these operations require a significant amount

of time, this effects the overall performance of the code. For example, on the

maxG51, maxG55, and maxG60 problems, other operations dominate the run-

ning time, and scale poorly with the number of processors. In problems where

the computation of the elements of Schur complement matrix and the Cholesky

factorization take most of the running time, the performance of CSDP scales
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very well with the number of processors.

It is difficult to directly compare run times for CSDP with run times for

SDPARA and PDSDP, since the codes have been run on systems with different

processors. The processors used by CSDP are 1.3 GHz Power 4 processors, while

SDPARA was run on a cluster of machines with 1.6 GHz Athlon processors,

and PDSDP was run on a cluster of machines with 2.4 GHz Pentium Xeon

processors. However, it is reasonable to compare the parallel efficiencies of the

codes.

In order to calculate parallel efficiency, we must know the solution time

for a problem using only one processor. Unfortunately, SDPARA was able

to solve only four problems using a single processor[21]. Table 5 shows the

parallel efficiencies for SDPARA using between 1 and 64 processors on these four

problems. In general, the computation of the elements of the Schur complement

matrix scales very well, while the Cholesky factorization and other computations

scale poorly. On the control10 and control11 problems, SDPARA has somewhat

better parallel efficiency than CSDP with 16 processors. On the theta5 and

theta6 problems, CSDP has better parallel efficiency than SDPARA with 16

processors. In SDPARA, the performance of the Cholesky factorization scales

poorly, while the performance of the computation of the elements of the Schur

complement matrix scales well.

Similarly, we computed parallel efficiencies for the problems solved with 1 to

32 processors by PDSDP[2]. These efficiencies are shown in Table 6. The parallel

efficiency of over 400% in the elements computation on problem theta62 with

two processors is an unexplained anomaly. Overall the parallel efficiency with 16

processors is better for CSDP than for PDSDP on all but two of the problems.

Again, we see that in PDSDP the Cholesky factorization scales poorly, while

the computation of the elements of the Schur complement matrix scales well.
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Problem m nmax Phase 1 2 4 8 16
control10 1326 100 Elements 167.1 200.0 182.2 159.4 174.3

Cholesky 10.0 6.0 4.1 2.4 1.1
Other 20.6 28.3 27.0 23.9 27.1
Total 197.7 234.3 213.3 185.7 202.5

maxG51 1000 1000 Elements 2.8 3.6 3.7 3.1 2.9
Cholesky 2.0 1.2 0.7 0.4 0.2
Other 134.9 98.2 65.8 43.5 30.6
Total 139.7 103.0 70.2 47.0 33.7

theta6 4375 300 Elements 73.9 82.6 103.6 108.4 103.4
Cholesky 174.8 84.9 51.2 24.9 14.3
Other 18.9 17.9 22.1 24.6 20.3
Total 267.6 185.4 176.9 157.9 138.0

Table 1: Run times (in seconds) for the solution of selected SDP problems using
CSDP 5.0 with automatic compiler parallelization.

Problem m nmax Phase 1 2 4 8 16
control10 1326 100 Elements 100 42 23 13 6

Cholesky 100 83 61 52 57
Other 100 36 19 11 5
Total 100 42 23 13 6

maxG51 1000 1000 Elements 100 39 19 11 6
Cholesky 100 83 71 63 63
Other 100 69 51 39 28
Total 100 68 50 37 26

theta6 4375 300 Elements 100 45 18 9 4
Cholesky 100 103 85 88 76
Other 100 53 21 10 6
Total 100 72 38 21 12

Table 2: Percent parallel efficiencies for selected SDP problems using CSDP 5.0
with automatic compiler parallelization.
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Problem m nmax Phase 1 2 4 8 16
CH4 24503 324 Elements 11299.5 3824.2 2595.3 1214.4 603.4

Cholesky 81276.0 32213.1 18276.0 9000.4 4333.4
Other 3328.5 1395.6 1085.3 690.6 756.9
Total 95904.0 37432.9 21956.6 10905.4 5693.7

control10 1326 100 Elements 172.5 106.7 41.7 16.9 12.0
Cholesky 11.0 6.5 3.3 1.9 0.9
Other 23.0 22.9 16.5 11.3 10.5
Total 206.5 136.1 61.5 30.1 23.4

control11 1596 110 Elements 251.3 154.7 64.7 32.9 21.1
Cholesky 19.4 11.7 5.5 2.6 1.4
Other 29.6 30.7 20.9 19.5 20.5
Total 300.3 197.1 31.1 55.0 43.0

