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ABSTRACT

This thesis addresses the problem of inverting nighttime electron den-
sities using satellite observations. The LORASS spectrograph on board the
ARGOS satellite counts photons that are emitted from radiative recombina-
tion and neutralization reactions that occur due to de-ionization in the F region.
The forward function parameterizations that will be investigated are the three
and four parameter Chapman functions as well as a free from model that in-
terpolates using cubic splines. To obtain a two-dimensional mapping of the
ionosphere, a grid of electron densities is calculated using the Chapman func-
tion and an array of optimal Chapman parameters. The optimal Chapman
parameters come from inverting 911A and 1356A data simultaneously. This
leads to physically unrealistic mappings of the ionosphere which are corrected

using regularization.
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Chapter 1

Introduction

This thesis concerns itself with the problem of inferring nighttime
electron densities in the F region (altitudes of 150 Km to 750 Km) of the
atmosphere. The data has been obtained from the limb scans made by the
Low Resolution Airglow and Aurora Spectrograph (LORAAS) instrument on
board the Advanced Research and Global Observing Satellite (ARGOS). A
fairly general description of the physics and instrumentation used will be given,
while most of the material will focus on the research done in trying to find a

best fit to the data.

Let us first give a brief history on the development of the theory of
using ultraviolet and visible emissions in the upper atmosphere (airglow) to
calculate the electron densities in the F region of the nighttime sky. During
the day, a variety of molecules are ionized by solar radiation. At night, ions
recombine, resulting in the decay of ionization from dusk till dawn. The recom-
bination reactions emit photons with distinct wavelengths. The de-ionization
emissions have wavelengths that range from the visible spectrum to the ultravi-
olet. The chemical reactions from nightglow (nighttime airglow) emissions have
been measured in the visible spectrum from the ground [Tin 72, Tin 73] and
in the ultraviolet spectrum from space [Hic 70] since the late 1960’s and early

1970’s. From these measurements it was deduced that two reactions could be



responsible for the majority of the emissions. These two reactions are radiative
recombination of O" ions [Han 69] with electrons and neutralization reactions
between O and O~ ions [Knu 70]. Further measurements at mid-latitudes
[Bru 78] confirmed what was proposed by Hansen [Han 69|, that radiative re-
combination reactions account for 75% of measured 1356A intensities and that
the majority of the remaining 25% of the 1356A intensities are from O and
O~ neutralization reactions. This 25% number has been modified due to the
discoveries by Feldman et al. [Fel 92] who determined in December, 1990 that
the 25% contribution from the O% and O~ neutralization is really closer to
40%. Thus, the neutralization rate factor needed to be increased by a factor of

1.9.

The rate factor is determined from the electron temperature which
Feldman [Fel 01] also inferred by spectrally resolving the shape of the 911A
continuum. This means that if the electron temperature is known and the
1356A emissions can be measured then we can quantify the electron density
in the measured region. We can do this since we know (from the radiative
recombination rate coefficient) how many free electrons it would take to create
the measured intensity of the 1356A emissions. The 911A emissions that have
been measured are due entirely to radiative recombination since Ot and O~

neutralization does not produce 911A emissions [Tin 72].

The 911A and 1356A emissions are also present in the Earth’s day-
glow spectrum and the mechanisms for radiative recombination are still ac-
tive. However the 1356A emission measurement is dominated by photo elec-

tric impact excitation (from the sun) of atomic oxygen. The 911A emis-



sion is unaffected by photoelectrons during the daytime [Tin 75] but Gentieu
[Gen 79, Gen 81, Gen 84] showed using rocket observations that the 911A day-
glow emissions are contaminated by nearby emissions from nitrogen and oxy-
gen, which are not present at night. Later, Feldman [Fel 01] showed that con-
tamination of Ot 911A emissions to be negligible along with Dymond [Dym 01]
who was able to closely estimate daytime electron densities using 911A emis-
sions as compared with the International Reference Ionosphere IRI-90 [Bil 90]
at mid-latitudes. In light of these difficulties the 911A and 1356A intensities

will be used to infer only nighttime, F region, electron densities.

There are other emissions in the far ultraviolet region that need to
be considered such as 912A emissions produced by radiative recombination of
protons and electrons. Feldman [Fel 92| was not able to detect this emission
however. Also, the H* /O™ density ratio can be fairly low in the F region except
at low altitudes. For these reasons, the H* electron recombination emission is

neglected.

Meier [Mei 91] saw the application of ultraviolet remote sensing from
spaced-based platforms as a means of mapping the F region electron density
globally. Meier’s work and that of Tinsley and Bittencourt [Tin 75] and Chan-
dra et al. [Chn 75] motivated the Naval Research Laboratory (NRL) to develop
these space-based platforms. One of the first of these is the High Resolution air-
glow and Aurora Spectroscopy (HIRAAS) experiment. HIRAAS was launched
on board the ARGOS satellite and put into sun-synchronous circular orbit
at 840 Km altitude on February 23, 1999. LORAAS is one of three spectro-
graphs that make up the HIRAAS experiment. LORAAS is an extreme and far



ultraviolet spectrograph operating in the 800A to 1700A passband at 17A spec-
tral resolution. LORAAS simultaneously observes both the 911A and 1356A
emissions. The observations cover the 100 km to 750 km altitude range with
one limb scan occurring every 90 seconds. The latitude spacing of the limb
scan is approximately 5.8 deg. The daytime sky also triggers mechanisms for
the H* electron 1216A (known as Lyman-a) and O* electron 1304A emis-
sions, so the instruments sensitivity was reduced by leaving the micro-channel
plate on the SiC detector without a photo cathode in the region where these
lines fall. This helped to limit the detector photon count rate for the spectra
during daytime observations. Blocking the Lyman-a also helps the nighttime
observations since this spectrum tends to bleed into the nighttime sky near
the edges. For more information on the LORAAS instrument see references

McC 92, McC 94, McC 95, Dym 93, Tho 99].

At this point in time, all that was needed was an algorithm that could
take the data from the photon counter (LORAAS) and back into a solution that
is the electron density that caused the 911A and 1356A intensities measured by
LORAAS. The algorithm will be discussed in detail in the following chapter but,
in short, it is an inversion of the limb scan data using an iterative approach
to solving the nonlinear least squares problem of estimating the maximum
likelihood parameters to a given forward function that calculates the electron
densities. If we equate O density to electron density, the 911A and 1356A
emissions that LORAAS should see can then be calculated. The maximum
likelihood parameters to the forward function that generate data with least
square errors (compared to the real data measured on LORAAS) are computed

to minimize a y? error value.



There has been quite a lot of research previously done on the data
sets obtained from LORAAS. Both one-dimensional and two-dimensional fits
have been performed using daytime and nighttime 911A, 834A and 1356A
intensities measured by LORAAS. Since this thesis is primarily concerned with
the nightglow from electron densities, results will be presented from Dymond
et al. [Dym 02, Dym 03] for the one and two dimensional inversions using the

1356A spectra.

The one dimensional model assumes the ionosphere is spherically sym-
metric and does not vary across nearby latitudes and longitudes. This assump-
tion is reasonable during the night at mid-latitudes but not at low altitudes
near the equator. The two dimensional algorithm takes into account changes in
the electron density by setting up a grid that represents a more realistic model
of the ionosphere. This is the best model for areas where the gradient of the
ion density is high. The results obtained are also compared with Ionosonde
measurements. lonosonde is a ground based radar that is widely accepted as
an accurate measurement of the peak electron density and the altitude of the

peak electron density directly over the instrument.

An arbitrarily chosen day of limb scan data acquired on November
24, 1999 was used for both the one and two dimensional models. The section of
data used (out of the 800 profiles acquired that day by LORAAS) was selected
to include nighttime measurements. Also, this data had two measurements that
were close to two Tonosondes’, the Millstone Hill, MA Tonosonde and the Rome,
Italy Tonosonde. These Tonosonde’s were the only two that day that had taken

reliable measurements themselves, were close enough to ARGOS’s (and thus



the LORAAS instruments) flight path, and where LORAAS’s data was uncon-
taminated by auroral precipitation. Aurorally charged particle precipitation,
unlike the ionization sources already described, is characterized by its storm-
like behavior: long-term unpredictability, highly variable strength and spatial
inhomogeneity [Ree 89]. Since LORAAS’s line of sight through the ionosphere
covers 50 deg of latitude, auroral precipitation is sometimes hard to avoid. It
shows up in the data as a large quantity of spikes far out of the normal range
of intensities for nightglow. If LORAAS is pointing towards a star it can have
a similar effect on the data. Spikes in the data from stars are usually very few
in number and can easily be removed without a significant loss of information
in the data. However, auroral precipitation can sometimes effect the majority

of the measurements taken and thereby render the data useless.

There are two ways of spotting auroral precipitation. Examining a
plot of the spectra for the presence of Ny Lyman-Birge-Hopfield bands (1200-
1700A spectra), which are excited by auroral electrons, is one way. The other
is to check the rate that LORAAS was rejecting photo events. The LORAAS
instrument is capable of rejecting counts that it deems atypical. If the LORAAS

rejection rate is greater than 25%, the data is considered contaminated.

