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� Introduction

A number of codes for semide�nite programming �SDP� are already available� in�
cluding ��� 	� 
� �� ��� Why introduce yet another code for SDP�
CSDP is written in C for e�ciency and portability� The code is designed to make

use of highly optimized linear algebra routines from the LINPACK or LAPACK
libraries� CSDP is distributed with version of the necessary LINPACK routines
that have been translated into C� The package also includes an optimized version
of the BLAS routine DGEMM ��� ��
CSDP is designed to handle constraint matrices with general sparse structure�

CSDP can accommodate linear inequality constraints as well as linear equality
constraints� In addition to its SDP solver� the CSDP library contains routines for
reading and writing SDP problems and solutions� The code has been designed for
use both as a stand alone solver and as a callable subroutine for use within larger
programs that require the solution of SDP subproblems� We present results from
the solution of the SDPLIB test problems ��� CSDP has also been used in a code
for the solution of MAX���SAT problems ���
The remainder of this paper is organized as follows� First� we discuss the formula�

tion of the semide�nite programming problem used by CSDP� We then describe the
predictor corrector algorithm used by CSDP to solve the SDP� We discuss the stor�
age requirements of the algorithm as well as its computational complexity� Finally�
we present results from the solution of a number of test problems�

� The SDP Problem

We consider semide�nite programming problems of the form

max tr �CX�
A�X� � a
B�X� � b

X � �

���

�
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where

A�X� �

�
���

tr �A�X�
tr �A�X�

� � �
tr �AkX�

�
��� ���

and

B�X� �

�
���

tr �B�X�
tr �B�X�

� � �
tr �BlX�

�
��� � �	�

All of the matrices are assumed to be symmetric�

The dual of this SDP is

min aT y � bT t
AT �y� �BT �t�� C � Z

Z � �
t � �

���

where

AT �y� �

kX
i��

yiAi ���

and

BT �t� �
lX

i��

tiBi� ���

	 The Predictor Corrector Algorithm

The algorithm for SDP discussed in this section is a predictor corrector variant of
the algorithm presented by Helmberg� Rendl� Vanderbei� and Wolkowicz ��� We
will make frequent reference to this paper� and use its notation� We begin with the
dual barrier problem

min aT y � bT t� ��log detZ � eT log t�
AT �y� �BT �t�� C � Z

Z � �
t � ��

���

The algorithm works by taking steps towards a solution to ���� and slowly reducing
the parameter �� In the limit as � goes to �� we obtain a solution to ���� It can be
shown that an optimal solution to ��� has

� �
tr�ZX� � tT �b�B�X��

�n�m�
� �
�
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In order to drive � to zero� at each iteration of the algorithm we adjust � to

� �
tr�ZX� � tT �b�B�X��

��n�m�
� ���

The �rst order necessary optimality conditions for ��� are

Z � C �AT �y��BT �t� � �
a�A�X� � �

b�B�X�� �t�� � �
X � �Z�� � ��

����

Our algorithm is designed to work with a starting solution that may not satisfy
A�X� � a or Z � AT �y� �BT �t�� C� so we de�ne

Fp � a�A�X� ����

and
Fd � �AT y �BT �t� � C � Z� ����

The predictor step is the Newton�s method step for these equations with � � ��

� �Z �AT ���y��BT ���t� � �Fd
�A�� �X� � �Fp

��t � �b�B�X��� t �B�� �X� � �t � �b�B�X��

Z� �X �� �ZX � �ZX�
��	�

These equations are solved as in ��� We reduce ��	� to

A�Z��AT ���y�X� �A�Z��BT ���t�X� � �a�A�Z��FdX�
B�Z��AT ���y�X� � �b�B�X�� � t�� ���t�B�Z��BT ���t�X� � �b�B�Z��FdX��

����
In matrix form� this system of equations can be written as�

O�� O��

O�� O��

� �
��y
��t

�
�

� �a�A�Z��FdX�
�b�B�Z��FdX�

�
����

where

O�� �
	
A�Z��AT �e��X� � � � A�Z��AT �ek�X�



O�� �

	
A�Z��BT �e��X� � � � A�Z��BT �el�X�



O�� �

	
B�Z��AT �e��X� � � � B�Z��AT �ek�X�



O�� �

	
B�Z��BT �e��X� � � � B�Z��BT �el�X�



� diag ��b�B�X� � t����

����
As Helmberg� Rendl� Vanderbei� and Wolkowicz have shown� the O matrix is sym�
metric and positive de�nite ��� Thus we can compute Cholesky factorization of
O and then use the factorization to solve the system of equations� Once we have
solved these equations for ��y and ��t� we compute � �X and � �Z as