fap09 15225 174 Elements 8999.7 3764.6 2053.5 1011.8 494.2
Cholesky 39341.3 18083.3 9242.0 4561.0 2202.4
Other 2489.1 1144.5 631.7 361.4 216.9
Total 50830.1 22992.4 11927.2 5934.2 2913.5

hamming 8 3 4 16129 256 Elements 879.0 579.5 231.6 120.1 58.4
Cholesky 7538.1 4251.6 1935.8 973.6 479.6
Other 430.6 334.3 138.3 78.4 44.3
Total 8847.7 5165.4 2305.7 1172.1 582.3

hamming 10 2 23041 1024 Elements 2629.3 1401.0 683.5 286.2 148.4
Cholesky 34083.0 17596.0 8704.3 3921.8 2070.7
Other 1693.9 1100.5 696.2 380.5 289.4
Total 38406.2 20097.5 10084.0 4588.5 2508.5

LiF 15313 256 Elements 3283.8 1536.2 665.9 367.0 456.9
Cholesky 14166.5 6635.1 3207.6 1727.7 1995.4
Other 929.5 507.8 278.5 213.5 698.0
Total 18379.8 8679.1 4152.0 2308.2 3150.3

maxG51 1000 1000 Elements 1.1 0.7 0.3 0.2 0.1
Cholesky 2.3 1.1 0.7 0.3 0.2
Other 143.2 78.6 50.7 35.4 26.4
Total 146.6 80.4 51.7 35.9 26.7

maxG55 5000 5000 Elements 64.5 32.8 21.5 12.7 5.5
Cholesky 275.5 128.6 71.3 37.8 16.5
Other 7802.2 4943.1 4143.6 4577.2 2475.4
Total 8142.2 5104.5 4236.4 4627.7 2497.4

maxG60 7000 7000 Elements 158.9 94.9 49.7 29.3 14.1
Cholesky 785.4 397.5 199.3 108.2 50.5
Other 21123.1 14622.3 10366.3 8993.6 6704.0
Total 22067.4 15114.7 10615.3 9131.1 6768.6

theta4 1949 200 Elements 7.0 4.1 1.5 0.8 0.4
Cholesky 19.3 8.9 4.2 2.5 1.0
Other 5.6 3.7 2.1 1.8 1.8
Total 31.9 16.7 7.8 5.1 3.2

theta5 3028 250 Elements 23.9 12.2 5.4 2.6 1.2
Cholesky 65.1 31.6 15.5 7.9 3.7
Other 11.5 7.3 4.6 3.3 2.6
Total 100.5 51.1 25.5 13.8 7.5

theta6 4375 300 Elements 36.6 23.5 12.7 6.7 3.2
Cholesky 171.4 89.2 45.2 23.1 11.2
Other 18.7 14.0 8.8 6.0 5.6
Total 226.7 126.7 66.7 35.8 20.0

theta8 7905 400 Elements 294.5 98.1 72.7 23.9 13.9
Cholesky 1142.6 500.7 284.7 118.9 60.3
Other 139.6 54.7 41.2 16.8 12.3
Total 1576.7 653.5 398.6 159.6 86.5

theta42 5986 200 Elements 133.0 62.4 23.1 12.2 8.7
Cholesky 472.1 238.0 100.1 506. 29.6
Other 53.1 28.2 11.5 6.9 6.7
Total 658.2 328.6 134.7 69.7 45.0

theta62 13390 300 Elements 639.5 363.8 174.9 87.7 49.0
Cholesky 4923.9 2641.8 1266.0 622.9 335.8
Other 311.5 192.1 100.6 50.6 33.9
Total 5874.9 3197.7 1541.5 761.2 418.7

theta82 23872 400 Elements 2521.4 1234.8 673.9 323.9 156.0
Cholesky 30368.0 14577.8 7503.6 3750.4 1829.3
Other 1239.1 653.8 360.5 184.4 101.8
Total 34128.5 16466.4 8538.0 4258.7 2087.1

Table 3: Run times (in seconds) for the solution of selected SDP problems.
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Problem m nmax Phase 1 2 4 8 16
CH4 24503 324 Elements 100 148 109 116 117

Cholesky 100 126 111 113 117
Other 100 119 77 60 27
Total 100 128 109 110 105

control10 1326 100 Elements 100 81 103 128 90
Cholesky 100 85 83 72 76
Other 100 50 35 25 14
Total 100 76 84 86 55

control11 1596 110 Elements 100 81 97 95 74
Cholesky 100 83 88 93 87
Other 100 48 35 19 9
Total 100 76 82 68 44

fap09 15225 174 Elements 100 120 110 111 114
Cholesky 100 109 106 108 112
Other 100 109 99 86 72
Total 100 111 107 107 109

hamming 8 3 4 16129 256 Elements 100 76 95 91 94
Cholesky 100 89 97 97 98
Other 100 64 78 69 61
Total 100 86 96 94 95

hamming 10 2 23041 1024 Elements 100 94 96 115 111
Cholesky 100 97 98 109 103
Other 100 77 61 56 37
Total 100 96 95 105 96