The results of the one dimensional model presented by Dymond et al.
[Dym 02] follow. First they presented a comparison of their results to ground
truth. The Millstone Hill Ionosonde is located at 41 deg N and —71deg E,
while the closest tangent altitude (in LORAAS’s line of sight) to this point is
43 deg N and —75 deg E. The reduced y? value obtained from this fit was 0.795

which is well within the 95% confidence level of about 1. The peak electron



density from the model was found to be 5.3 £ .65 x 10°cm ™2 at 7:28 UT. The
Millstone Hill Ionosonde measured a peak electron density of 5.0 x 10° cm™
and 3.7 x 10° cm 2 at 7:30 UT and 7:45 UT respectively. This fluctuation is not
typical of most nights in November 1999 at Millstone Hill. LORAAS detected
auroral precipitation 10deg N of Millstone Hill at the time it flew over. The
higher than average electron densities (average being about 3.0 x 10° cm™2 for
November 1999) are attributed to this auroral precipitation. This abnormally
high density was detected by LORAAS and the one dimensional model and
agrees with the Millstone Hill Tonosonde readings. The height of the peak
electron density measured by the Ionosonde was 333 km and 276 km at 7:30
UT and 7:45 UT, respectively. The one dimensional model found the peak
height to be 294 4+ 16 km at 7:28 UT. Despite the fluctuations due to auroral

precipitation, the Tonosonde and the model give very similar results.

The next result is from the Rome, Italy fly-over. The closest tangent
point altitude to Rome was located at 44 deg N and 26 deg E. The Rome, Italy
Ionosonde is located at 42deg N and 13 deg E. The retrieved electron densities
from the model are in very close agreement with the Ionosonde measurements.

3 at an

The Ionosonde showed the peak electron density to be 1.9 x 10° cm™
altitude of 258 km. The model retrieved values of 2.0 £ .3 x 10°cm 2 at a
height of 278 £+ 73 km. The large confidence intervals in the model estimates
are due to small signal to noise ratios in the LORAAS measurement. The
intensities measured by LORAAS were near it’s detection limits. Still, the two

forms of measurement are in very close agreement. The x? value for this pass

was 0.23, a very good fit.



The results of the two dimensional model, using the same data set
as one dimensional model, yielded similar results. The reduced y? value for
the Millstone Hill and Rome fly-overs were 0.977 and 0.906 respectively. The
peak electron density retrieved from over Millstone Hill, as found by the two
dimensional model, was 5.2 x 10° cm 2 at a height of 297 km. The peak electron
density retrieved from over Rome, as found by the two dimensional model, was
1.6 x 10°cm™ at 300 km. Both of these fits are in agreement with their

respective Ionosonde measurements.

These papers conclude that inversion of UV limb scans [Dym 02,
Dym 03] produce accurate electron density profiles. The inversion method
produces results that are in very close agreement with Ionosonde measure-
ments. The big advantage to using the inversion of limb scan method is that
800 altitude profiles are gathered daily over land and water thus giving an ac-
curate global picture (or weather map) of the ionosphere. The papers state
that additional validation of the limb scan inversion method is needed over dif-
ferent times and geomagnetic and solar activity levels. The authors state that,
“Clearly, the technique provides an accurate means for globally characterizing

the ionospheric state.”

Part of the research presented in this thesis will make improvements
to the already existing software that will result in faster, more accurate conver-
gence. This will allow us to tighten the stopping condition tolerances to achieve
more accurate parameter estimations. Other improvements will be discussed
in detail in the next chapter. We will then test the improved algorithm on both

the one dimensional and two dimensional models. Tests will be run on the one



dimensional model using 911A emission data and 1356A emission data simul-
taneously. We will fit three different parameterizations of the forward model
in an attempt to find the best one. Next, we will test the two dimensional
model using 911A and 1356A emission data simultaneously. Results from the

one-dimensional model will be compared against lonosonde results.

To determine which model is best we will examine the residuals for
normality and randomness. Chi square tests will be performed on the results of
all parameterizations to judge goodness of fit. F statistic tests will be performed
to determine if one parameterization is more effective than another. The F test

will be the deciding factor in most cases as to which model is best.

In the two dimensional model we will also look at the reality of the
solution. Finding optimal parameters using a two dimensional grid and non-
linear regression leads to rough and unreal solutions that have to be smoothed
out (regularized). In the chapter on the two-dimensional model we will describe
the way in which we smoothed our grid to obtain a more realistic solution. At
the end of each chapter the results found will be discussed and conclusions

drawn.



Chapter 2

The One Dimensional Model

2.1 The Data

As previously mentioned in chapter one, the data have been obtained
from the limb scans made by the Low Resolution Airglow and Aurora Spec-
trograph (LORAAS) instrument on board the Advanced Research and Global
Observing Satellite (ARGOS). An arbitrarily chosen day of limb scan data
was acquired on November 24, 1999. This day was also a day of moderate

geomagnetic activity.

The term “limb scan” comes from the fact that the LORAAS spec-
trograph is mounted on an arm that protrudes from the satellite. LORAAS
then sweeps its field of view by using a scan mirror than reflects the emissions
onto its lens. The scan mirror is mechanically swept from 10deg to 27 deg
below ARGOS’s local horizon. This range of angles relates to tangent point
altitudes of 100 km to 750 km. The scan rate varies from .28 deg per second
above the altitude of 300 km to .14 deg per second at altitudes below 300 km.
The reason for the change in the scan rate is that the change in the electron
density is more gradual at altitudes above 300 km compared to below 300 km
where the electron density gradient is high. At this scan rate LORASS collects
ninety spectra per scan. The spectra are measured simultaneously in the 800A

to 1700A range with 17A spectral resolution.

10
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Each second, LORAAS counts the photons that enter the instrument
in this wavelength range. The higher the count the higher the intensity of the
spectra measured. What is obtained then, is a count rate profile that reflects
the quantities of electrons in LORAAS’s line of sight (again using the safe
assumption in the F-Region that O" density equals electron density). The
count profiles were produced by using the multiple linear regression technique
to fit each spectrum in a limb scan and to extract the count rate in the spectral
line [Tho 99]. The line shapes used in the multiple linear regression analysis

were measured during pre-flight calibration.

It is well established that counts follow a Poisson distribution. This is
the distribution used in calculating the data standard deviation. The standard
deviation of a Poisson random variable is the square root of the mean count.
However, there is some contamination in the data that must be accounted for in
the standard deviation. As mentioned in chapter one, the spectra that will be
measured during nighttime in the 800A to 1700A range will predominately be
911A (from radiative recombination), 1216A (Lyman-« that bleeds over from
the dayside H* recombination),1304A and 1356A emissions (from radiative
recombination and OF to O~ neutralization). Since the Lyman-« signal can
be very strong, its spectra bleeds over onto the 911A and 1356A spectra. The
1304A emission also contaminates the 1356A counts but not the 911A since it
is far enough away on the photo cathode plate. The 911A and 1356A counts
are adjusted by subtracting the portion of Lyman-a and the 1304A spectra

that contaminate the counts.

If we let ¢911 = 911A counts, r911_1216 = the ratio of 911A to 1216A
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in the 911A counts, and lya = Lyman-a (1216A spectrum) measured at that
time, then the adjusted 911A count will be ac911 = ¢911 - r911_1216 * lya (the
ratios are based on Scott Budziens’ lineshape model [Tho 99]). Likewise, the
adjusted 1356A counts will be ac1356 = ¢1356 - r1356_1216 * lya - r1356_1304*
¢1304. Since the counts are independent Poisson random variables, VAR[c911]
= ¢911. The variance of the adjustment factor is VAR[r911_.1216 * lya] =
r911_1216% * VAR/[lya]. This leads to the result:

STD[ac911] = /911 + lya * 7911_12162 (2.1)

STD[ac1356] = +/c1356 + lya * r1356_12162 + 1304 + r1356_13042(2.2)

which is calculated for each data element gathered.

This was later changed so that the standard deviations of the counts
is just the square root of the mean of the counts. This was made possible by
leaving the background noise in the data set. This results in a purely Poisson
distribution. The noise is later added into the intensities which are used to fit

the data set.

Another step in processing the data is to convert the counts into ra-
diance units called Rayleigh’s. The counts are measurements of the photon
flux at the spectrograph. This is usually less than the emitted flux due to
attenuation of the photons by absorption and scattering. A Rayleigh is defined
as a measure of the omni-directional emission rate in a column of unit cross
section along the line of sight [Ree 89]. An assumption, that the field of view
of the spectrograph is uniformly filled, must be made. This is usually true for
nightglow emissions. A Rayleigh is, therefore, a measure of surface “bright-

ness”, not a unit of energy. As we will see, this conversion to Rayleigh’s is
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crucial to our algorithm. The goal of our algorithm is to find electron density
profiles. The parameters estimated for our model functions generate estimated
electron density profiles. These parameters, using an iterative approach, can
be optimized to generate electron density profiles that we can use to calculate
units of Rayleigh’s that LORAAS would see if the estimated profiles were real.
We want to minimize the errors between the model estimated data values (in
Rayleigh’s) and the data values (in Rayleigh’s) measured by LORAAS. The
counts are converted to Rayleigh’s by simply dividing the adjusted counts by
the instruments’ sensitivity (which is in units of counts/s/Rayleigh). The sen-
sitivity for the 911A data is 0.31 counts/s/Rayleigh and 0.8 counts/s/Rayleigh
for the 1356A data. These multiplicative factors take into account the fraction

of the line shape used in the line shape model created by Budzien [Tho 99].

2.2 The Algorithm

The algorithm is based on Discrete Inverse Theory [Men 89] which
is composed of a forward function (that models our data) and an iterative
inversion process that seeks the maximum likelihood estimate of the parameters
to the forward function (assuming our data and residuals are independent and
normally distributed). As was pointed out in the subsection 2.1 of this chapter,
counts follow a Poisson distribution. If the sample size is large enough, the

Poisson distribution can be approximated by a normal distribution.