� �X � �X � Z��FdX � Z���AT ���y� �BT ���t��X ����
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and
� �Z � �Fd �AT ���y� �BT ���t�� ��
�

Note that � �X might not be symmetric� In order to keep our solution X symmetric�
we force � �X to be symmetric by averaging the o� diagonal entries�
For the corrector step� we compute a Newton step from �X �� �X�Z �� �Z� y �

��y� t���t� towards a solution to �����

� �Z �AT ���y��BT ���t� � �
�A�� �X� � �

��t � �b�B�X �� �X��� t �B�� �X� � �e� t � �b�B�X �� �X��

�Z �� �Z�� �X �� �Z�X �� �X� � ��Z �� �Z��X �� �X� � �I�

����

Dropping higher order terms from the left hand side� and simplifying the right hand
side� we obtain

� �Z �AT ���y��BT ���t� � �
�A�� �X� � �

��t � �b�B�X��� t �B�� �X� � �e� t � �b�B�X �� �X��

Z� �X �� �ZX � �� �Z� �X � �I�

����

These equations have the same form as ��	� and are solved as before to obtain
�� �X�� �Z���y���t�� Next� we add the predictor and corrector steps to compute

�X � � �X �� �X

�Z � � �Z �� �Z
�y � ��y ���y
�t � ��t���t�

����

We would like to take full steps of length one in each of X � y� t� and Z� However�
there is a chance that this would lead to an infeasible solution� Thus we perform a
line search to �nd the maximum safe steps �P and �D � Finally� we move from the
current point �X� y� t� Z� to �X � �P�X� y � �D�y� t� �D�t� Z � �D�Z��
In practice� the system matrix O may become numerically singular even though

X and Z are numerically nonsingular� In this case� CSDP returns to the previous
solution� and executes a centering step with

� �
tr�ZX� � tT �b�B�X��

�n�m�
� ����

Users of CSDP can specify their own termination criteria� However� the default
criteria are that

jtr�CX���aT y�bT t�j
��j�aT y�bT t�j � ���� ����

jjA�x��ajj
��jjajj � ���� ����

jjAT �y��BT �t��C�ZjjF
��jjCjjF

� ���� ����

BT �t� � b
t � �

X�Z � ��

��	�
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� Computational Complexity

In this section we consider the storage requirements and computational complexity
of the predictor corrector algorithm� We will consider a problem with n by n
matrices� X � Z� and C� and m equality constraints� The analysis is essentially
unchanged by the addition of inequality constraints�

In addition to the problem data� our implementation of the algorithm requires
one array of size m by m� and twelve arrays of size n by n� Assuming that the
constraint matrices are sparse� and assuming that m is much larger than n� the
storage required by the system matrix� O� usually dominates the total storage
requirements� For example� in computing the Lovasz � number of a graph with ���
nodes and ���� edges� n is ���� while m is ������ In our example� the ����� by
����� matrix O occupies over 
 megabytes of storage� while the ��� by ��� matrices
occupy a total of about � megabyte of storage� In this example� there are a total
of ����� nonzero entries in the constraint matrices�
In practice� the number of iterations required by the algorithm is generally less

than 	�� and seems to grow slowly with the size of the problem� For that reason�
we�ll focus on the computational complexity of a single iteration of the algorithm�
In the implementation of the semide�nite programming algorithm� there are three
computational tasks that are of particular signi�cance�

�Computing the system matrix O� requires O�m�n�m� n��� time� This is in the
worst case� assuming that the constraint matrices are dense�

�Factoring the system matrix O� requires O�m�� time�

�Factoring matrices of size n� requires O�n�� time�

Since m is often much larger than n� computing and factoring the O matrix is usu�
ally much harder than various operations on the n by n matrices� In our example�
factoring the �� ��� by �� ��� matrix O is about �� ��� times harder than factoring
one of the ��� by ��� matrices�

This analysis assumes that the constraint matrices Ai are fully dense matrices� In
many cases� these matrices are sparse� and considerable performance improvement
is possible in the construction of O� If the individual constraint matrices have O���
nonzero entries� a simple analysis shows that we can construct O in O�m�n� �m��
time� Unfortunately� the system matrix O is normally dense� so there is no way to
exploit sparsity in factoring O�

Thus if m is somewhat larger than n� and the constraint matrices are sparse� the
most di�cult part of each iteration is computing the Cholesky factorization of a m
by m matrix� In our implementation� we have used routines from the LINPACK
or LAPACK libraries to compute this factorization� On many systems� highly
optimized versions of the libraries are available� Using such an optimized library
can greatly improve the performance of CSDP�
It should also be noted that in some cases it is possible to greatly simplify the

computation of A�X�� AT �y�� B�X�� BT �t� and O� For example� if the constraints
are of the form Xi�i � �� i � � � � � n� then A�X� � diag�X�� AT �y� � diag�y�� and
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O � X � Z��� CSDP allows the user to write routines that implement specialized
versions of these operations�

� Test Problems

In this section� we discuss the solution of a set of test problems taken from ��� For
comparison� we also report results from SDPA version ��� �	� All computations
were performed on a Sun Ultra ����� workstation under Solaris ������ For these
runs� ��� megabytes of virtual storage were available� A time limit of �� CPU hours
was also enforced�
For these problems� CSDP used an initial solution similar to the one used in ���

This initial solution has
X � �I
Z � �I
y � �

����

where
� � nmax

k
�� � jakj�	�� � jjAkjjF � ����

and
� � �� �max�max

k
�jjAkjjF �� jjCjjF ��	

p
n� ����

Computational results for the SDPLIB problems are shown in tables � through
	� The notation �
 �� hrs indicates that one of the codes couldn�t solve the
problem within the �� CPU hour time limit� The notation �mem indicates that
the problem couldn�t be solved within the ��� megabytes of available virtual stor�
age� Problems infp�� infp�� infd�� and infd� are infeasible problems� so no optimal
objective function value is given�
In general� the two codes produced solutions of comparable quality� In some

cases SDPA �nds a more accurate solution while in other cases CSDP obtains a
more accurate solution� There are some problems which CSDP was able to solve
but SDPA was not able to solve� For the 
	 problems that were solved by both
codes� CSDP required roughly ������ CPU seconds� while SDPA required roughly
������� CPU seconds� CSDP ranged from about 	 times slower than SDPA �on
problem ss	� � to about �� times faster than SDPA �on problem gpp���!��� The
geometric mean of the ratio of CSDP CPU times to SDPA CPU times was ��"�
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Problem CSDP Time SDPA Time CSDP Objective SDPA Objective
arch� 	����� ��
��� �������e��� �������e���
arch� 	����� �����	 �������e��� �������e���
arch� 	���
� ������ �������e��� ��������e���
arch
 	���
� �	���
 ������
e��� ������
e���
control� ���� ��		 ����
��	e��� ����
��	e���
control� ���� ��
� 
�	�����e��� 
�	�����e���
control	 ���		 ���	� ��	�			e��� ��	�		��e���
control� ����	 ����
 �������	�e��� �������	e���
control� ������ ��	��� ���

	�e��� ���

	�e���
control� �
���� ������ 	��	��e��� 	��	���e���
control� ������� ������� �������e��� �������e���
control
 �
����� �
����� ����
�e��� ����
�e���
control� ������� 		����� �������e��� �������e���
control�� �������� �	
��	� 	�
�		e��� 	�
�		e���
control�� �
����	� ����
��� 	�����e��� 	�����e���
equalG�� �������
 
 �� hrs �������e��� N�A
equalG�� �������	 mem ������e��	 N�A
gpp��� ���	� �
��� ������	��e��� ������	��e���
gpp����� �	��� �
��� ���	�	�e��� ���	�	��e���
gpp����� ���	� ���	� ����
��e��� ����
����e���
gpp����	 ����� ���	� ����	���e��� ����	����e���
gpp����� 	���
 ���	� ����
��e��� ����
�
��e���
gpp����� �	
��� 	������ ������e��� ��������e���
gpp����� �
	��� ������ �
��
���e��� �
��
��e���
gpp����	 	�	��� �����	 �	��	�	�	e��� �	��	�	�e���
gpp����� 	�
��� ������ �����		e��� �����		e���
gpp����� ������	 ������� ����	��e��� ����	��e���
gpp����� ������� �	����� �������e��� �������e���
gpp����	 �
���	� 
������ ����	��e��	 ����	����e���
gpp����� �
���
� ������
 ��������e��	 ���������e��	
hinf� ���� ���	 ���	��e��� ���		e���
hinf� ���� ���� ������e��� ������e���
hinf	 ���� ���� �����e��� ����e���
hinf� ���� ��	� ������e��� �������e���
hinf� ���� ���� 	���	e��� 	��	e���
hinf� ���	 ���� ���
�e��� �����e���

TABLE �
 Computational results for SDPLIB problems�



� B� Borchers

Problem CSDP Time SDPA Time CSDP Objective SDPA Objective
hinf� ���� ���� 	���
�	e��� 	���e���
hinf
 ���� ���� ����e��� ����e���
hinf� ���	 ���� ��	������e��� ��	����e���
hinf�� ���
 ���	 ���

e��� ���

e���
hinf�� ��	� ��
� ����e��� ����e���
hinf�� ���
 ��	� �e��	 	e���
hinf�	 ��	� ���� ���e��� ���e���
hinf�� 	�	� ���� ��	�e��� ��	�e���
hinf�� ���� ���� �e��� 	e���
hinf	� ���� ���� ��	������e��� ��	���e���
infd� ���� ���� infeasible infeasible
infd� ���� ���� infeasible infeasible
infp� ���� ���� infeasible infeasible
infp� ���� ���� infeasible infeasible
maxG�� ���	�	� 		������ �������
e��� �������
e���
maxG	� mem mem N�A N�A
maxG�� ���	��� mem ��������e��	 N�A
maxG�� mem mem N�A N�A
maxG�� mem mem N�A N�A
mcp��� ���� ����� ������
e��� �������e���
mcp����� �	��	 ���
� ��������e��� ��������e���
mcp����� �	�	
 ����
 ����

���e��� ����

��e���
mcp����	 �	��� ����	 ��������e��� ��������e���
mcp����� �	��
 ���	� 
������e��� 
������e���
mcp����� ������ �
���� 	������	e��� 	������	e���
mcp����� ������ ������ ��	��	��e��� ��	��	�e���
mcp����	 ��	��� ������ ��
�����e��� ��
���	e���
mcp����� ��	��� ��
�
� ���
�����e��	 ���
����e��	
mcp����� ������� ������� ���
��
�e��� ���
��
�e���
mcp����� ������� ������� ��������e��	 ��������e��	
mcp����	 ������� ���	��� ��
������e��	 ��
�����e��	
mcp����� ���
��
 ������� 	�����	
e��	 	�����	
e��	
qap� ���
 ���	 ���	�e��� ���	��e���
qap� 
��� ���� �	�
�e��� �	�
���e���
qap� ���
	 ����� �����e��� �����e���
qap
 �
�		 ����	 �����e��� �����e���
qap� ������ ��	��� �����e��	 �����e��	
qap�� �����
 	����� �����e��	 �����	e��	

TABLE �
 Computational results for SDPLIB problems�
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Problem CSDP Time SDPA Time CSDP Objective SDPA Objective
qpG�� 	���	��
 mem ����
����e��	 N�A
qpG�� mem mem N�A N�A
ss	� �	���	� ������� ����	���e��� ����	��e���
theta� ���	 	��� ��	�����e��� ��	�����e���
theta� ����� �	�
� 	��
����e��� 	��
����e���
theta	 	
��
� ����
� �������
e��� �������
e���
theta� �
����� ��	���� ���	����e��� ���	����e���
theta� ��
	��� ��
���� ����	�	e��� ����	�	�e���
theta� �������� �������� ��	�����e��� ��	�����e���
thetaG�� 	������� 
 �� hrs ��������e��� N�A
thetaG�� mem mem N�A N�A
truss� ���� ���� ��������e��� �
�������e���
truss� ���� 	��� ����		
�	�e��� ����		
��e���
truss	 ���� ���� ��������e��� ���������e���
truss� ���� ���� ���������e��� ��������e���
truss� ����� ����� ���	��	��
e��� ���	��	��e���
truss� ����� 
	��� ���������e��� ���������e���
truss� ����� ����� ���������e��� �������e���
truss
 �
��	� ������ ���		�����e��� ���		����e���

TABLE �
 Computational results for SDPLIB problems�
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