LiF 15313 256 Elements 100 107 123 112 45
Cholesky 100 107 110 102 44
Other 100 92 83 54 8
Total 100 106 111 100 36

maxG51 1000 1000 Elements 100 79 92 69 69
Cholesky 100 105 82 96 72
Other 100 91 71 51 34
Total 100 91 71 51 34

maxG55 5000 5000 Elements 100 98 75 63 73
Cholesky 100 107 97 91 104
Other 100 79 47 21 20
Total 100 80 48 22 20

maxG60 7000 7000 Elements 100 84 80 68 70
Cholesky 100 99 99 91 97
Other 100 72 51 29 20
Total 100 73 52 30 20

theta4 1949 200 Elements 100 85 117 109 109
Cholesky 100 108 115 97 121
Other 100 76 67 39 19
Total 100 96 102 78 62

theta5 3028 250 Elements 100 98 111 115 124
Cholesky 100 103 105 103 110
Other 100 79 62 44 28
Total 100 98 99 91 84

theta6 4375 300 Elements 100 78 72 68 71
Cholesky 100 96 95 93 96
Other 100 67 53 39 21
Total 100 89 85 79 71

theta8 7905 400 Elements 100 150 101 154 132
Cholesky 100 114 100 120 118
Other 100 128 85 104 71
Total 100 121 99 123 114

theta42 5986 200 Elements 100 107 144 136 96
Cholesky 100 99 118 117 100
Other 100 94 115 96 50
Total 100 100 122 118 91

theta62 13390 300 Elements 100 88 91 91 82
Cholesky 100 93 97 99 92
Other 100 81 77 77 57
Total 100 92 95 96 88

theta82 23872 400 Elements 100 102 94 97 101
Cholesky 100 104 101 101 104
Other 100 95 86 84 76
Total 100 104 100 100 102

Table 4: Percent parallel efficiencies for selected SDP problems.
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Table 7 shows the results obtained using four processors on a somewhat

larger collection of test problems using four processors. Here the number of

constraints, m, varies from 1326 up to 56321, while the size of the largest block

in X varies from 100 up to 8113. Run times are given in seconds. For each

solution, the largest of the six DIMACS errors is reported[15]. The DIMACS

error measures show that all of these problems were solved to high accuracy.

Finally, the storage in gigabytes required, as reported by the operating system,

is given for each solution.

For the fap and hamming families, m is significantly larger than n, and the

constraint matrices are sparse, so that we would expect the running time to

grow as O(m3). This relationship is roughly correct for the fap and hamming

problems.

4 Conclusions

Analysis of the complexity of the primal–dual interior point methods for SDP

show that the storage required should grow quadratically in m and n, while for

problems with sparse constraints, the growth in running time should be cubic

in m and n.

We have described a 64–bit code running in parallel on a shared memory

system. In comparison with primal-dual codes running on distributed memory

systems, the scalability of the Cholesky factorization of the Schur complement

matrix is improved substantially. Our code has been used to solve semidefinite

programming problems with over 50,000 constraints. This code obtained parallel

efficiencies of 48% to 122% with four processors and 20% to 114% with 16

processors.

As 64–bit processing, shared memory parallel processors, and systems with

large memory become common, the solution of SDP’s of this size by primal–dual
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codes will become common.

Significant challenges remain. One important challenge is the effective par-

allelization of SDP solvers on supercomputers with hundreds or thousands of

processors. Another important challenge is the solution of very large problems

with hundreds of thousands of constraints. For the foreseeable future, primal–

dual codes, even running on supercomputers, will not have enough memory to

solve such very large SDP’s. Thus there is a continued need for research into

methods for SDP that do not require the O(m2) storage used by the primal–dual

methods.
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Problem m nmax Phase 1 2 4 8 16 32 64
control10 1326 100 Elements 100 102 101 104 109 106 103

Cholesky 100 87 65 39 31 16 13
Other 100 39 25 14 9 5 2
Total 100 94 85 74 65 43 28

control11 1596 110 Elements 100 103 103 102 105 95 105
Cholesky 100 93 73 44 34 19 16
Other 100 34 23 15 8 6 2
Total 100 94 88 76 64 50 34

theta5 3028 250 Elements 100 111 117 121 125 121 114
Cholesky 100 120 98 68 59 35 32
Other 100 40 25 15 9 6 3
Total 100 97 77 54 40 27 17

theta6 4375 300 Elements 100 112 119 123 126 124 117
Cholesky 100 129 112 83 73 48 38
Other 100 20 26 17 12 7 4
Total 100 88 89 67 55 37 25