The inversion process uses a nonlinear least squares iterative algo-
rithm (employing the Levenberg-Marquardt method [Nas 96, Pre 92]) to vary

the parameters so as to minimize the y? statistic. The x? statistic that is

inimized i " 1?2/0? where n is the sample size (data points) and r;, o;
minimized is ) ., rj/o; )
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are the 7, residual error and standard deviation. Minimizing the residuals is
equivalent to maximizing the likelihood that the data observed were produced
by the forward function model we proposed for our fit, if each data sample is

drawn from a normal (or Gaussian) distribution.

A nonlinear least-squares problem is an unconstrained minimization

problem of the form:

L
minimize over z : f(z) = 5 Z2:1:(fZ (z))? (2.3)

where f;(z) equals the residual of the i* data point. If we let

F(z) = (fi(z) fo(z) ... fu(z))" be a vector valued function then we can write

the unconstrained minimization problem as

%F(x)TF(m) (2.4)

minimize over z : f(x) =
It follows that the elements of V f(x) can be written (after differentiating us-
ing the chain rule with respect to x) as Vf(z) = VF(z)F(z). This is the
convenient notation for the gradient of f(z). To find the Hessian we need to

differentiate one more time with respect to x. The formula for the Hessian is

then
Vif(w) = VF(x +Zfz )V fi(x) (2.5)

Once we are close to the optimal solution we would expect fi(z) to be small.

This leads us to the conclusion that near the solution
V2f(x) ~ VF(z)VF(x)" (2.6)

especially if our function is quadratic. The further we get away from a quadratic

function the larger the error in equation 2.6 will be.



15

In the Gauss-Newton method, we apply Newton’s method with Equa-
tion 2.6 as the approximate Hessian. The Levenberg-Marquardt (LM) method
is a variation of the Gauss-Newton method [Nas 96] for finding a descent direc-
tion with the Hessian approximated by VF (z)VF (z)" + AI rather than just
VF(z)VF(x)T. This additional term has several different functions. With
A > 0 properly chosen [Mad 99], the coefficient matrix is always positive def-
inite, and this ensures that our step is a descent step. For large A our step
is much like a steepest descent step [Mad 99] and for very small A our step is
much like a Gauss-Newton step which converges quadratically. The main ad-
vantage here is that the Hessian does not have to be computed directly. This

saves a great deal of processing time.

The model parameterization used is a four parameter Chapman Layer
[Cha 87] that is generally considered to be a reasonable approximation for
describing the ionospheric density given the assumption that the ionosphere is
isothermal. The Chapman layer is a function of an altitude vector z and has
the form:

1 z — hmF?2 z — hmEF?2
no+(z) = nmF2 exp 5 1-— —g P (2.7)

where hmF'2 is the altitude where the ionospheric density peaks, nmF2 is the
density at the peak, and H = Hyp + (Heon — 1.0) (z — 400.0). Here Hy,, = the
topside scale height at 400 km and H.,, = the slope of the scale height plus
1. The scale height at 400 km is the altitude interval that corresponds to the
ionospheric density decreasing by a factor of e at 400 km (given the assumption

that the ionosphere is isothermal).
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In the experiments that follow, both a three parameter Chapman
Layer and a four parameter Chapman Layer are fit. Fixing H.,,, = 1 or some
other initial value gives the three parameter Chapman Layer. As mentioned, it
is assumed the electron density equals the O density, a safe assumption below

the H* /O™ transition height.

After we calculate the electron density using the Chapman function
we must retrieve the model data values that will be used for comparison against
the actual data. This amounts to evaluating two separate line integrals. One for
the 911A data and one for the 1356A data. The 911A intensity I (in Rayleigh)

at look angle ¢ is given by

1911(@) = 10_6&911 /OOO Ile(Z(S))H0+ (Z(S)) ds (28)

where z is a function that gives the tangent point altitude in the line of sight
at the location of ds, n. is the electron density at altitude z, No+ is the OT
density at z, ds is the differential path length from the observer, and agq; is
the radiative recombination rate coefficient. The radiative recombination rate
coefficient is an empirical value that is used to describe the rate that O" and
electrons recombine. The value used for agy; was 3.5 x 107 at 1160 Kelvin

[Mel 99].

In calculating the 1356A intensities, oxygen and nitrogen densities as
well as temperature in the F-Region are needed. At the beginning of the algo-
rithm a call to the procedure MSIS-86 is made. MSIS-86 stands for the Mass-
Spectrometer-Incoherent-Scatter model 1986. The MSIS-86 model is based on
the extensive data compilation and analysis work of A.E. Hedin and his col-

leagues. Data sources include measurements from several rockets, satellites,
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and incoherent scatter radars (Ionosonde’s). The density of O is one of the
outputs from the model. For a full explanation of MSIS-86 see [Hed 87]. The
1356A intensities are somewhat more complicated to calculate than the 911A

intensities. A discussion on the intensity calculations can by found in [Dym 97].

At this point the square of the Ly norm of the scaled residuals (our
objective function we want to minimize) is calculated. For the one dimensional
problem this is equivalent to calculating the x? value. The algorithm continues
to adjust A, if necessary, until a descent direction is found for the parameters.
This process of adjusting the parameters, calculating the Chapman Layer using
the altitude vector z, calculation of the retrieved intensities from the Chapman
Layer profiles, and calculation of the square of the L, norm is continued until
certain termination rules are satisfied. The algorithm is terminated when three

different stopping criteria are met.

The first is the norm of the gradient divided by one plus the objective
function must be less than /e. This test will make sure that the gradient,
relative to the objective function value, is close to zero. This is a necessary
condition to insure we are at a local extremum. The fact that VF(z)VF(z)T +
Al is always positive definite guarantees we are at a local minimum and not at

a maximum or saddle point.

The second test is to check if the magnitude of the change in the
parameters divided by one plus the magnitude of the current parameter vector
is less than y/e. This test ensures that the parameter values are as accurate as

our forward function and machine accuracy will allow.

The third test tests the change in the objective function value. If the
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absolute value of the change in the objective function relative to the objective
function (i.e. divided by one plus the objective function value) is less than e
then the minimum objective value we have reached is as accurate as the machine
and forward function will allow. The value of € is chosen to be equal to the
accuracy of the forward function or to the accuracy of the computer, which

ever is greater. A discussion on termination rules can be found in [Nas 96].

The LM method of minimizing an objective function requires that
starting values be given to the parameters of the forward function. As we
will see, when testing different data sets for the one dimensional model, the
convergence to the minimum objective value is not very sensitive to starting
values. This is not true of the two dimensional model which we will see is
very sensitive to the initial value given to the parameter for the altitude of
the peak density, hmF2, and the parameter H.,, that is the slope of the scale
height at 400 km. The initial values for the one dimensional model are set
at average values that represent the F-Region of the ionosphere. The values
are hmF2=350 km, nmF2 = 8 x 105/Cm3, Hiop = 70 km, and He,, = 1 for
the three parameter Chapman model or H,,, = 1.1 for the four parameter

Chapman model.

2.3 Improvements Made to the Already Existing Software

Before work began on this thesis, a large amount of the code had
already been written. The job ahead was to improve the already existing
code which would make it converge faster to more accurate parameter values
and to achieve more suitable fits to the data. Any changes made to the one

dimensional model carry over into the two dimensional model. There were also
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changes made to the two dimensional model only. These are discussed in the

next chapter.

First, the accuracy of the forward function was checked. The step
size for taking the finite difference derivative estimates was originally set at
1 x 1073. Tt is optimal to have the step size set at the square root of machine
ACCUracy \/€mqcn (see [Nas 96]). If the code was set up to be double precision,
this would put \/€meen = 1 X 107%. The only way (even at double precision) an
epsilon that small could be used is if the forward function was accurate close
to machine accuracy. All the variables in the procedures and functions were

set to double precision’.

A modification was made to the procedure that calculates the Jaco-
bian (VF(x)) to allow the option to use centered differencing derivative esti-
mates [Nas 96] if needed. The advantage is that even with a step size of 1x107*
(which would require far less machine accuracy) a derivative as accurate as the
V/€mach = 1 x 107® step size using the finite difference derivative estimate can
be obtained. The only problem with centered differencing is that twice as many
forward function calculations are required. This is not a big issue for the one
dimensional model that takes a few minutes to run. It is a big issue for the two
dimensional model; the two hour run time on a fast computer would turn into

three or four hours.

It turns out that setting all the variables to double precision increased

the forward function accuracy so that finite differencing was adequate and the

LAll computer code is available from the author or Dr. Borchers
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step size used could be \/€nen = 1 x 1078, Figure 2.1 shows how accurate
the forward function was at single precision. The top plot shows an arbitrary
parameter that was normalized to one and then perturbed down ten times and
up ten times by a factor of 1 x 1078, The corresponding function values show
that the function is sensitive to the changes in the parameter. The bottom plot
of Figure 2.1 shows the function values breaking down when the parameter is
perturbed by a factor of 1 x 10~7. This indicates that the forward function
is accurate to changes of up to 1 x 107% in the parameter values. Figure 2.2
shows the same parameter and corresponding function value after all variables
were set to double precision. This time, the function values do not start losing
integrity until the change in the parameter is a small as 1 x 105, Clearly this

is the desirable choice for more accurate derivatives.

In the process of checking the forward function accuracy, a bend in
the curve of one of the retrieved sets of data values was observed. One of
the basic assumptions in the Gauss-Newton or Levenberg-Marquardt methods
is that the function be smooth (twice continuously differentiable). This was
not the case for our forward function. After investigating the functions and
procedures calls? of the forward function, it was discovered that hard coded

limits on different function values had been set.

