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Abstract� We describe a cutting plane algorithm for solving linear ordering
problems� The algorithm uses a primal�dual interior point method to solve
the �rst few relaxations and then switches to a simplex method to solve the
last few relaxations� The simplex method uses CPLEX ���� We compare the
algorithm with one that uses only an interior point method and with one that
uses only a simplex method� We solve integer programming problems with as
many as ���	
 binary variables� Computational results show that the combined
approach can dramatically outperform the other two methods�

��� INTRODUCTION

The linear ordering problem has applications in economics� archaeology� schedul�
ing� the social sciences� and aggregation of individual preferences� A cutting
plane method provides a way to obtain a provably optimal solution to a linear
ordering problem� Such a method requires the solution of a sequence of linear
programming problems� It is now possible to solve linear ordering problems
of a size where these linear programming problems can be solved more e��
ciently using an interior point method than by using simplex� In this paper we
describe an interior point cutting plane method for the linear ordering prob�
lem� we examine combining the interior point method with a simplex cutting
plane method� and we present computational results showing that the com�
bined method can dramatically outperform either a pure interior point cutting
plane method or a pure simplex cutting plane method�

In x���� we de�ne the linear ordering problem and discuss an integer pro�
gramming model� In x���� we describe the polyhedral structure of the linear
ordering polytope� In x��	 and x��
� we present our cutting plane algorithms
for the linear ordering problem� The combination of interior point and sim�
plex cutting plane algorithms is the subject of x���� Computational results are
presented in x��� and conclusions are given in x���

The �rst authors to consider a cutting plane algorithm for the linear ordering
problem were Gr�otschel et al�� ��	a� Gr�otschel et al�� ��	b� J�unger� ��
� and
Reinelt� ��
� We have previously discussed interior point cutting plane algo�
rithms for this problem in Mitchell and Borchers� ����� Mitchell and Borchers�
����� and Mitchell� ����� Computational investigations of interior point cut�
ting plane algorithms for other integer programming problems include Mitchell
and Todd� ����� Mitchell� ����� and Mitchell� ���� Interior point column gen�
eration algorithms implemented in other contexts include Bahn et al�� ���
�
Go�n et al�� ����� Gondzio� ���� and Gondzio and Sarkissian� ����� Many
of these references also contain discussions of the theoretical performance of
interior point column generation methods�

Christof and Reinelt� ���� have developed a simplex�based branch�and�cut
algorithm for hard instances of the linear ordering problem where the cutting
planes come from small�dimensional versions of the problem� as in Christof
and Reinelt� ����� The instances we examine in this paper are larger� but
they do not generally require branching or extensive separation routines to �nd
violated cutting planes� We are interested in large instances because they have
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large linear programming relaxations� so the amount of time spent solving the
relaxations will be a signi�cant proportion of the total solution time� We expect
that the methods described in this paper� in conjunction with the methods
described in Christof and Reinelt� ���� will make it possible to solve large�
hard instances�

��� THE LINEAR ORDERING PROBLEM

����� Applications

Applications of the linear ordering problem include triangulation of input�
output matrices in economics �Gr�otschel et al�� ��	b�� archeological seriation�
minimizing total weighted completion time in one�machine scheduling� the so�
cial sciences �Fishburn� ������ and aggregation of individual preferences� For
more discussion of the linear ordering problem� as well as description of a cut�
ting plane algorithm for solving the problem� see Gr�otschel et al�� ��	a�

As an example of the aggregation of individual preferences� consider a tour�
nament between a number of sports teams� where each team plays every other
team� We wish to determine which team is the best� which is second best� and
so on� If Team A beats Team B then Team A should �nish ahead of Team B
in the �nal ordering� However� it may be that Team B beat Team C� who in
turn beat Team A� Therefore� it is not generally a simple matter to determine
the �nal ordering� We could just count the number of victories of each team�
but this may not truly represent the relative strength of some teams� and it
may well lead to ties in the ordering� Therefore� we usually take the margin of
victory into account when determining the �nal ordering�

An input�output matrix in economics measures the movement of goods from
one sector of the economy to another� In advanced economies there will gen�
erally be a rotation of goods and capital through the economy� whereas in less
advanced economies there will be a more pronounced ordering of the sectors�
with goods generally �owing from Sector A to Sector B to Sector C� etc� The
objective is to �nd the ordering of the sectors of the economy that most closely
matches the data contained in the input�output matrix� The �nal solution can
be quanti�ed using its linearity�

The linearity of an input�output matrix is the proportion of the total
weight in the matrix that agrees with the optimal ordering�

For an advanced economy� the linearity can be as low as ���� for less advanced
economies the linearity can be as high as ����

In archeological seriation� we have samples from di�erent sites of di�erent
artifacts belonging to various time periods� If object A is closer to the surface
than object B then the time period for object A was probably more recent
than that of object B� The objective is to aggregate the data of this form from
di�erent sites and determine the ordering of the time periods�



	

����� Modeling the problem

In a general linear ordering problem� we have p objects to place in order� If we
place i before j� we pay a cost of g�i� j�� Conversely� if we place i after j� we
pay a cost g�j� i�� The objective is to choose the ordering that minimizes the
total cost� This problem is NP �hard �Karp� ������ Throughout this paper� we
will use p to refer to the number of objects�

A linear ordering problem with p objects can be considered as a problem
on the complete directed graph with p vertices� For each pair of vertices i and
j� we want to pick exactly one of the two arcs �i� j� and �j� i�� Further� there
should be no directed cycles in the resulting directed subgraph� Such an acyclic
digraph is called a tournament�

The linear ordering problem can be modelled as an integer programming
problem in the following manner� We de�ne indicator variables xij for each
ordered pair of objects i and j� to indicate whether i is before j�

x�i� j� �

�
� if i before j
� otherwise�

We can then model the linear ordering problem as�

min
Pp

i��

Pp

j��

j �� i

gijxij

subject to x is the incidence vector of a tournament�

Notice that in any feasible solution� we must have x�i� j� � x�j� i� � � for
each pair � � i � j � p� We can use this observation to eliminate the variables
x�j� i�� j � i� With this modi�cation� we modify the objective function�

x�i� j� i � j has cost coe�cient c�i� j� �� g�i� j�� g�j� i��

The linear ordering problem can be restated

min
Pp��

i��

Pp

j�i�� cijxij
subject to x is the incidence vector of a tournament� �LO�

��� THE POLYHEDRAL STRUCTURE OF THE LINEAR ORDERING

POLYTOPE

Gr�otschel et al�� ��	a� J�unger� ��
� and Reinelt� ��
� have investigated the
polyhedral combinatorics of the linear ordering problem� and we recap their
results� They have shown that the convex hull of the set of feasible solutions to
�LO� is full dimensional and that the simple bounds � � xij � � de�ne facets
of this polyhedron�

In order to get a tournament� it is necessary to prevent solutions of the form�

i before j before k before i
or equivalently� x�i� j� � x�j�k� � x�k� i� � ��

This can be prevented by the inequality x�i� j� � x�j� k� � x�k� i� � �� which
must be satis�ed by any linear ordering� For the formulation in �LO�� we get
two forms of this inequality when � � i � j � k � p�
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Thus� we get the two sets of triangle inequalities�

x�i� j� � x�j� k�� x�i� k� � � �����

�x�i� j� � x�j� k� � x�i� k� � �� �����

Every incidence vector of a linear ordering satis�es these inequalities for all
� � i � j � k � p� We call two such inequalities arc�disjoint if they involve
two non�intersecting sets of objects� fi�� j�� k�g and fi�� j�� k�g�

Gr�otschel et al�� ��	a� showed that if x is integral and satis�es all the tri�
angle inequalities then it is the incidence vector of a linear ordering� Therefore�
the linear ordering problem can be written

min
Pp��

i��

Pp

j�i�� cijxij
subject to x�i� j� � x�j� k�� x�i� k� � �� � � i � j � k � p �IPLO�

�x�i� j� � x�j� k� � x�i� k� � �� � � i � j � k � p
x � � or �� � � i � j � p�

The �

�
p
�

�
triangle inequalities are facets of the convex hull of incidence

vectors of linear orderings� However� they do not give a complete description
of the linear ordering polytope� and other families of inequalities are known� In
fact� since the linear ordering problem is NP �hard� there must be exponentially
many other facet de�ning inequalities� unless P � NP � Such inequalities have
been investigated by Leung and Lee� ���	� and Christof and Reinelt� �����
among others�

��� A BASIC CUTTING PLANE APPROACH

In a cutting plane approach� a sequence of linear programming relaxations of
the linear ordering problem are solved� and these relaxations are improved un�
til they give a su�ciently good approximation to the convex hull of incidence
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vectors of linear orderings in the neighbourhood of the optimal ordering� Be�
cause there is a large number of triangle inequalities� these are only included as
necessary� We were able to solve most of our test problems using only triangle
inequalities� for other linear ordering problems it may well be necessary to use
other inequalities or to use branch and bound�

Thus� our relaxation always takes the form�

min
Pp��

i��

Pp

j�i�� cijxij
subject to x satis�es some of the triangle inequalities �LPLO�

� � x�i� j� � �� � � i � j � p�

This relaxation has approximately p��� variables� for p � ��� we get 	�
�
variables and for p � �
� we have ����
 variables� The initial relaxation
includes none of the triangle inequalities� Notice that the optimal value of
�LPLO� gives a lower bound on the optimal value of �IPLO��

If the solution to �LPLO� is integral and if it satis�es all of the triangle
inequalities then it is optimal for the linear ordering problem� If the optimal
solution violates some triangle inequalities� then a subset of the violated in�
equalities is added to the relaxation� the modi�ed relaxation is solved and the
process repeated� If the solution is fractional� but it does not violate any tri�
angle inequalities� then the cutting plane approach is halted� in principle� the
method could be extended to this case by searching for other cutting planes�
or by using branch and bound� Our interior point solver does not do this� but
the CPLEX simplex solver does use branch and bound if the cutting plane
approach results in a fractional solution� Only � of our �� test problems had
such a fractional solution�

Our complete algorithm takes the following form �the algorithm is discussed
in more detail in x��
��

�� Initialize� We assume the data is integral�

�� Solve current relaxation� using either a primal�dual interior point
method� or the simplex method� This gives a lower bound on the op�
timal value of the linear ordering problem�

�� Separation� Check all triangle inequalities� Bucket sort resulting vio�
lated inequalities by violation and add a subset of arc�disjoint constraints
to the relaxation� Drop any constraints that no longer appear important�

	� Primal heuristic� Look for the incidence vector of a linear ordering close
to the solution to the current relaxation� Store the resulting solution if it
is better than the best ordering found previously�


� Check for termination� If the di�erence between the lower bound
and the value of the best ordering found so far is less than one� STOP
with optimality� If no violated triangle inequalities are found and if the
di�erence is greater than one� use branch and bound to complete the
solution�
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�� Loop� return to step �

��� REFINEMENTS WITH THE INTERIOR POINT CUTTING PLANE

METHOD

The algorithm given above works well when solving the relaxations using the
simplex method� the initial relaxation is solved using the primal simplex algo�
rithm and subsequent relaxations using the dual simplex algorithm� In order
to get the algorithm to perform well when an interior point method is used to
solve the relaxations� several re�nements are required� and we discuss those in
this subsection� We also discuss our primal heuristic and our bucket sort�

The most important modi�cation when using an interior point algorithm is
to only solve the relaxations approximately� Only the �nal relaxation needs to
be solved accurately� and� since the data are integral� it even su�ces to solve
the �nal relaxation to give a gap of less than one between the dual value and
the value of the best known linear ordering� This saves time on the current
relaxation� It also means that the separation heuristics try to �nd violated
constraints at a more central point�

The accuracy to which we solve the relaxations is controlled by a dynami�
cally altered tolerance on the duality gap� if many constraints are added� the
tolerance is increased because we probably don�t need to solve the relaxations
as accurately� and if only a few violated constraints are found then the toler�
ance is decreased� The change in the tolerance also depends on the size of the
largest violation� We also insist that the primal value should be less than the
value of the best known linear ordering before looking for separating hyper�
planes� and we require that the average of the primal and dual values should
be at least one less than the value of the best known linear ordering� These
two criteria are designed to reduce the likelihood that we search for cutting
planes when instead solving the current relaxation to optimality would solve
the linear ordering problem�

All triangle inequalities are checked for feasibility� The prospective con�
straints are then bucket sorted by violation� We then go through the buckets
in order� selecting arc�disjoint inequalities� until we reach an upper limit on the
number of constraints� There are two advantages to choosing arc�disjoint in�
equalities� the inequalities are then orthogonal to one another� and the sparsity
of the Cholesky factor is not a�ected as much as if the constraints shared arcs
�see� for example� Mitchell� ������ The criteria used to decide which buckets to
examine and how many cuts to add di�er between the simplex implementation
and the interior point implementation� because the simplex method returns an
extreme point and the interior point method returns an interior point� making
the nature of the violations di�er between the two algorithms �we return to
this point in x����

Once cutting planes are added� the current solution is dual feasible but
primal infeasible� When using the simplex method� we would resolve using
the dual simplex algorithm� One option for restarting when using an interior
point method is to use an infeasible interior point algorithm� but we found





computationally that such a method was not very e�ective� it would often
concentrate on regaining feasibility� by which time it had moved far from the
original iterate� Therefore� we restart by moving towards the vector ��
e� where
e denotes the vector of ones� This point is always an interior point in �LPLO��
Our restart point is an interior point which is a convex combination of this
point and the �nal iterate� We restart the dual problem with an earlier dual
iterate� so that the primal�dual pair are more centered� Gondzio� ���� and
Gondzio and Sarkissian� ����� have investigated other methods for restarting
interior point methods when constraints are added� which can be used in the
general case when there is not a good restart point available� these restart
methods perform no better than our methods for our problem because we can
exploit a known good restart point and we restart before getting too close to
the optimal face of the current relaxation�

Our primal heuristic is a modi�cation of that in Gr�otschel et al�� ��	a� We
try to round the fractional interior point to the incidence vector of a linear
ordering� and then we use a local search technique to improve the solution�

��	 COMBINING THE TWO SOLVERS

We investigated three di�erent cutting plane algorithms�

�� Use the interior point method exclusively to solve the relaxations�

�� Use the simplex method exclusively to solve the relaxations�

�� Combine the two methods� use the interior point method to solve the
�rst few relaxations and use the simplex method to solve the remaining
relaxations�

The rationale for a crossover method is that we observed experimentally
that the number of iterations that an interior point method requires for each
relaxation remains approximately constant� while the number required by a
simplex cutting plane algorithm drops dramatically� Often� the simplexmethod
may require only a handful of iterations on the last few stages� It appeared
that the interior point method was faster in the earlier stages and the simplex
method was faster in the later stages�

We experimented with several di�erent rules for crossing over from one al�
gorithm to the other� and di�erent rules worked better on di�erent classes of
linear ordering problems� Generally� the problems require between �� and ��
stages� The rules we tested included�

Crossover after two stages�

Crossover after three stages�

Crossover when less than �p constraints are added�

Crossover when less than p constraints are added�
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As we move down the list� the number of stages solved using the interior point
algorithm increases� As will be seen in x���� each one of these rules was superior
for at least one class of linear ordering problems� it is an interesting open
problem to determine a rule that works well for all linear ordering problems�

��
 COMPUTATIONAL RESULTS

We solved randomly generated problems� There are some real�world linear
ordering problems available over the web from LOLIB�

http���www�iwr�uni�heidelberg�de�iwr�comopt�soft�LOLIB�LOLIB�html

We describe computational experience with an interior point method for these
problems in Mitchell� ����� The largest of these problems has �� objects�
which is smaller than the size of problems we wish to investigate� Therefore� we
randomly generated linear ordering problems with between ��� and �
� objects�
Our generator and all the instances discussed in this paper are available at the
web site�

http���www�math�rpi�edu��mitchj�generators�linord

Each instance was generated as follows�

For i � j� generate g�i� j� uniformly between � and ���

For j � i� generate g�i� j� uniformly between � and ���

Randomly permute so it is not easy to guess a very good solution�

Zero out a percentage of the entries�

The linearity of the resulting problems is around ��� which is similar to the
real world problems in LOLIB� The problems in LOLIB also have various entries
equal to zero� and their entries have a larger range than our randomly generated
problems�

We generated six di�erent classes of problems� varying by the number of
objects and by the percentage of entries zeroed out� Each class contained
�ve problems� For each problem within a particular class� we used the same
crossover criterion�

All runs were performed on a Sun SPARC ������ All runtimes will be quoted
in seconds� The interior point code was written in Fortran and the Fortran
command ETIMEwas used for timings� We do not use a publically available code
such as HOPDM �Gondzio� ���
� or PCx �Czyzyk et al�� ������ because none
of these codes make it easy to access the current solution after each iteration�
stop the process when desired� suggest a new starting point� and not preprocess
each relaxation� which are all required features of our algorithm� The simplex
code was written in C� It uses CPLEX 	�� to solve the relaxations� The UNIX
command time was used for timings� For the crossover runs� the interior point
code wrote the problem out to �les and the simplex code read from the �les�
The times to write out and to read in the problem are included in the runtimes
we give� CPLEX has an option of using the point provided by the interior point
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method as a warm start� We found that this was only a very marginal help
because several more stages are still needed when we crossover� and occasionally
it led to failure to terminate� Therefore� we report results that do not use this
feature�

The runtimes of the three algorithms on the thirty test problems are con�
tained in Table ���� Even including all the triangle inequalities in the relaxation
�LPLO� does not give an integral solution for the two problems r���b� and
r���d�� so the means for the algorithms omit these problems� The simplex
solver has a branch and bound component� so the simplex and crossover codes
can solve these two problems� but the interior point code cannot� The interior
point code is also unable to solve the problems r���a� and r���e� because of
memory limitations� for each of these problems� the Cholesky factorization of
AAT contained more than our limit of ��� nonzeroes�

In Table ���� we give the percentage of the time used by the interior cutting
plane code within the combination cutting plane code� It appears to be best to
try to split the runtime somewhat evenly between the interior point code and
the simplex code�

To give a �avour of the performance of the cutting plane algorithms� Table
��� contains more details of three runs for problem r���a�� one using just the
interior point code� one using just the simplex code� and one using a combina�
tion code� The reduction of the number of iterations required by simplex per
stage as the algorithm proceeds can be seen in the table� The reduction in the
number of simplex iterations when using the crossover code as opposed to the
pure simplex code is also interesting�

The relative times required by the interior point and simplex cutting plane
algorithms are portrayed in Figure ���� The graph uses a linear scale� The four
problems that the interior point code was unable to solve are omitted from
the graph� Notice that as the problems become more di�cult to solve� the
times required by the two algorithms become comparable� with the ratio of the
runtimes getting close to ��

The relative times required by the combined and simplex cutting plane al�
gorithms are portrayed in Figure ���� The graph uses a linear scale� The two
problems for which a branch and bound solver was used are omitted from the
graph� It is clear from the graph that the combined code is as much as ten
times faster than the simplex code on the harder problems� that is� problems
that take the simplex algorithm at least about half an hour�

For the six di�erent classes of problems� we used the following criteria to
determine when to switch from the interior point solver to the simplex solver�

r����� and r������ switch after two stages�
r����� and r������ switch after three stages�
r������ switch after add � ��� constraints in a stage�

�On average� after � stages��
r������ switch after add � ��� constraints in a stage�

�On average� after � stages��
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Table ��� Times for the � algorithms

Objects � zeroes Name Interior Simplex Crossover

�
� � r�
�a� ��
 �� ��
r�
�b� 	�� 

 ��
r�
�c� 	�� �� �	
r�
�d� 		� �
 ��
r�
�e� 	�� �	 �

Mean 	�� �
 ��

	�� � r	��a� 
�
 ��� 	��
r	��b� ���� ��� 	�

r	��c� ��� 	�� ���
r	��d� ��� ��� ���
r	��e� ��� �

 	��
Mean �

 ��
 	��

	
� � r	
�a� 	��	 �
�� ���
r	
�b� ���
 �
�� 
��
r	
�c� ��	� ���� 
��
r	
�d� ���� ���� 
	�
r	
�e� ���� ���� ���
Mean ���	 ���� 
�	

��� 	� r���a	 ���� ��� ��

r���b	 frac ���� �	�
r���c	 		�� ��� 	��
r���d	 ���� ��� ��	
r���e	 ��		 ��
 ��	
Mean ���
 ��� ���

�
� �� r�
�a� �	�� ���� 	��
r�
�b� ���� �
�� ��

r�
�c� 	�	� ��� 		�
r�
�d� �		� ���� 	��
r�
�e� ���� ��
� 	��
Mean 		�� �	�� 	��

	�� �� r	��a� dnf ����� ����
r	��b� ���� ���� ���
r	��c� ��
� ���	 ��	
r	��d� frac ����� ����
r	��e� dnf ����� ���
Mean � ���� ���

It should be noted that each of the criteria resulted in improvement over pure
simplex for almost every set of problems�
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Table ��� Breakdown of the time required by the combination code

Objects � zeroes Name Total time � Interior

�
� � r�
�a� �� 
��	
r�
�b� �� 
���
r�
�c� �	 
���
r�
�d� �� 
���
r�
�e� �
 
���
Mean �� 
���

	�� � r	��a� 	�� 
���
r	��b� 	�
 ����
r	��c� ��� �
��
r	��d� ��� ���

r	��e� 	�� ����
Mean 	�� �
��

	
� � r	
�a� ��� ����
r	
�b� 
�� ����
r	
�c� 
�� ����
r	
�d� 
	� 
���
r	
�e� ��� ����
Mean 
�	 ���	

��� 	� r���a	 ��
 ���	
r���b	 �	� ����
r���c	 	�� ����
r���d	 ��	 �	�

r���e	 ��	 ����
Mean 	�� ����

�
� �� r�
�a� 	�� 	��

r�
�b� ��
 ���	
r�
�c� 		� 	���
r�
�d� 	�� 	���
r�
�e� 	�� �	��
Mean 	�� ����

	�� �� r	��a� ���� ����
r	��b� ��� ����
r	��c� ��	 ����
r	��d� ���� �
��
r	��e� ��� 
	��
Mean ���� ����

The �nal number of constraints for the pure interior point code are approx�
imately�
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Table ��� A typical run for r��a�

Stages Interior Simplex Crossover
Cuts Itns Cuts Itns Cuts Itns

� ���� � 	�
� 	��� ���� �
	 ���� � ���
 ��� ���� �
� ���� � ��	 ��� ���� �
� 	�� � ��� ��� 	�� �

 	�� � �	� ���� 	�� �
� ��� � ���� �	�
 ��� �
� ��
 � ��
� 	��� ��
 ����
� ��
 � 	�� �
�� ��� ���
� �� � ���� 	��� �	� ��	
�� �� � ��	 	��
 �	� ��
�� �� � �� 	��	 �� ���
�	 �� � 
�� ��� ��� ���
�� �� � 	� ��� ��� ���
�� 	� � �� ��
 �� �	�
�
 	� � � 	�� �� ��
�� 

 � �� �	� �� ��
�� � 
 � 
� � �
�� �� 
 � �
 � �

r������ ���� constraints�
r������ 	��� constraints�
r������ 
��� constraints�
r������ �
�� constraints�
r������ ��� constraints�
r������ ����� constraints�

��� CONCLUSIONS

For larger problems� the interior point and simplex codes require comparable
time� The interior point solver is a research code� and we believe based on our
experience in solving standard test problems that this interior point solver is
roughly half as fast as current high quality interior point solvers�

For su�ciently hard problems� combining the two codes performs signi��
cantly better than either code individually� It appears that the interior point
method is faster in the early stages and the simplex method is faster in the
later stages� Furthermore� it appears that the interior point method is able to
add a better set of cutting planes in the early stages� because it is looking for
constraints at an interior point� There are at least two reasons why the interior
point is useful in the early stages�
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Figure ��� Time to solve with the interior point solver versus time to solve with the

simplex solver� �No crossover��
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At the extreme point� most of the violated constraints are violated by
exactly one� so it is hard to discriminate between these constraints to
�nd the more important ones� With the interior point solver� there is a
greater range of violations� which provides more information about the
relative importance of the constraints�

Initially� the problem may have primal and dual degeneracy� This hurts
the simplex method by forcing it to take more iterations� Further� the
interior point method �nds an interior point close to the middle of the
optimal face� so it will �nd cuts that are useful over much of the optimal
face� rather than just at one vertex of this face�
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