Table 5: Percentage parallel efficiencies for problems solved by SDPARA. Times
were taken from [21].
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Problem m nmax Phase 1 2 4 8 16 32
control10 1326 100 Elements 100 98 82 69 67 61

Cholesky 100 76 59 34 18 9
Other 100 68 39 26 13 7
Total 100 95 76 61 49 36

control11 1596 110 Elements 100 99 82 71 74 64
Cholesky 100 77 65 38 23 11
Other 100 74 50 31 18 10
Total 100 96 78 64 58 42

maxG51 1000 1000 Elements 100 99 78 73 63 50
Cholesky 100 74 50 28 15 7
Other 100 51 26 13 7 3
Total 100 82 56 36 21 10

maxG55 5000 5000 Elements 100 102 69 69 72 65
Cholesky 100 80 71 56 45 30
Other 100 57 28 14 7 4
Total 100 90 60 46 33 20

maxG60 7000 7000 Elements 100 101 64 65 51 43
Cholesky 100 91 83 69 54 39
Other 100 48 24 10 6 3
Total 100 90 58 44 31 19

theta4 1949 200 Elements 100 100 61 51 37 28
Cholesky 100 78 66 45 28 14
Other 100 50 27 12 6 3
Total 100 83 62 44 28 16

theta6 4375 300 Elements 100 102 59 52 41 33
Cholesky 100 83 73 56 45 29
Other 100 65 27 18 6 4
Total 100 87 67 54 40 28

theta8 7905 400 Elements 100 96 50 49 41 36
Cholesky 100 88 78 69 58 41
Other 100 47 22 13 7 3
Total 100 89 69 62 51 37

theta42 5986 200 Elements 100 100 49 43 36 31
Cholesky 100 87 77 64 51 36
Other 100 54 16 9 7 3
Total 100 88 70 58 47 34

theta62 13390 300 Elements 100 453 215 196 169 157
Cholesky 100 96 93 83 74 58
Other 100 118 62 31 16 8
Total 100 124 111 99 86 68

Table 6: Percentage parallel efficiencies for problems solved by PDSDP. Times
were taken from [2].
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Problem m nmax Elements Cholesky Other Total Error Storage
CH4.1A1.STO6G.noncore.pqg 24503 324 2595.3 18276.0 1085.3 21956.6 7.7e-09 4.54G
control10 1326 100 41.7 3.3 16.5 61.5 8.5e-08 0.03G
control11 1596 110 64.7 5.5 20.9 91.1 1.2e-07 0.03G
fap09 15225 174 2053.5 9242.0 631.7 11927.2 1.4e-08 2.93G
fap12 26462 369 4138.6 34915.1 4529.8 40583.5 4.4e-09 5.29G
hamming 8 3 4 16129 256 231.6 1935.8 138.3 2305.7 6.1e-07 1.98G
hamming 9 5 6 53761 512 2935.6 91769.6 2683.7 97388.9 1.3e-07 21.70G
hamming 10 2 23041 1024 683.5 8704.3 696.2 10084.0 8.3e-07 4.13G
hamming 11 2 56321 2048 4863.9 134235.7 3955.8 143055.4 1.1e-06 24.30G
ice 2.0 8113 8113 222.5 1144.7 97299.9 98667.1 5.4e-07 7.86G
LiF.1Sigma.STO6G.pqg 15313 256 665.9 3207.6 278.5 4152.0 3.3e-09 1.79G
maxG51 1000 1000 0.3 0.7 50.7 51.7 2.3e-09 0.12G
maxG55 5000 5000 21.5 71.3 4143.6 4236.4 1.1e-08 2.98G
maxG60 7000 7000 49.7 199.3 10366.3 10615.3 2.4e-08 5.85G
p auss2 9115 9115 296.0 1751.4 246432.4 248479.8 1.0e-08 9.93G
theta4 1949 200 1.5 4.2 2.1 7.8 8.1e-09 0.04G
theta5 3028 250 5.4 15.5 4.6 25.5 2.8e-08 0.09G
theta6 4375 300 12.7 45.2 8.8 66.7 2.3e-07 0.17G
theta8 7905 400 72.7 284.7 41.2 398.6 2.4e-07 0.51G
theta42 5986 200 23.1 100.1 11.5 134.7 1.5e-07 0.29G
theta62 13390 300 174.9 1266.0 100.6 1541.5 1.6e-08 1.37G
theta82 23872 400 673.9 7503.6 360.5 8533.0 2.4e-08 4.31G

Table 7: Results with four processors.
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