The limits were removed when possible and in cases where it was
not possible (i.e. dividing by close to zero or infinity) a penalty function was
introduced. The penalty function data value is stored as another data point

in the data vector but is not included in the x? calculation. It should always

2All computer code is available from the author or Dr. Borchers
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single precision function accuracy check
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Figure 2.1: Plots showing limit of forward function accuracy in single precision.
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double precision function accuracy check (eps=10{~14))

change in function value
[e—)

<
\H\H\H‘H\H\H\‘\\H\HH‘\HHHH‘\HHHH‘\HHHH

0.664827 0.604827 0.664827 (.664827 0.664827 0.604827
change in arbitrory porameter, 1 tick = 10:(~14)

double:precision function accuracy check (eps=10{~15))

- 000 09 R
0

=0 -

change in function value
[e—)
<
<

-4 i

-4x10

0.604827 0.664827 0.604827 0.664827 0.664827
change in arbitrory porameter, 1 tick = 10(~15)

Figure 2.2: Plots showing limit of forward function accuracy in double precision.
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have a value of zero unless one of the parameters or variables in the forward
function goes outside its upper or lower bound. If this happens then the penalty
function takes on the value penalty = 10" x (variable — ulbound)?. When the
square of the Ly norm is calculated, having this huge value in one of the data
points makes the square of the L, norm larger than it was on the previous step
no matter what was gained by the descent direction found by stepping out of
bounds. Therefore, the step is not taken. Lambda (the damping factor in the
LM method) is increased until a descent direction is found without having to

step outside the upper and lower bounds imposed on the variables.

Figure 2.3 shows the discontinuity found in the forward function. The
value of the parameter (0.8725 of its starting value) at the discontinuity is
definitely in the range of values the parameter could take on at optimality which
means the discontinuity would probably be involved in a derivative calculation
at some point in the iterative steps. The bottom plot of Figure 2.3 shows the
same parameters’ effect on the same retrieved data value after the changes
described above and the bend is gone. After an exhaustive search the forward

function is found to be smooth everywhere for the values encountered.

As previously mentioned, if the scan mirror for LORAAS points to-
ward a star, the next few data elements will have much larger counts then they
should. Since these data are not measures of 911A or 1356A emissions, they
must be omitted. To do this, a data masking vector is used. In the initial
stages of the program, data structures in IDL are built from the LORAAS
data set. One of the elements in the data structure is the data mask vector.

It is initially set to all ones. Then it is up to the user to plot the data set
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discontinuty check of forward function (eps=10+(~4))
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and locate any of the contaminated data points. The corresponding elements
in the data mask are then set to zero. The algorithm proceeds with all the
data points intact but when it comes to calculating the objective function, the
function we are trying to minimize (in this case its x> = Y| residuals} /0?),
only the data points corresponding to the elements in the data mask with ones
are used. The goodness-of-fit measure used is the reduced x? which is simply
the ratio of y? divided by the degrees of freedom. In this case, the degrees of
freedom are n — m where n is the number of indices in the data mask vector
that are set to one and m is the number of parameters being used to fit the

model.

The data mask is also used to mask out data points that correspond
to very low counts. Some data points come from very low photon counts (one
to three counts per data point). This is not a large enough number for the
Poisson distribution to be approximately normal. Also these data values are
small in comparison to the noise level of the data so they do not contribute
much information toward the model. Omitting these data points does not effect
the outcome of the optimal parameter values but does effect the normality of

the residuals which can become distorted for these data elements.

The method used employs a moving average of eight consecutive data
points calculated while reading through a data set. When this average is below
a cutoff value (usually set at 3 Rayleigh’s) the data mask is zeroed at the
corresponding data indices. The routine then jumps to the other side of the
profile peak and starts checking the moving averages again. This leaves the

defining part of the Chapman curve intact but removes data points that are
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essentially zero. The data mask also helped the convergence rate. Without the
extra noise both the one and two dimensional models converged in less than

ten iterations.

Another method tried in the implementation of the 1-D and 2-D mod-
els leaves the background noise in. Since the background noise is not subtracted
off but instead added to the retrieved intensities and then fit to the data, there
are no negative data points to worry about. This method is best since the
counts are purely Poisson and are high enough to allow the distribution to be
approximately normal. Another benefit is in the fact that no data points are
removed (except ones that have been contaminated by starlight) and thus no
information is lost. This method was checked against the results for the 1-D
model thus far and the optimal parameter values were in agreement for both

methods.

A simulated test on low count data was run to see how far the worst
case scenario would deviate from normality. Ten thousand random samples
from a Poisson distribution were generated with a mean value of 14 to simulate
the 911A and 1356A counts. This generates random numbers as small as six
which corresponds to the smallest counts in our real data set. Another ten
thousand samples from a Poisson distribution where generated with a mean of
150 to simulate the Lyman-a counts. A small amount of the simulated Lyman-
a was subtracted from the simulated low count data set corresponding to what

would be subtracted in the real data set.

Anderson-Darling [Law 00] normality tests were run on the differences

between these two cooked up Poisson distributed data sets. The Anderson-
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Darling (A-D) test for normality is a weighted average of the squared difference
between the cumulative distribution of the tested data set against the cumu-
lative distribution of a true normal distribution with corresponding mean and
standard deviation. The main difference between the A-D test and other tests
for normality is that more weight is given to the difference in the tails of the
normal distribution where distributions tend to differ the most. The A-D test
is therefore very sensitive (especially with 10,000 data points) and the test is

expected to fail when applied to our cooked up data set.

A Q-Q plot for our simulated data set is shown in figure 2.4. The
simulated data set differs from a true normal distribution mainly in the tails
which is reflected in the very poor A-D test statistic. For a data set with
thousands of observations, the A-D statistic (known as the A? statistic) should
be less than one. For information on the A-D statistic and the corresponding

p-value see [And 54, Ste 74].

Figure 2.5 shows the results of the difference when 100 is used for the
mean instead of 14. It would be expected that with p = 100, the simulated
data would approximate a normal distribution more closely and in fact Figure
2.5 shows a much better A% value but the simulated data still fails the A-D
test with a p-value of 0.0000. The point is that the Poisson distribution is
approximately normal when p is large enough. The histogram plot in Figure
2.6 shows that the simulated data with mean 14 does approximate a normal
distribution. How does this approximation effect the residuals of the real data?
Later, the results will be compared to runs of real data with and without the

low count data elements included.
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Q-Q plot of simulated Poisson data
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Figure 2.4: Q-Q plot showing how normal the Poisson simulated data is when
the mean is 14.
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Q-Q plot of simulated Poisson data
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Figure 2.5: Q-Q plot showing how normal the Poisson simulated data is when
the mean is 100 .
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Histogram of distribution of simulated data when mean is 14
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Figure 2.6: Histogram plot of simulated data with mean set at 14.

One more technique for data cleaning has to be considered other than
removing stars and entries where the signal to noise ratio is very low. This is
the background noise adjustment. In this case, the background noise comes
from the 1216A frequency (or Lyman-«) with a small contribution from 1304A
contamination in the 1356A count case. The given ratios for this background
noise where derived from the line shape model used in calibrating the LORAAS
instrument. It was observed that the given ratios of 1356A and 911A to 1216A
and 1304A contamination subtracts off too much of the 1216A and 1304A

counts.

The way to correct this is to adjust these ratios so that when the data

set is plotted, the section of data where it is expected to be nearly zero should
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have just as many data elements randomly distributed above and below zero.
Before the algorithm is run, the data set under consideration is examined to
make sure that all contamination by stars are excluded and that the subtracted

background noise is correct.

Another way is to not use the ratios just discussed as the scaling
factor for the Lyman-« but to use counts in nearby bins as the estimate of the
background noise. Due to a “hot spot” found on the detector in the region
near Lyman-«, the ratio used to scale the Lyman-a often calculates to much
background. The total counts in bins nearby the 911A and 1356A regions work

well as the total background noise.

2.4 The Three Parameter Chapman Model

The Chapman function was described in Section 2.2 and is given by
equation 2.7. In this section we will explore results from the optimization of
three of the four parameters in equation 2.7 using the algorithm described in
Section 2.2. The fourth parameter is the slope of the scale height and it will
remain fixed at Heon, = 1. To help find a more precise parameterization of
the data, 911A and 1356A emissions will be fit simultaneously. Since the line
of sight of LORAAS cuts across many degrees of latitude and longitude the
readings can only be parameterized by a Chapman function (which gives a
vertical profile) if the ionosphere is assumed to have only vertical variation.
This is only true in the mid-latitude regions (£25 deg to 65 deg) and so it only

makes sense to run tests on limb scan profiles taken in the mid-latitude region.
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The objective function we are minimizing for the one dimensional model is

n
|| weighted residuals ||3= Zresiduals?/af =x2 . (2.9)
i=1

where the residuals are the differences between actual data and the retrieved
data, o is the standard deviation of each data point as calculated in equations
2.1 & 2.2 and n is the number of data points. The topics discussed will be
the global convergence properties of the algorithm (an attempt will be made to
find multiple local minima), the goodness-of-fit using the reduced x? statistic,
the normality of the residuals (which is essential to the x? distribution), and

comparison of the findings to corresponding Ionosonde measurements.

An mid-latitude limb scan profile was chosen arbitrarily from a data
set obtained from LORAAS on November 24, 1999 at 17:67 Universal time.
The tangent point latitudes and longitudes for this profile are 51 deg latitude
and 135deg longitude. Two of the data points were excluded from the fit
because they were found to be contaminated by star light. All other data
points where used, including those with small counts. Later in this section we
will run a fit with small count data points removed and compare the results.
The initial starting values are taken as the general average values for mid-
latitude region Chapman parameters as discussed in Section 2.2. Table 2.1
shows the results of the objective function value and the optimized parameter
values for different initial values (the usual initial values adjusted randomly
up and down by the shown percentage). Testing convergence by adjusting
the initial values of the parameters by more than 50% starts to get close to
initial parameter values that are physically unrealistic. Other data subsets

were tested by randomly adjusting the initial values up and down by up to
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% param adj | initial param values | final param value | obj func
0.0% hmF2 = 350 km 248 km 159
nmF2 = 800000/cm? 598400/cm?
Hiop = 70 km 66 km
+25.0% hmF2 = 437 km 248 km 159
nmF?2 = 600000/cm? 598400 /cm?
Hiop = 87.5 km 66 km
+50.0% hmF2 = 175 km 248 km 159
nmF2 = 1.2 x 10°/cm? 598400/cm?
Hiop = 35 km 66 km

Table 2.1: Three parameter results from different initial values converging to
same solution.

50% with the algorithm converging to the same objective value every time.
This result shows that the one dimensional model using the three parameter
Chapman function has good convergence properties within the range of realistic
starting values. Confidence intervals for the parameters are hmF2=248 + 13
km, nmF2=5.98 + .33 x 10°/cm®, and Hy,, = 66 + 8.33 km. The reduced x?
value for this fit is 0.9109. The corresponding p-value is 0.7951 at 175 degrees
of freedom, which is significant at the v = .05 level. This indicates that the

three parameter Chapman function is fitting the data well.

Another crucial step in checking the validity of the model is to verify
that the residuals are uncorrelated and normally distributed. Figure 2.7 shows
that the residuals are definitely normally distributed with the Anderson-Darling
test for normality [Law 00] yielding a p-value of 0.893. Omne way to check
for patterns or correlations is to plot the residual vector against itself offset

by one index. If the residuals are correlated patterns will be visible in the
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Q—-Q plot with all data included (except stars)
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Figure 2.7: Q-Q plot showing residuals are normally distributed.

resulting scatter plot. In the scatter plot of Figure 2.8, there appears to be
no significant correlation between the residual values, no patterns are obvious,
and the residuals appear randomly distributed. Even though the errors are well
within the acceptable region of normality, we will run the same test with small
data elements (averaging a value of less than three Rayleigh’s) removed. The
optimal parameter values were the same as when all data points were used. The
reduced x? value for this run is 0.9723 with corresponding p-value of 0.5834
at 152 degrees of freedom. A little was lost in the fit with the low count data
elements removed but we shall now look at the residuals to see if there was an
improvement made there. The Q-Q plot of Figure 2.9 shows the A? statistic
with a p-value of 0.915 thus indicating that the normality of the residuals was

slightly improved over the run with all data points included.
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Scatter plot of residuals
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Figure 2.8: Scatter plot to show randomness of residuals.

Figure 2.10 shows the simultaneous 911A and 1356A fit of the in-
tensities derived from the Chapman function (smooth curve) plotted over the
actual real data. The curve on the left is the 911A data fit and the curve on the
right is the 1356A data fit. The two data points far removed from the rest are
the stars that were excluded. In the second run with low count data removed,
about 25 data points near data indices 0 and 100 were excluded from the fit.
At this point, the model fits the data very well. It will be interesting to see

how the model compares to corresponding Ionosonde results.

The Millstone Hill Ionosonde is located at 41deg N and —71deg E.
The closest tangent point altitudes of the line of sight of LORAAS that could

be obtained from our data set coincident with Millstone Hill are 40deg N
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Q—Q plot with data element average less than 3 Raylieghs removed
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Figure 2.9: Q-Q plot of residuals with low count data removed.

and —76deg E taken at 7:33 UT. There was auroral precipitation 10deg N
of Millstone Hill at that time which caused fluctuations and abnormally high
Tonosonde measurements. The Millstone Hill Ionosonde measured a peak elec-
tron density of 5.0 x 10°cm ™ and 3.7 x 10°cm 3 at 7:30 UT and 7:45 UT re-
spectively. The height of the peak electron density measured by the Tonosonde
was 333 km and 276 km at 7:30 UT and 7:45 UT, respectively. Normally at
this time of year the Ionosonde measurements at Millstone Hill do not fluctuate
and average electron density is about 3.0 x 10%cm~3. The parameters obtained
from our algorithm show the peak electron density to be 4.14 4+ .38 x 10° cm 3
at an altitude of 319+ 13 km. The model predicted the scale height parameter
to be 62+ 12 km. Figure 2.11 shows the retrieved Chapman Layer profile over

Millstone Hill at 7:35 UT. The asterisk on the plot is where the Ionosonde
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simultaneous 911 and 1356 data fit
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Figure 2.10: Simultaneous 911A and 1356A fit.

measured the peak electron density at 7:30 UT and the diamond is where the
Ionosonde measured the peak electron density at 7:45 UT. The model predicts
values that lie in between these two readings which makes sense if the electron
density and peak altitude were decreasing over this fifteen minute period. The
reduced 2 value for this fit is 1.03 with corresponding p-value of 0.3818 at 154

degrees of freedom.

The variance-covariance matrix used to infer confidence intervals on
the parameters is based on the asymptotic variance-covariance matrix of the
nonlinear regression coefficients. There is a nonlinear analog to the linear

variance-covariance matrix o (XTX) ! where X is the model matrix described
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Three parameter retrieved Chapman profile W/Millstone Hill results
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Figure 2.11: Retrieved three parameter Chapman profile with corresponding
Ionosonde measurements.
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in [Mye 90]. This estimate of the asymptotic variance-covariance is given by
cov(m) = o*(JTI)7! (2.10)

where J = V f(z) is the Jacobian of the objective function given in equation
2.4 and o2 is the variance of the errors. The 95% confidence intervals were then
calculated using the square roots of the diagonals of ¢ov(m) multiplied by 1.96.
This is the less conservative form of the confidence interval that does not take

into account the off diagonal covariance terms.

2.5 The Four Parameter Chapman Model

We next move on to the results of the four parameter version of the
Chapman Layer function. As discussed and displayed by Equation 2.7, the
fourth parameter H.,, is equal to the slope of the top side scale height at 400
km plus 1. We use exactly the same Chapman function for both the three
and four parameterization versions, only in the three parameter version we set
Heon = 1 and don’t allow it to change, which effectively cancels the fourth
parameter. In the four parameter version the initial value of Heo,, = 1.1 and
it is allowed to change to a value corresponding to an optimal fit. Everything

else remains the same in the algorithm.

The same two data sets will be fit as was done using three parameters
and comparing our results to see if the fourth parameter improves the fit enough
to warrant its use. Success of the fourth parameter will be gauged using an

F-test.

The first result presented will be the convergence properties of the

four parameter model. The same three tests were run as were run for the three
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parameter model. The four parameter results are summarized here in Table
2.2. As can be seen, the algorithm converged to the same objective function
value each time. The parameter values changed a little bit each time but this
is because changing the slope of the scale height warps the top side of the curve
in ways where an equally good fit can be obtained even with slightly different
parameter values. Confidence intervals for the parameters are hmF2=252 + 18
km, nmF2=5.98 + .45 x 10°/cm?, Hy,p, = 66 £ 10.68 km, and Heo, = .95 + .15
km. The x? value for this fit was 0.9217 with corresponding p-value of 0.76.

The ratio R = :;;Z; follows an F distribution [Mye 90] as long as weighted
2

data errors are distributed as N(0,1), which, we have shown they are. If we
take the corresponding reduced x? values from our three and four parameter
runs then we get R = .9109/.9217 = .9883. The upper 5% critical value F
statistic with vy = 175 and vy = 174 is Fg5(175,174) = 1.2837. Since R is less
than this value, the improvement in fit from the three to the four parameter

model is not significant at the 5% level.

A plot of the four parameter Millstone Hill fit is shown in Figure 2.12
with the same corresponding Ionosonde results that were shown in Figure 2.11.
The asterisk on the plot is where the Ionosonde measured the peak electron
density at 7:30 UT and the diamond is where the Ionosonde measured the
peak electron density at 7:45 UT. The Millstone Hill Tonosonde measured a
peak electron density of 5.0 x 10°¢cm™ and 3.7 x 10°cm~2 at 7:30 UT and
7:45 UT respectively. The height of the peak electron density measured by the
Ionosonde was 333 km and 276 km at 7:30 UT and 7:45 UT, respectively. The
parameters obtained from our algorithm show the peak electron density to be

4.65 4+ .7 x 10°cm ™3 at an altitude of 299 4 13 km. The model predicted the
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% param adj | initial param values | final param value | obj func
0.0% hmF,; = 350 km 252 km 160
nmF2 = 800000/cm?® | 586224 /cm?
Hiop = 70 km 67 km
Heon = 1.1 0.95
+25.0% hmF,; = 437 km 253 km 160
nmF?2 = 600000/cm? 583854 /cm?
Hiop = 87.5 km 65 km
Heon = .825 0.96
+50.0% hmF,; = 175 km 252 km 160
nmF, = 1.2e6/cm? 583845 /cm?®
Hiop = 35 km 67 km
Heon = 1.65 0.95

Table 2.2: Four parameter results from different initial values converging to
same solution.

scale height parameter to be 52+ 12 km with the slope of the scale height being
predicted at 1.13 £ .07. The x? value for this fit is 0.9951. The ratio R needed
for the F" test against the three parameter model is R = 1.0290/.9951 = 1.0301.
The upper 5% critical value Flg5(154,153) = 1.3050. Since R is less than the
critical value, the improvement in the fit of the model is not significant at the

5% level.

It is important to check the residuals of the four parameter Chapman
fit to make sure the they are normally distributed. Figure 2.13 shows a Q-Q plot
of the residuals with p-value from the A.D. test of 0.274 indicating the residuals
are N(0,1). Figure 2.14 shows a scatter plot of the residuals indicating they
are also random and uncorrelated. We can conclude that the fit of the model

passed the x? test.
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Four parameter retrieved Chapman profile W/Millstone Hill results
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Figure 2.12: Four parameter Chapman profile with corresponding Ionosonde
measurements.
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Q—-Q plot of Millstone Hill residuals
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Figure 2.13: Q-Q plot showing four parameter Millstone Hill residuals are
N(0,1).
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Scatter plot of Millstone Hill residuals
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Figure 2.14: Scatter plot of Millstone Hill residuals showing no correlation.

2.6 The Free Form Forward Model

The free form forward model is an alternative to using the Chapman
profile to obtain electron densities. Instead, the parameters that are adjusted
are electron densities at chosen altitudes. A cubic spline function is used to find
the electron densities in between the parameters at all altitudes needed for the
intensity calculations. The cubic spline function used is an IDL function based
on the spline function described in [IDL 95, Pre 92]. Essentially it computes
a cubic polynomial curve in between the points in such a way as to keep the

function differentiable at the points of connection.

At the beginning of the algorithm, the same initial values are used

that where used for the Chapman models from which the electron densities at
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the different altitudes (chosen as the parameters) are calculated. The calculated
electron densities at the sparsely chosen altitudes are saved in a vector and the
log of the values are taken. The electron densities at these altitudes are the
model parameters that will be iteratively adjusted in the fit. The log is used
to help the stability of the spline function in fitting a curve. The altitudes
chosen are up to the user. We used altitudes closer together at the peak of the
curve and more spread out at very low and very high altitudes. Results are
highly variable based on the altitudes chosen. The trick is not to use too many
altitudes (i.e. parameters) since the x? values will be effected by corresponding

lower degrees of freedom.

The spline function calculates the log of the densities for all altitudes.
The vector of electron densities will be used to calculate the intensities used
to fit the data. The algorithm proceeds as before by adjusting the parameter
values so as to minimize the squared difference between these intensities and

the original data set intensities.

The principle advantage to using this method is that fluctuations in
the electron density become evident. The Chapman function cannot, by the
nature of the equation, show ripples in the electron density profile. The free
form model is sensitive to these ripples, depending upon the region in which
the parameter altitudes where chosen close together. We chose the parameter
altitudes closer together at around the peak. This can be changed, for instance,

to the top side of the profile if the user is more interested in fluctuations there.

Comparing the results obtained from the first data set with the results

from the free form model, Figure 2.15 shows the obtained intensities from the
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Free form simultaneous 911 and 1356 angtrom fit
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Figure 2.15: Free form simultaneous 911A and 1356A fit.

cubic spline interpolation plotted over the actual data point intensities. At
the peak, there is a fluctuation in the data set that was not picked up by
the Chapman profile. This may be a more realistic model. The objective
function (square of the Ly norm) was improved from 159 to 148. The reduced
x? value of 1.0131 reflects a worse fit but that is because the degrees of freedom
went from 152 to 147. The corresponding p-value at 147 degrees of freedom is
0.4401 indicating a good fit. The ratio R of reduced x? values for this data set
is .9723/1.0131 = .9597. The upper 5% critical value Flg5(152,147) = 1.3104.
This indicates the extra parameters do not have a statistically significant effect
on the fit at the 5% level of significance. Figures 2.16 and 2.17 show the
residuals of the free form model applied to the first data set to be random

N(0,1).



47

Q-Q plot of free form model residuals
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Figure 2.16: Q-Q plot showing free form model residuals are N(0,1).

One problem with using the free form method is that there is no
information given about the scale height of the Ionosphere. Also, confidence
limits are difficult to obtain because the variance is very large at parameter
altitudes that are not closely spaced together. The free form model does pose an
interesting way to fit the data, however. Figure 2.18 shows an electron density
profile using the free form model on the Millstone Hill data. The asterisk on
the plot is where the Ionosonde measured the peak electron density at 7:30 UT
and the diamond is where the Ionosonde measured the peak electron density
at 7:45 UT.The Millstone Hill Ionosonde measured a peak electron density
of 5.0 x 10°%cm™2 and 3.7 x 10°cm 3 at 7:30 UT and 7:45 UT respectively.
The height of the peak electron density measured by the Ionosonde was 333
km and 276 km at 7:30 UT and 7:45 UT, respectively. It is noted that the



48

Scatter plot of free form model residuals
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Figure 2.17: Scatter plot free form model residuals showing no correlation.

free form model has a higher peak density than the three and four parameter
Chapman profiles. The results seem reasonable in comparison to the Ionosonde

measurements.

2.7 Conclusions

After examining the results of the three different model parameteri-
zations it seems apparent that they all fit the model well enough to pass the x?
test easily. Also, they all seem to agree closely to their corresponding Ionosonde
measurements. The most efficient model is the three parameter Chapman func-
tion. It was the most efficient in the sense that all the F' tests performed showed
no significantly better fit when more parameters were used. This does not mean

that only the three parameter Chapman model should be used. It is easy to
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Electron denisty profile using free form model
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Figure 2.18: Free form electron density profile with Millstone Hill results.

switch to more parameters, if the programs are written properly, in order to

test results on other data sets.

The free form model does have its advantages in that fluctuations
in the density can be found that could never be found with the Chapman
function. It is important to remember here that the Ionosphere is assumed
to be homogeneous along latitudes and longitudes. For this reason, we only
attempted to fit profiles that were in the mid-latitude regions. This does not
mean that profiles cannot be fit at or near the equator. It is unclear at this
point if the results would be accurate. The next Chapter attempts to fit a
two dimensional model where by we do not make these assumptions. Then,

results of the one-dimensional model fit at the equator will be compared to the



two-dimensional model.
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Chapter 3

The Two Dimensional Model

3.1 Overview

In exploring the one-dimensional model, data sets from LORAAS
were used to accurately obtain a vertical profile of the Ionosphere as measured
against ground truth. The line of sight of the LORAAS instrument cuts across
many degrees of latitude and longitude. For this reason, obtaining a vertical
profile using the Chapman function relies on the assumption that the latitude-
longitude gradient of the electron densities is small. There was concern that
fitting profiles at or near the equator might not be very accurate since gradients
in the tropics are generally higher. Our interest lies in finding out if we can
obtain a two-dimensional picture of the Ionosphere that spans across the mid-
latitude and equatorial regions of the nighttime sky. Densities found in the two-
dimensional model will be compared to those obtained by the one-dimensional

model to see if they agree.

The problem is really a three-dimensional one (latitude, longitude,
and altitude), but since the limb scans are in the orbit plane of ARGOS,
it reduces to a two-dimensional problem. The algorithm used in the two-
dimensional model is the same as in the one-dimensional case except that a
two-dimensional grid of the ionosphere is maintained that contain electron den-

sities. The area the grid covers is determined by the size of the data set used.

ol
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The data sets used are a series of consecutive limb scan profiles (unaffected by
auroral precipitation) that span the mid-latitude and equatorial regions coin-
ciding with the ARGOS orbit path. The grid is evenly spaced in angle along
the orbit plane which roughly corresponds to a similar spacing in latitude. The
number of elements in the grid array depends on the angle spacing specified by
the user and the number of altitudes specified by the program. The number of

altitudes is set at fifty ranging from 90 km to 1070 km in 20 km increments.

The elements in the grid have corresponding values of altitude, lat-
itude, and longitude calculated from the orbit path of ARGOS. These corre-
sponding values are saved in other arrays. If a grid spacing of ten degrees along
the orbit plane is used, then each column of the grid roughly corresponds to
one limb scan made by LORAAS. This is because ARGOS moves 10 deg in its
orbit during each complete limb scan. A more or less dense grid can be created
by changing the grid angle spacing value. The trade off is that the denser the
grid the more parameters we have to fit. If we make the grid twice as dense
in orbit angle spacing then we double the number of parameters. The itera-
tive algorithm has to take the derivative with respect to each parameter. This
means evaluating the forward function twice as many times. It was found that

a grid density of ten degrees is sufficient for proper resolution of the problem.

The electron densities at each grid angle, an array with a density at
each altitude, is parameterized as in the 1-D case with a Chapman function.
Thus, there is also a parameter grid containing parameter values for the Chap-
man function that correspond to the columns (or angle spacing) of the electron

density grid. These parameter values are adjusted so that the corresponding
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electron densities they calculate for the electron density grid are optimal in
fitting the data. Since the data are measurements of intensities, the electron
densities in the grid are used to calculate the intensities as would be observed
by LORAAS. The formulas used for the intensities are the same as are used
for the 1-D problem except that the two-dimensional grid of electron densities
is used. This grid has varying electron densities across the orbit angles instead
of the constant densities, used in the 1-D problem. This gives a more accurate
description of the ionosphere especially where the electron density is changing

rapidly along the orbit plane.

Another two-dimensional array is needed of the nitrogen and oxy-
gen densities, and temperatures corresponding to the geometry of the electron
density grid. The MSIS-86 model described in the one-dimensional problem
returns an array that contains these values at each point in the grid. Once
the grids are created a good set of initial values are needed. The initial values
used for the one-dimensional problem are not sufficient here since the Chapman

parameters vary considerably across the mid-latitude to equatorial regions.

The initial values used for the two-dimensional problem are obtained
from a function called the Parameterized Ionospheric Model (PIM) [Dan 95].
The PIM is a global model of the theoretical ionospheric climatology based on
diurnally reproducible runs of four physics based numerical models of the iono-
sphere. The four numerical models, taken together, cover the E and F layers
for all latitudes, longitudes and local times. PIM consists of a semi-analytic
representation of diurnally reproducible runs of these models for low, mod-

erate, and high levels of both solar and geomagnetic activity, and conditions
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during June and December solstice, as well as the March equinox. The output
obtained from the PIM used in our algorithm is of the form of a latitude and
longitude grid in the region of the flight path of ARGOS. It returns a grid of
electron densities in the F layer of that region. For more information on the

PIM function see [Dan 95].

The grid of electron densities obtained from the PIM is inverted to
obtain optimal Chapman parameters for each grid angle along the orbit path.
These are used as the initial parameter values. The initial values fit include
all four Chapman parameters. When we run the three parameter Chapman
model the fourth parameter (the slope of the top side scale height) is fixed at

this initial value.

The next major difference between the one and two dimensional mod-
els is the calculation of the intensities. In the one dimensional model the elec-
tron, nitrogen, and oxygen densities are considered constant along latitudes
and longitudes. In the two-dimensional model the differing densities are found
in the grids, so when the intensities are calculated they reflect the variable
electron densities at differing latitudes and longitudes. Also, there is a certain
amount of interpolation going on so intensities calculated along a line a sight

come from a bilinear interpolation between points in the electron density grid.

Since the forward function as a whole is very flat near the optimal so-
lution the problem is ill-conditioned. This leads to a very rough and physically
unrealistic solution. This roughness will be seen when results of three and four

parameter runs are presented.

Once the best two-dimensional model has been determined regular-
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ization will be introduced to smooth out the results. The regularization used is
described in section 3.3. At this point, any statistical inference about the fit is
lost including confidence intervals, since the bias introduced into the solution

will be too great.

As different data sets were looked at, it was observed that the method
used to subtract out the background in the one-dimensional model did not al-
ways work in the two-dimensional case. As mentioned, it was observed that the
given ratios of 1356A and 911A to 1216A and 1304A contamination subtracts
off too much of the 1216A and 1304A counts. The way to correct this is to
adjust these ratios so that (when the data set is plotted) the section of data
which is expected to be nearly zero should have just as many data elements
randomly distributed above and below zero. Before the algorithm is run the
data set under consideration is examined to make sure that all contamination

by stars are excluded and that the subtracted background noise is correct.

In the two-dimensional model, where a series of limb scan profiles
make up the data set, the correct ratio was not constant across the entire data
set. The baseline of the data from each profile seemed to fluctuate up and
down time wise through the data set. It was discovered, upon inquiry to the
Naval Research Lab, that there was a “Hot Spot” on the detector that could
artificially increase the apparent background. The way around this is to use
the counts obtained from nearby bins (of the 911A and 1356A emissions) as
the background. There are no reactions taking place in the nighttime sky that
contribute anything to the nearby bins on the detector other than background

noise. Making the necessary changes to the procedure and plotting the data, the
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background was much more reasonable for the previously troubled data sets.
We can confirm this fact by adding in to the forward function, temporarily,
two extra parameters that were used to find the multiplier of background noise
that would give the best fit to the data. These multiples stayed very close to
one, indicating that the sum of the counts of the nearby bins to the 911A and

1356A frequencies served well as the entire background noise.

Another variation to the algorithm inspired by trouble with the back-
ground, was the idea to leave the background in. Here, the idea is to take the
total counts in the bins corresponding to 911A and 1356A emissions (including
the background) and use these to find the optimal Chapman parameters that,
when the background is added to the retrieved data, best fit the total counts.
There is another advantage here, other than avoiding trying to fit negative
data, and that is the resulting distribution. Before, Poisson total counts were
subtracted from Poisson background noise. The resulting distribution is not
Poisson. If the background is left in the original counts, the result is a purely
Poisson distribution with standard deviations estimated as the square root of
the counts. It is necessary to smooth the background noise added in after the
retrieved data is calculated from the Chapman function to obtain an accept-
able fit. The smoothing is done by fitting a polynomial curve through the
background data points using the IDL function polyfit. From these arguments
it is obvious this method makes much more sense and the one-dimensional al-
gorithm has since been modified to work this way. The retrieved parameters
were close to being the same using either technique for the one-dimensional

model.
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Convergence of the two-dimensional model was heavily tested and the
printouts are extensive!. What they reveal are that the first three parameters
can be randomly adjusted up and down by 35% of the their initial values and
still converge to the same minimum objective function value, as well as the same
parameter values. The fourth parameter (the slope of the top side scale height)
is much more sensitive and could only be adjusted up and down by 15% of its
initial value before the algorithm would start converging to different objective
function values. The good news is that the other objective function values the
algorithm converged to (when the parameters where adjusted outside the limits
just described) were always larger than the minimized objective function value

obtained from the PIM initial values.

3.2 The Three and Four Parameter Chapman Model

The Chapman function, described in Section 2.2, is given by equation
2.7. In this section, we will explore results from the optimization of a grid of
three of the the four parameters in equation 2.7 using the algorithm described
in section 2.2 and in the overview of this chapter. The fourth parameter is the
slope of the scale height and it will remain fixed at the value obtained from
inverting the PIM. To help find a more precise parameterization of the data,
911A and 1356A emissions will be fit simultaneously. The objective function

we will be minimizing for two dimensional problem is

n

|| weighted residuals ||3= Z residuals; /o7 + penalty” (3.1)
i=1

Listings of the convergence results are available from the author or Dr. Borchers
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where the residuals are the differences between actual data and the retrieved
data, sigma is the standard deviation of each data point taken as the square
root of the full count and n is the number of data points. The penalty data
point is always zero unless the algorithm tries to take a descent step that puts
a parameter value outside imposed limits. The penalty data point is assigned
such a high value that the step is never taken. The step is completed when a

proper direction of descent is found, then the penalty point is put back to zero.

The first data set investigated is an arbitrarily chosen series of scan
profiles selected from a data set obtained from LORAAS on November 24, 1999.
The section of data we will analyzed corresponds to tangent point latitudes and
longitudes along the ARGOS flight path ranging from 70.53 deg N - 145.73 deg
E to 47.33deg S - 109.46 deg E . The Universal times corresponding to these
measurements start at 17:35 UT and end at 18:09 UT. A total of 52 data points
were excluded from this set of 2156 because they were found to be contaminated
by star light. This works out to be about two points per limb scan per spectra,
the number that generally had to be removed when fitting the one-dimensional
model. There is no need to be concerned here with small count values since the
total counts are used, including the noise. The smallest values found in the data
sets start at around 10 counts per bin and go up to 150 counts per bin. These
values from a Poisson distribution are generally considered to approximate a

normal distribution well enough, especially when extended to the residuals.

Figure 3.1 shows the two dimensional picture of the electron densities
retrieved from the 3-parameter Chapman model. This solution is very rough

as can be seen by the very sharp drop offs from the peaks of about 9 x 10°



29

2—-Dim Contour Plot of 3 param model w/o regularization
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Figure 3.1: Two dimensional contour plot showing the retrieved electron den-
sities from the 3-parameter Chapman function without any smoothing of the
solution. The peaks represent electron densities of 9e5 .
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hmF2(Km) | nmF2 (per ¢cm?) | Hyop (Km) | Heop
428 339948 95 1.06
438 580791 79 1.06
541 316860 76 1.02
359 77016 10 1.00
245 410956 129 1.02
259 931514 41 1.00
251 598850 92 1.02
339 663877 56 1.03
383 499563 88 1.02
311 373789 154 1.02
230 361167 130 1.01
190 949267 29 1.02
227 276658 o4 1.07

Table 3.1: Optimal parameter values for the two-dimensional Chapman model.
The Hco, parameter remains fixed.

electrons per cm® down to 7.7 x 10* per cm?® in only 20 deg of latitude. Also,
some of the parameters are unrealistic, for instance, the top side scale heights
that fluctuate wildly. The results will be smoothed out using regularization

later in this chapter.

It is interesting to note when looking at Figure 3.1 that there are two
peaks on both sides of the 10 deg latitude mark. It is known that electron den-
sities between the mid-latitude regions peak just above and below the magnetic
equator. It can be verified at the NOAA national data centers, NGDC web
page that the magnetic equator during that time and at that position longitude
(120 degE) was at 10degN latitude. This is further evidence that the model
represents (albeit rough) a realistic picture of the ionosphere. The peak at

—40degN latitude is really at —50 degN latitude in relation to the magnetic
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equator. This is still not that far south and makes this peak very suspect. It

probably is an effect of the unregularized two dimensional fit.

The x? value from this fit was 1.0049 with 2065 degrees of freedom.
The corresponding p-value is 0.4335 indicating a good fit. We have already
discussed the bias that is introduced into the solution merely by the fact that
interpolation is used to maintain the grids and that the lines of sight being fit
overlap. This overlap has a tendency to pull individual profiles away from there
optimal fit if doing so causes neighboring profiles to obtain a better fit which
improves the objective function value to a greater degree. For this reason, we
do not expect our residuals to show the degree of normality that they do in the
one-dimensional case. Figures 3.2 and 3.3 show that the residuals are randomly
distributed but they do not pass the A.D. normality test anymore. Figure 3.4
shows a plot of the histogram of the residuals with a normal curve overlay.
It can be seen that the residuals are approximately normal but look slightly

skewed to the right due to bias.

Using the algorithm described in section 2.2 and in the overview of
this chapter the results from the optimization of a grid of all four parameters
in equation 2.7 will be looked at. The fourth parameter is the slope of the
scale height and it will be allowed to vary from the initial value obtained from
inverting the PIM. For comparison the same data set will be used as was used
for the three parameter two-dimensional model. Every thing else will remain

the same in the algorithm.

The x? value from this fit was 1.0053 with 2052 degrees of freedom.

The corresponding p-value is 0.4286 indicating a good fit. The residuals looked
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Q—Q plot two—dimensional model residuals
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Figure 3.2: Q-Q plot of 2-D model residuals.

the same as the three parameter model. The nmF2 values where not as erratic
as the three-dimensional model but the H.,, parameter must have absorbed
the effects of the bias since their values where very erratic and unrealistic. The
question is, is this an improvement in the model? The answer is no. The
ratio R of reduced x? values for this data set is 1.0049/1.0053 = 0.9996. The
upper 5% critical value Flg5(2065,2052) = 1.0752. This indicates the extra
parameters do not have a statistically significant effect on the fit at the 5%

level. This result is consistent with the one-dimensional model.

3.3 Regularization of the Best 2-D Model

The best two dimensional model is the grid formed when three of the

four Chapman parameters are allowed to vary. The fourth parameter (slope of
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Scatter plot of two—dimensional model residuals
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Figure 3.3: Scatter plot free form model residuals showing no correlation.

the top side scale height) remains fixed at its initial value obtained by inverting

the PIM.

Now that the appropriate model has been chosen, it is necessary to
smooth out the unregularized solution. In this case, what is meant by regularize
is to stabilize the solution so that the transition between columns in the grid
of ion densities is more gradual than the rough solution. It is also necessary to
keep the parameter values somewhat close to there initial values and thereby
keeping the parameter values within physically realistic limits. Without these
two types of regularization, the penalty function is invoked on nearly every
iteration, and as seen in table 3.1 the parameter values turn out to be erratic.

The smoothness and stability of this type of regularization is obviously reflected
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Histogram of residuals, with Normal Curve
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Figure 3.4: Histogram of residuals with normal curve overlay.

in the smoothness of the grid of parameter values.

The way regularization is imposed on our solution is to add two new
terms to the objective function. The first new term added is a measure of the
distance the parameters are getting from their initial values. The second new
term is a measure of the roughness between columns in the grid of ion densities.
The way the roughness in the grid of ion densities is calculated is an estimate
of the second derivative between three consecutive points (at the same altitude
in the grid) is taken and then normalized by the total Ot value obtained by
the PIM at that altitude. This is done at different altitudes staggered from
top to bottom in the ion density grid. This array of derivative estimates is

reshaped into a vector. Minimizing the norm of this vector has the effect of
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finding optimal values for our parameters that keep the grid of ion densities

smooth. The new objective function is now
minimize || residuals, ||5 +o?(|| m — mppy |3 +L* || s ||3) + penalty®  (3.2)

where residuals,, is the vector of misfit measurements divided by their respective
data point standard deviations, m represents the optimal parameter values,
mppy are the initial parameter values obtained from the PIM profile, s is the
vector of roughness calculations, L is the weight or importance assigned to the
roughness vector versus the distance our optimal parameter values get from
their initial values, « is the weight or importance assigned to the sum of the
two regularization terms versus the misfit, and penalty is the penalty data
point that is invoked if the algorithm tries to assign parameter values outside
the physically real boundaries. This last term is always zero at the end of any

iteration.

After some trial and error it was found that letting L = 3.5 distributed
the regularization norms so that the magnitude of each of the two terms were
close to being equal. The program was then run for values of alpha ranging
from 0.0 to 3.8. The square of the norm of the weighted misfit was plotted
against the sum of the squares of the norms of the two regularization terms.
The optimal value for alpha was chosen to be the sixth data point or e = 1.0.
This value of alpha is where the model is smoothed to an optimal point and
further smoothing only adversely affects the misfit. The algorithm was very

stable and converged in only six iterations.

Now, the results of our regularized two dimensional model can be

observed. The reduced x? value for this run was 1.09145, which fails the x?
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Curve to find optimal regularization parameter
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Figure 3.5: The regularization curve found by trying a range of values for alpha
and plotting the norm of the misfit squared against the sum of the squared
norms of the regularization terms .
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test at the 5% level of significance with a p-value of 0.0098. This is to be
expected when using regularization. The bias introduced into the solution
when smoothing it out usually renders any accurate statistical analysis useless.
However, the residuals still look very similar to the unregularized solution.
Figure 3.6 shows the two dimensional contour plot of the smoothed solution.
This solution looks very different from Figure 3.1. The suspicious peak at
—40degN latitude is gone and there is a new peak forming at 70 degN latitude
as the solution heads into the auroral region at the pole. One effect of the
smoothing is that the two distinct peaks on either side of the magnetic equator
have been lost. This has been blurred into one peak. By and large, this
mapping of the ionosphere is far more realistic than the unregularized solution.
Table 3.2 shows the final optimal parameter values that are used to construct
the 2-D grid of ion densities. The observed values are also much smoother in
their transition from limb scan to limb scan. Remember the chosen grid density

corresponds to one set of parameters per limb scan.

A one-dimensional fit of the model at 21 degN latitude is compared
by Looking at Figure 3.6 and row six of Table 3.2. It can see that the peak
electron density is at 6.28 x 10° per cm? located at a height of 274 km. Fitting
the one-dimensional limb scan data at this position yields almost the same
results. The peak electron density is at 6.64 x 10° per cm?® located at a height
of 271 km. One can also fit the 1-D profile at 10 deg to the other side of the
magnetic equator located at at 2 degN. These parameters are in row eight of
Table 3.2 for the 2-D model. The optimal parameter values obtained from the
1-D model have the peak electron density at 5.15 x 10° per cm? located at

a height of 375 km. These values are close to their corresponding parameter
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hmF2(Km) | nmF2 (per cm?) | Hyop (Km) | Heon
493 455505 72 1.06
489 377412 68 1.06
492 263303 85 1.02
487 166294 95 1.00
282 216893 84 1.02
274 628492 42 1.00
284 638197 56 1.02
326 569919 73 1.03
365 484296 87 1.02
370 338856 120 1.02
327 304570 149 1.01
258 331307 155 1.02
249 390875 125 1.07

Table 3.2: Optimal parameter values for the regularized two-dimensional model
using a three parameter Chapman function..
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Figure 3.6: Two dimensional contour plot showing the retrieved electron den-
sities from the 3-parameter Chapman function with optimal smoothing of the

solution.
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values from the 2-D model.

It is important to point out that there is a disagreement between
the third and fourth rows of Table 3.2 to the corresponding 1-D results. The
corresponding 1-D results (which were presented in detail in Chapter Two) show
the peak electron density at 5.7 x 10° per cm?® located at a height of 257 km.
One reason for this may be that, according to the two-dimensional model, the
gradient in the 30 degN to 50 degN latitudes is high for this data set. This could
explain why the ion density is so much higher in the 1-D model. The 1-D model
assumes the atmosphere is homogeneous and therefore any measurements that
might be influenced by the line of sight stretching into regions where the ion
density is higher (far away from the tangent point altitude) will be used as if
they where from readings at the tangent point latitude. This can lead to peak
ion densities that are much higher than they should be. One way to check this
is to take the part of the solution from the 2-D model corresponding to the
fourth row of Table 3.2 and use it as the data set to fit in the 1-D model. If
measurements have been effected by high ion densities that are very close or
very far from the detector, with respect to the tangent point altitude in the
line of sight of LORAAS, then the peak ion density found by the 1-D model
should be much higher than the 2-D model.

After substituting the solution from the latitude of interest obtained
from the 2-D model into the 1-D model the result is the peak electron density
is 5.36 x 10°/cm?®. This result indicates that the 1-D model is being affected
by the high ion density gradient in that region and the results are not to be

trusted. The 2-D model is able to detect the valley in the electron density by
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way of measurements taken before and after the region of interest.

The results of the 2-D model are still not perfect. They are obtained
from regularizing the raw solution in an inexact way. The electron densities
are calculated by interpolation between points in the ion density grid and cor-
responding intensities are derived using oxygen levels obtained from the MSIS
model. These electron densities are therefore a sort of averaging of the real

ionosphere with the peaks and valleys slightly exaggerated.



Chapter 4

Conclusions

We can conclude from the two dimensional results that the best model
to use in calculating the ion density grid is the three parameter Chapman
model. The unregularized solution obtained is too rough to be physically real-

istic and thus must be smoothed out using regularization.

One reason we explored the two-dimensional model was that we were
concerned that the one dimensional model might not give us accurate parameter
values at the regions in the ionosphere where the gradient of the ion density is
high. Upon comparison we can see that the one and two dimensional models
give different results in these regions. Due to the geometry of the problem, the

best method is one that reflects changes in ion density in the orbit plane of

LORAAS.

An experiment was run that constructed a two dimensional mapping
of the ionosphere by fitting consecutive limb scans using the 1-D model. Figure
4.1 shows the results of the experiment. It shows a peak density of 5 x 10°
consistently across latitudes ranging from -20 N to 70 N. There is a slight peak
at 20 N corresponding to the 10 deg mark north of the magnetic equator. At
latitudes of -50 N to -30 N the algorithm failed to converge and gave results
in excess of 12 x 10°. The result is a blurred picture of the ionosphere with

constant peak densities at altitudes that are unrealistic.

71
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2-Dim Contour Plot of sequential 1-dim fits
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Figure 4.1: Two dimensional contour plot constructed by fitting consecutive
1-D profiles.
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We have found that in some cases the one dimensional model works
well and has advantages over the two-dimensional model in terms of faster run
times and the ability to calculate accurate confidence intervals. However, we
conclude here that the regularized two-dimensional model gives a much more

accurate continuous picture of the state of the ionosphere.
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